Datasets:

Modalities:
Text
Formats:
json
Languages:
Catalan
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
0314996
·
1 Parent(s): fbf36cb

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,30 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- train.json filter=lfs diff=lfs merge=lfs -text
29
- dev.json filter=lfs diff=lfs merge=lfs -text
30
- test.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,158 +0,0 @@
1
- ---
2
- YAML tags:
3
- annotations_creators:
4
- - expert-generated
5
- language_creators:
6
- - found
7
- language:
8
- - ca
9
- license:
10
- - cc-by-nc-nd-4.0
11
- multilinguality:
12
- - monolingual
13
- pretty_name: tecla
14
- size_categories:
15
- - unknown
16
- source_datasets: []
17
- task_categories:
18
- - text-classification
19
- task_ids:
20
- - multi-class-classification
21
- ---
22
-
23
- # Dataset Card for TeCla
24
-
25
- ## Dataset Description
26
-
27
- - **Website:** [Zenodo](https://zenodo.org/record/7334110)
28
- - **Point of Contact:** [Irene Baucells de la Peña](irene.baucells@bsc.es), [Carlos Rodríguez-Penagos](carlos.rodriguez1@bsc.es) and [Carme Armentano-Oller](carme.armentano@bsc.es)
29
-
30
-
31
-
32
- ### Dataset Summary
33
-
34
- TeCla (Text Classification) is a Catalan News corpus for thematic multi-class Text Classification tasks. The present version (2.0) contains 113.376 articles classified under a hierarchical class structure consisting of a coarse-grained and a fine-grained class. Each of the 4 coarse-grained classes accept a subset of fine-grained ones, 53 in total.
35
-
36
- The previous version (1.0.1) can still be found at https://zenodo.org/record/4761505
37
-
38
- This dataset was developed by [BSC TeMU](https://temu.bsc.es/) as part of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina/), to enrich the [Catalan Language Understanding Benchmark (CLUB)](https://club.aina.bsc.es/).
39
-
40
- ### Supported Tasks and Leaderboards
41
-
42
- Text classification, Language Model
43
-
44
- ### Languages
45
-
46
- The dataset is in Catalan (`ca-CA`).
47
-
48
- ## Dataset Structure
49
-
50
- ### Data Instances
51
-
52
- Three json files, one for each split.
53
-
54
- ### Data Fields
55
-
56
- Each example contains the following 3 fields:
57
- * text: the article text (string)
58
- * label1: the coarse-grained class
59
- * label2: the fine-grained class
60
-
61
- #### Example:
62
-
63
- <pre>
64
- {"version": "2.0",
65
- "data":
66
- [
67
- {
68
- 'sentence': "La setena edició del Festival Fantàstik inclourà les cintes 'Matar a dios' i 'Mandy' i un homenatge a 'Mi vecino Totoro'. Es projectaran 22 curtmetratges seleccionats d'entre més de 500 presentats a nivell internacional. El Centre Cultural de Granollers acull del 8 a l'11 de novembre la setena edició del Festival Fantàstik. El certamen, que s'allargarà un dia, arrencarà amb la projecció de la cinta de Caye Casas i Albert Pide 'Matar a Dios'. Els dos directors estaran presents en la inauguració de la cita. A més, els asssitents podran gaudir de 'Mandy', el darrer treball de Nicolas Cage. Altres llargmetratges seleccionats per aquest any són 'Aterrados' (2017), 'Revenge' (2017), 'A Mata Negra' (2018), 'Top Knot Detective' (2018) i 'La Gran Desfeta' (2018). A més, amb motiu del trentè aniversari de la pel·lícula 'El meu veí Totoro' es durà a terme l'exposició dedicada a aquest film '30 anys 30 artistes' comissariada per Jordi Pastor i Reinaldo Pereira. La mostra '30 anys 30 artistes' recull els treballs de trenta artistes d'estils diferents al voltant de la figura de Totoro i el seu director. Es podrà veure durant els dies de festival i es complementarà amb la projecció de la pel·lícula el diumenge 11 de novembre. Al llarg del festival també es projectaran els 22 curtmetratges prèviament seleccionats d'entre més de 500 presentats a nivell internacional. El millor tindrà una dotació de 1000 euros fruit de la unió de forces amb el Mercat Audiovisual de Catalunya.",
69
- 'label1': 'Cultura',
70
- 'label2': 'Cinema'
71
- },
72
- ...
