|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
Rodriguez-Penagos, Carlos Gerardo, Armentano-Oller, Carme, Gonzalez-Agirre, Aitor, & Gibert Bonet, Ona. (2021). |
|
Semantic Textual Similarity in Catalan (Version 1.0.1) [Data set]. |
|
Zenodo. http://doi.org/10.5281/zenodo.4761434 |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Semantic Textual Similarity in Catalan. |
|
STS corpus is a benchmark for evaluating Semantic Text Similarity in Catalan. |
|
It consists of more than 3000 sentence pairs, annotated with the semantic similarity between them, |
|
using a scale from 0 (no similarity at all) to 5 (semantic equivalence). |
|
It is done manually by 4 different annotators following our guidelines based on previous work from the SemEval challenges (https://www.aclweb.org/anthology/S13-1004.pdf). |
|
The source data are scraped sentences from the Catalan Textual Corpus (https://doi.org/10.5281/zenodo.4519349), used under CC-by-SA-4.0 licence (https://creativecommons.org/licenses/by-sa/4.0/). The dataset is released under the same licence. |
|
This dataset was developed by BSC TeMU as part of the AINA project, and to enrich the Catalan Language Understanding Benchmark (CLUB). |
|
This is the version 1.0.2 of the dataset with the complete human and automatic annotations and the analysis scripts. It also has a more accurate license. |
|
This dataset can be used to build and score semantic similiarity models. |
|
""" |
|
|
|
_HOMEPAGE = """https://zenodo.org/record/4761434""" |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/sts-ca/resolve/main/" |
|
_TRAINING_FILE = "train.tsv" |
|
_DEV_FILE = "dev.tsv" |
|
_TEST_FILE = "test.tsv" |
|
|
|
|
|
class StsCaConfig(datasets.BuilderConfig): |
|
""" Builder config for the Semantic Textual Similarity Ca dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for StsCa. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(StsCaConfig, self).__init__(**kwargs) |
|
|
|
|
|
class StsCa(datasets.GeneratorBasedBuilder): |
|
"""Semantic Textual Similarity Ca dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
StsCaConfig( |
|
name="StsCa", |
|
version=datasets.Version("1.0.2"), |
|
description="Semantic Textual Similarity in catalan dataset" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.Value("float"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
""" Returns the examples in the raw text form """ |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
ref, sentence1, sentence2, score = row.split('\t') |
|
yield id_, { |
|
"sentence1": sentence1, |
|
"sentence2": sentence2, |
|
"label": score, |
|
} |
|
|