Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
License:
# Loading script for the ViquiQuAD dataset. | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021). | |
ViquiQuAD: an extractive QA dataset from Catalan Wikipedia (Version ViquiQuad_v.1.0.1) | |
[Data set]. Zenodo. http://doi.org/10.5281/zenodo.4761412 | |
""" | |
_DESCRIPTION = """ | |
ViquiQuAD: an extractive QA dataset from Catalan Wikipedia. | |
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) | |
articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their | |
answer for each fragment. Viquipedia articles are used under CC-by-sa licence. | |
This dataset can be used to build extractive-QA and Language Models. | |
Funded by the Generalitat de Catalunya, Departament de Polítiques Digitals i Administració Pública (AINA), | |
MT4ALL and Plan de Impulso de las Tecnologías del Lenguaje (Plan TL). | |
""" | |
_HOMEPAGE = """https://zenodo.org/record/4562345#.YK41aqGxWUk""" | |
_URL = "https://huggingface.co/datasets/projecte-aina/viquiquad/resolve/main/" | |
_TRAINING_FILE = "train.json" | |
_DEV_FILE = "dev.json" | |
_TEST_FILE = "test.json" | |
class ViquiQuADConfig(datasets.BuilderConfig): | |
""" Builder config for the ViquiQuAD dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for ViquiQuAD. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(ViquiQuADConfig, self).__init__(**kwargs) | |
class ViquiQuAD(datasets.GeneratorBasedBuilder): | |
"""ViquiQuAD Dataset.""" | |
BUILDER_CONFIGS = [ | |
ViquiQuADConfig( | |
name="ViquiQuAD", | |
version=datasets.Version("1.0.1"), | |
description="ViquiQuAD dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"context": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answers":[ | |
{ | |
"text": datasets.Value("string"), | |
"answer_start": datasets.Value("int32"), | |
} | |
] | |
} | |
), | |
# No default supervised_keys (as we have to pass both question | |
# and context as input). | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
viquiquad = json.load(f) | |
for article in viquiquad["data"]: | |
title = article.get("title", "").strip() | |
for paragraph in article["paragraphs"]: | |
context = paragraph["context"].strip() | |
for qa in paragraph["qas"]: | |
question = qa["question"].strip() | |
id_ = qa["id"] | |
# answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
# answers = [answer["text"].strip() for answer in qa["answers"]] | |
text = qa["answers"][0]["text"] | |
answer_start = qa["answers"][0]["answer_start"] | |
# Features currently used are "context", "question", and "answers". | |
# Others are extracted here for the ease of future expansions. | |
yield id_, { | |
"title": title, | |
"context": context, | |
"question": question, | |
"id": id_, | |
"answers": [{"text": text, "answer_start": answer_start}] | |
} | |