|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """@misc{degibert2022sequencetosequence, |
|
title={Sequence-to-Sequence Resources for Catalan}, |
|
author={Ona de Gibert and Ksenia Kharitonova and Blanca Calvo Figueras and Jordi Armengol-Estapé and Maite Melero}, |
|
year={2022}, |
|
eprint={2202.06871}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
}""" |
|
|
|
_DESCRIPTION = """CaSum is a summarization dataset. It is extracted from a newswire corpus crawled from the Catalan News Agency. The corpus consists of 217,735 instances that are composed by the headline and the body. |
|
""" |
|
|
|
_HOMEPAGE = """https://github.com/TeMU-BSC/seq-to-seq-catalan""" |
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/casum/resolve/main/" |
|
_TRAIN_FILE = "train.jsonl" |
|
_VALID_FILE = "valid.jsonl" |
|
_TEST_FILE = "test.jsonl" |
|
|
|
class CaSumConfig(datasets.BuilderConfig): |
|
""" Builder config for the CaSum dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CaSum. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CaSumConfig, self).__init__(**kwargs) |
|
|
|
|
|
class CaSum(datasets.GeneratorBasedBuilder): |
|
"""CaSum Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CaSumConfig( |
|
name="CaSum", |
|
version=datasets.Version("1.0.0"), |
|
description="CaSum dataset" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"summary": datasets.Value("string"), |
|
"text": datasets.Value("string") |
|
} |
|
|
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAIN_FILE}", |
|
"valid": f"{_URL}{_VALID_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}" |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath) as f: |
|
for id_, row in enumerate(f): |
|
article = json.loads(row) |
|
text = article['text'] |
|
summary = article['summary'] |
|
yield id_, { "summary": summary,"text": text} |