73
- ]
74
- }
75
-
76
-
77
- </pre>
78
-
79
- #### Labels
80
-
81
- * label1: 'Societat', 'Política', 'Economia', 'Cultura'
82
- * label2: 'Llengua', 'Infraestructures', 'Arts', 'Parlament', 'Noves tecnologies', 'Castells', 'Successos', 'Empresa', 'Mobilitat', 'Teatre', 'Treball', 'Logística', 'Urbanisme', 'Govern', 'Entitats', 'Finances', 'Govern espanyol', 'Trànsit', 'Indústria', 'Esports', 'Exteriors', 'Medi ambient', 'Habitatge', 'Salut', 'Equipaments i patrimoni', 'Recerca', 'Cooperació', 'Innovació', 'Agroalimentació', 'Policial', 'Serveis Socials', 'Cinema', 'Memòria històrica', 'Turisme', 'Política municipal', 'Comerç', 'Universitats', 'Hisenda', 'Judicial', 'Partits', 'Música', 'Lletres', 'Religió', 'Festa i cultura popular', 'Unió Europea', 'Moda', 'Moviments socials', 'Comptes públics', 'Immigració', 'Educació', 'Gastronomia', 'Meteorologia', 'Energia'
83
-
84
- ### Data Splits
85
-
86
- Train, development and test splits were created in a stratified fashion, following a 0.8, 0.05 and 0.15 proportion, respectively. The sizes of each split are the following:
87
- * train.json: 90700 examples
88
- * dev.json: 5669 examples
89
- * test.json: 17007 examples
90
-
91
- ## Dataset Creation
92
-
93
- ### Curation Rationale
94
-
95
- We created this dataset to contribute to the development of language models in Catalan, a low-resource language.
96
-
97
- ### Source Data
98
-
99
- #### Initial Data Collection and Normalization
100
-
101
- The source data are crawled articles from the Catalan News Agency ([Agència Catalana de Notícies, ACN](https://www.acn.cat/)) site.
102
-
103
- We crawled 219.586 articles from the Catalan News Agency ([Agència Catalana de Notícies; ACN](https://www.acn.cat/)) newswire archive, the latest from October 11, 2020.
104
-
105
- From the crawled data, we selected those articles whose 'section' and 'subsection' categories followed the expected codification combinations included in the ACN's style guide and whose 'section' complied the requirements of containing subsections and being thematically founded (in contrast to geographically defined categories such as 'Món' and 'Unió Europea'). The articles originally belonging to the 'Unió Europea' section, which were related to political organisms from the European Union, were included in the 'Política' coarse-grained category (within a fine-grained category named 'Unió Europea') due to its close proximity between some of the original subsections of 'Política' and those of 'Unió Europea', both defined by the specific political organism dealt with in the article.
106
-
107
- The text field in each example is a concatenation of the original title, subtitle and body of the article (before the concatenation, both title and subtitle were added a final dot whenever they lacked one). The preprocessing of the texts was minimal and consisted in the removal of the pattern "ACN {location}.-" included before the body in each text as well as newlines originally used to divide the text in paragraphs.
108
-
109
-
110
- #### Who are the source language producers?
111
-
112
- The Catalan News Agency ([Agència Catalana de Notícies; ACN](https://www.acn.cat/)) is a news agency owned by the Catalan government via the public corporation Intracatalònia, SA. It is one of the first digital news agencies created in Europe and has been operating since 1999 (source: [wikipedia](https://en.wikipedia.org/wiki/Catalan_News_Agency)).
113
-
114
- ### Annotations
115
-
116
- #### Annotation process
117
-
118
- The crawled data contained the categories' annotations, which were then used to create this dataset with the mentioned criteria.
119
-
120
- #### Who are the annotators?
