Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
natural-language-inference
Languages:
Catalan
Size:
< 1K
License:
# Loading script for the TECA dataset. | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
ADD CITATION | |
""" | |
_DESCRIPTION = """ | |
professional translation into Catalan of Winograd NLI dataset as published in GLUE Benchmark. | |
The Winograd NLI dataset presents 855 sentence pairs, | |
in which the first sentence contains an ambiguity and the second one a possible interpretation of it. | |
The label indicates if the interpretation is correct (1) or not (0). | |
""" | |
_HOMEPAGE = """https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html""" | |
# TODO: upload datasets to github | |
_URL = "./" | |
_TRAINING_FILE = "wnli-train-ca.tsv" | |
_DEV_FILE = "wnli-dev-ca.tsv" | |
_TEST_FILE = "wnli-test-shuffled-ca.tsv" | |
class WinogradConfig(datasets.BuilderConfig): | |
""" Builder config for the Winograd-CA dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Winograd-CA. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(WinogradConfig, self).__init__(**kwargs) | |
class Winograd(datasets.GeneratorBasedBuilder): | |
""" Winograd Dataset """ | |
BUILDER_CONFIGS = [ | |
WinogradConfig( | |
name="winograd", | |
version=datasets.Version("1.0.0"), | |
description="Winograd dataset", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence1": datasets.Value("string"), | |
"sentence2": datasets.Value("string"), | |
"label": datasets.features.ClassLabel | |
(names= | |
[ | |
"not_entailment", | |
"entailment" | |
] | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
header = next(f) | |
process_label = {'0': "not_entailment", '1': "entailment"} | |
for id_, row in enumerate(f): | |
if "label" in header: | |
ref, sentence1, sentence2, score = row[:-1].split('\t') | |
yield id_, { | |
"sentence1": sentence1, | |
"sentence2": sentence2, | |
"label": process_label[score], | |
} | |
else: | |
ref, sentence1, sentence2 = row.split('\t') | |
yield id_, { | |
"sentence1": sentence1, | |
"sentence2": sentence2, | |
"label": -1, | |
} | |