--- license: cc-by-sa-4.0 task_categories: - text-generation language: - sr - hr - bs tags: - webdataset pretty_name: Kišobran (Umbrella corp.) size_categories: - 10B

Kišobran korpus - krovni veb korpus srpskog i srpskohrvatskog jezika

Najveća agregacija veb korpusa do sada, pogodna za obučavanje velikih jezičkih modela za srpski jezik.

Ukupno 56 miliona dokumenata, ukupno sa preko 18.5 milijardi reči.

Svaka linija predstavlja novi dokument

Rečenice unutar dokumenata su obeležene.

Sadrži obrađene i deduplikovane verzije sledećih korpusa:

Umbrella corp. - umbrella web corpus of Serbian and Serbo-Croatian

The largest aggregation of web corpora so far, suitable for training Serbian large language models.

A total of 56 million documents containing over 18.5 billion words.

Each line represents a document.

Each Sentence in a document is delimited.

Contains processed and deduplicated versions of the following corpora:

Korpus
Corpus
Jezik
Language
Broj dokumenata
Doc. count
Broj reči
Word count
Udeo
Share
HPLT_sr 🇷🇸 2.9 M 2.5 B 13.74%
MaCoCu_sr 🇷🇸 6.7 M 2.1 B 11.54%
MC4_sr 🇷🇸 2.3 M 782 M 4.19%
cc100_sr 🇷🇸 2.3 M 659 M 3.53%
PDRS1.0 🇷🇸 400 K 506 M 2.71%
SrpKorNews 🇷🇸 1.5 M 469 M 2.51%
OSCAR_sr 🇷🇸 500 K 410 M 2.2%
srWaC 🇷🇸 1.2 M 307 M 1.65%
CLASSLA_sr 🇷🇸 1.3 M 240 M 1.29%
MaCoCu_cnr 🇷🇸/🇲🇪 500 K 152 M 0.82%
meWaC 🇷🇸/🇲🇪 200 K 41 M 0.22%
cc100_hr 🇭🇷 13.3 M 2.5 B 13.73%
MaCoCu_hr 🇭🇷 8 M 2.3 B 12.63%
HPLT_hr 🇭🇷 2.3 M 1.8 B 9.95%
hr_news 🇭🇷 4.1 M 1.4 B 7.65%
hrWaC 🇭🇷 3.1 M 935 M 5.01%
CLASSLA_hr 🇭🇷 1.2 M 160 M 0.86%
riznica 🇭🇷 20 K 69 M 0.37%
MaCoCu_bs 🇧🇦 2.6 M 700 M 3.75%
bsWaC 🇧🇦 800 K 194 M 1.04%
CLASSLA_bs 🇧🇦 800 K 105 M 0.56%
cc100_bs 🇧🇦 300 K 9 M 0.05%
TOTAL 56.22 M 18.65 B 100%
Load complete dataset / Učitavanje kopletnog dataseta ```python from datasets import load_dataset dataset = load_dataset("procesaur/umbrella") ``` Load a specific language / Učitavanje pojedinačnih jezika ```python from datasets import load_dataset dataset_sr = load_dataset("procesaur/umbrella", split="sr") dataset_cnr = load_dataset("procesaur/umbrella", split="cnr") dataset_hr = load_dataset("procesaur/umbrella", split="hr") dataset_bs = load_dataset("procesaur/umbrella", split="bs") ```
Editor
Mihailo Škorić
@procesaur
Citation: ```bibtex @article{skoric24korpusi, author = {\vSkori\'c, Mihailo and Jankovi\'c, Nikola}, title = {New Textual Corpora for Serbian Language Modeling}, journal = {Infotheca}, volume = {24}, issue = {1}, year = {2024}, publisher = {Zajednica biblioteka univerziteta u Srbiji, Beograd}, url = {https://arxiv.org/abs/2405.09250} } ```

Istraživanje je sprovedeno uz podršku Fonda za nauku Republike Srbije, #7276, Text Embeddings – Serbian Language Applications – TESLA.

Svaki korpus u tabeli vezan je za URL sa kojeg je preuzet. Prikazani brojevi dokumenata i reči, odnose se na stanje nakon čićenja i deduplikacije.

Deduplikacija je izvršena pomoću alata onion korišćenjem pretrage 6-torki i pragom dedumplikacije 75%.

Računarske resursre neophodne za deduplikaciju korpusa obezbedila je Nacionalna platforma za veštačku inteligenciju Srbije.

This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA.

Each corpus in the table is linked to the URL from which it was downloaded. The displayed numbers of documents and words refer to after cleaning and deduplication.

The dataset was deduplicated using onion using 6-tuples search and a duplicate threshold of 75%.

Computer resources necessary for the deduplication of the corpus were provided by the National Platform for Artificial Intelligence of Serbia.