121
-
122
- Editorial staff classified the articles under the different thematic sections and subsections, and we extracted these from metadata.
123
-
124
- ### Personal and Sensitive Information
125
-
126
- No personal or sensitive information included.
127
-
128
- ## Considerations for Using the Data
129
-
130
- ### Social Impact of Dataset
131
-
132
- We hope this dataset contributes to the development of language models in Catalan, a low-resource language.
133
-
134
- ### Discussion of Biases
135
-
136
- [N/A]
137
-
138
- ### Other Known Limitations
139
-
140
- [N/A]
141
-
142
- ## Additional Information
143
-
144
- ### Dataset Curators
145
-
146
- Irene Baucells (irene.baucells@bsc.es), Casimiro Pio Carrino (casimiro.carrino@bsc.es), Carlos Rodríguez (carlos.rodriguez1@bsc.es) and Carme Armentano (carme.armentano@bsc.es), from [BSC-CNS](https://www.bsc.es/).
147
-
148
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
149
-
150
-
151
- ### Licensing Information
152
-
153
- This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
154
-
155
- ### Citation Information
156
-
157
- [DOI]([https://doi.org/10.5281/zenodo.7334110])
158
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tecla.py DELETED
@@ -1,157 +0,0 @@
1
- # Loading script for the TeCla dataset.
2
- import json
3
- import datasets
4
-
5
- logger = datasets.logging.get_logger(__name__)
6
-
7
- _CITATION = """
8
- Baucells, Irene, Carrino, Casimiro Pio, Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021).
9
- TeCla: Text Classification Catalan dataset (Version 2.0) [Data set].
10
- Zenodo. http://doi.org/10.5281/zenodo.7334110
11
- """
12
-
13
- _DESCRIPTION = """
14
- TeCla: Text Classification Catalan dataset
15
- Catalan News corpus for Text classification, crawled from ACN (Catalan News Agency) site: www.acn.cat
16
- Corpus de notícies en català per a classificació textual, extret del web de l'Agència Catalana de Notícies - www.acn.cat
17
- """
18
-
19
- _HOMEPAGE = """https://zenodo.org/record/4761505"""
20
-
21
- # TODO: upload datasets to github
22
- _URL = "./"
23
- _TRAINING_FILE = "train.json"
24
- _DEV_FILE = "dev.json"
25
- _TEST_FILE = "test.json"
26
-
27
-
28
- class teclaConfig(datasets.BuilderConfig):
29
- """ Builder config for the TeCla dataset """
30
-
31
- def __init__(self, **kwargs):
32
- """BuilderConfig for TeCla.
33
- Args:
34
- **kwargs: keyword arguments forwarded to super.
35
- """
36
- super(teclaConfig, self).__init__(**kwargs)
37
-
38
-
39
- class tecla(datasets.GeneratorBasedBuilder):
40
- """ TeCla Dataset """
41
-
42
- BUILDER_CONFIGS = [
43
- teclaConfig(
44
- name="tecla",
45
- version=datasets.Version("1.0.1"),
46
- description="tecla 2.0 dataset",
47
- ),
48
- ]
49
-
50
- def _info(self):
51
- return datasets.DatasetInfo(
52
- description=_DESCRIPTION,
53
- features=datasets.Features(
54
- {
55
- "text": datasets.Value("string"),
56
- "label1": datasets.features.ClassLabel
57
- (names=
58
- [
59
- "Societat",
60
- "Pol\u00edtica",
61
- "Economia",
62
- "Cultura",
63
- ]
64
- ),
65
- "label2": datasets.features.ClassLabel
66
- (names=
67
- [
68
- "Llengua",
69
- "Infraestructures",
70
- "Arts",
71
- "Parlament",
72
- "Noves tecnologies",
73
- "Castells",
74
- "Successos",
75
- "Empresa",
76
- "Mobilitat",
77
- "Teatre",
78
- "Treball",
79
- "Log\u00edstica",
80
- "Urbanisme",
81
- "Govern",
82
- "Entitats",
83
- "Finances",
84
- "Govern espanyol",
85
- "Tr\u00e0nsit",
86
- "Ind\u00fastria",
87
- "Esports",
88
- "Exteriors",
89
- "Medi ambient",
90
- "Habitatge",
91
- "Salut",
92
- "Equipaments i patrimoni",
93
- "Recerca",
94
- "Cooperaci\u00f3",
95
- "Innovaci\u00f3",
96
- "Agroalimentaci\u00f3",
97
- "Policial",
98
- "Serveis Socials",
99
- "Cinema",
100
- "Mem\u00f2ria hist\u00f2rica",
101
- "Turisme",
102
- "Pol\u00edtica municipal",
103
- "Comer\u00e7",
104
- "Universitats",
105
- "Hisenda",
106
- "Judicial",
107
- "Partits",
108
- "M\u00fasica",
109
- "Lletres",
110
- "Religi\u00f3",
111
- "Festa i cultura popular",
112
- "Uni\u00f3 Europea",
113
- "Moda",
114
- "Moviments socials",
115
- "Comptes p\u00fablics",
116
- "Immigraci\u00f3",
117
- "Educaci\u00f3",
118
- "Gastronomia",
119
- "Meteorologia",
120
- "Energia"
121
- ]
122
- ),
123
- }
124
- ),
125
- homepage=_HOMEPAGE,
126
- citation=_CITATION,
127
- )
128
-
129
- def _split_generators(self, dl_manager):
130
- """Returns SplitGenerators."""
131
- urls_to_download = {
132
- "train": f"{_URL}{_TRAINING_FILE}",
133
- "dev": f"{_URL}{_DEV_FILE}",
134
- "test": f"{_URL}{_TEST_FILE}",
135
- }
136
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
137
-
138
- return [
139
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
140
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
141
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
142
- ]
143
-
144
- def _generate_examples(self, filepath):
145
- """This function returns the examples in the raw (text) form."""
146
- logger.info("generating examples from = %s", filepath)
147
- with open(filepath, encoding="utf-8") as f:
148
- acn_ca = json.load(f)
149
- for id_, article in enumerate(acn_ca["data"]):
150
- text = article["sentence"]
151
- label1 = article["label1"]
152
- label2 = article["label2"]
153
- yield id_, {
154
- "text": text,
155
- "label1": label1,
156
- "label2": label2,
157
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
test.json → tecla/tecla-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7954051e42ed7d97fe0ac0977bc624965fd5af77170c44fffaacdfbb49f472e7
3
- size 42972092
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:158c325e0ae1600fcfa5ae954af449595f8433853afc5203a40c7abb58b3a728
3
+ size 22512094
train.json → tecla/tecla-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a23c8adb34b5d70b126c1e83d4ea7f998922bd42daa290edb13d657889a5c52
3
- size 230031411
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc900172b5e4e9494a8670f0fe887431a18367174c82afd3b6c462ba5616101
3
+ size 120192033
dev.json → tecla/tecla-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0a9dcf1778992fac105abb1eed1b1e995a29beabd8ecb258a599424833f9e04
3
- size 14539836
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a4d1923aaff90a1dc6d7b2e6c826b35c8274667632310f4ec579cb122e8c7a4
3
+ size 7610987
territorial_labels.txt DELETED
@@ -1,35 +0,0 @@
1
- Banyoles
2
- Gironès
3
- Baix Llobregat
4
- Baix Ebre
5
- Camprodon
6
- Pla d'Urgell
7
- Comarques gironines
8
- Camp de Tarragona
9
- Barcelona
10
- Garrotxa
11
- País Valencià
12
- Alt Pirineu i Aran
13
- Moianès
14
- Franja de Ponent
15
- Urgell
16
- Catalunya
17
- Comarques centrals
18
- Segrià
19
- Osona
20
- Illes Balears
21
- Alt Àneu
22
- Garrotxa
23
- Montsià
24
- Tàrrega
25
- Ripollès
26
- Àmbit metropolità
27
- País Valencià
28
- Moià
29
- Catalunya
30
- Comarques centrals
31
- Ponent
32
- Comarques gironines
33
- Camp de Tarragona
34
- Barcelonès
35
- Tarragonès