|
import pathlib
|
|
from dataclasses import asdict, dataclass
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from sgm.inference.helpers import (Img2ImgDiscretizationWrapper, do_img2img,
|
|
do_sample)
|
|
from sgm.modules.diffusionmodules.sampling import (DPMPP2MSampler,
|
|
DPMPP2SAncestralSampler,
|
|
EulerAncestralSampler,
|
|
EulerEDMSampler,
|
|
HeunEDMSampler,
|
|
LinearMultistepSampler)
|
|
from sgm.util import load_model_from_config
|
|
|
|
|
|
class ModelArchitecture(str, Enum):
|
|
SD_2_1 = "stable-diffusion-v2-1"
|
|
SD_2_1_768 = "stable-diffusion-v2-1-768"
|
|
SDXL_V0_9_BASE = "stable-diffusion-xl-v0-9-base"
|
|
SDXL_V0_9_REFINER = "stable-diffusion-xl-v0-9-refiner"
|
|
SDXL_V1_BASE = "stable-diffusion-xl-v1-base"
|
|
SDXL_V1_REFINER = "stable-diffusion-xl-v1-refiner"
|
|
|
|
|
|
class Sampler(str, Enum):
|
|
EULER_EDM = "EulerEDMSampler"
|
|
HEUN_EDM = "HeunEDMSampler"
|
|
EULER_ANCESTRAL = "EulerAncestralSampler"
|
|
DPMPP2S_ANCESTRAL = "DPMPP2SAncestralSampler"
|
|
DPMPP2M = "DPMPP2MSampler"
|
|
LINEAR_MULTISTEP = "LinearMultistepSampler"
|
|
|
|
|
|
class Discretization(str, Enum):
|
|
LEGACY_DDPM = "LegacyDDPMDiscretization"
|
|
EDM = "EDMDiscretization"
|
|
|
|
|
|
class Guider(str, Enum):
|
|
VANILLA = "VanillaCFG"
|
|
IDENTITY = "IdentityGuider"
|
|
|
|
|
|
class Thresholder(str, Enum):
|
|
NONE = "None"
|
|
|
|
|
|
@dataclass
|
|
class SamplingParams:
|
|
width: int = 1024
|
|
height: int = 1024
|
|
steps: int = 50
|
|
sampler: Sampler = Sampler.DPMPP2M
|
|
discretization: Discretization = Discretization.LEGACY_DDPM
|
|
guider: Guider = Guider.VANILLA
|
|
thresholder: Thresholder = Thresholder.NONE
|
|
scale: float = 6.0
|
|
aesthetic_score: float = 5.0
|
|
negative_aesthetic_score: float = 5.0
|
|
img2img_strength: float = 1.0
|
|
orig_width: int = 1024
|
|
orig_height: int = 1024
|
|
crop_coords_top: int = 0
|
|
crop_coords_left: int = 0
|
|
sigma_min: float = 0.0292
|
|
sigma_max: float = 14.6146
|
|
rho: float = 3.0
|
|
s_churn: float = 0.0
|
|
s_tmin: float = 0.0
|
|
s_tmax: float = 999.0
|
|
s_noise: float = 1.0
|
|
eta: float = 1.0
|
|
order: int = 4
|
|
|
|
|
|
@dataclass
|
|
class SamplingSpec:
|
|
width: int
|
|
height: int
|
|
channels: int
|
|
factor: int
|
|
is_legacy: bool
|
|
config: str
|
|
ckpt: str
|
|
is_guided: bool
|
|
|
|
|
|
model_specs = {
|
|
ModelArchitecture.SD_2_1: SamplingSpec(
|
|
height=512,
|
|
width=512,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=True,
|
|
config="sd_2_1.yaml",
|
|
ckpt="v2-1_512-ema-pruned.safetensors",
|
|
is_guided=True,
|
|
),
|
|
ModelArchitecture.SD_2_1_768: SamplingSpec(
|
|
height=768,
|
|
width=768,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=True,
|
|
config="sd_2_1_768.yaml",
|
|
ckpt="v2-1_768-ema-pruned.safetensors",
|
|
is_guided=True,
|
|
),
|
|
ModelArchitecture.SDXL_V0_9_BASE: SamplingSpec(
|
|
height=1024,
|
|
width=1024,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=False,
|
|
config="sd_xl_base.yaml",
|
|
ckpt="sd_xl_base_0.9.safetensors",
|
|
is_guided=True,
|
|
),
|
|
ModelArchitecture.SDXL_V0_9_REFINER: SamplingSpec(
|
|
height=1024,
|
|
width=1024,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=True,
|
|
config="sd_xl_refiner.yaml",
|
|
ckpt="sd_xl_refiner_0.9.safetensors",
|
|
is_guided=True,
|
|
),
|
|
ModelArchitecture.SDXL_V1_BASE: SamplingSpec(
|
|
height=1024,
|
|
width=1024,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=False,
|
|
config="sd_xl_base.yaml",
|
|
ckpt="sd_xl_base_1.0.safetensors",
|
|
is_guided=True,
|
|
),
|
|
ModelArchitecture.SDXL_V1_REFINER: SamplingSpec(
|
|
height=1024,
|
|
width=1024,
|
|
channels=4,
|
|
factor=8,
|
|
is_legacy=True,
|
|
config="sd_xl_refiner.yaml",
|
|
ckpt="sd_xl_refiner_1.0.safetensors",
|
|
is_guided=True,
|
|
),
|
|
}
|
|
|
|
|
|
class SamplingPipeline:
|
|
def __init__(
|
|
self,
|
|
model_id: ModelArchitecture,
|
|
model_path="checkpoints",
|
|
config_path="configs/inference",
|
|
device="cuda",
|
|
use_fp16=True,
|
|
) -> None:
|
|
if model_id not in model_specs:
|
|
raise ValueError(f"Model {model_id} not supported")
|
|
self.model_id = model_id
|
|
self.specs = model_specs[self.model_id]
|
|
self.config = str(pathlib.Path(config_path, self.specs.config))
|
|
self.ckpt = str(pathlib.Path(model_path, self.specs.ckpt))
|
|
self.device = device
|
|
self.model = self._load_model(device=device, use_fp16=use_fp16)
|
|
|
|
def _load_model(self, device="cuda", use_fp16=True):
|
|
config = OmegaConf.load(self.config)
|
|
model = load_model_from_config(config, self.ckpt)
|
|
if model is None:
|
|
raise ValueError(f"Model {self.model_id} could not be loaded")
|
|
model.to(device)
|
|
if use_fp16:
|
|
model.conditioner.half()
|
|
model.model.half()
|
|
return model
|
|
|
|
def text_to_image(
|
|
self,
|
|
params: SamplingParams,
|
|
prompt: str,
|
|
negative_prompt: str = "",
|
|
samples: int = 1,
|
|
return_latents: bool = False,
|
|
):
|
|
sampler = get_sampler_config(params)
|
|
value_dict = asdict(params)
|
|
value_dict["prompt"] = prompt
|
|
value_dict["negative_prompt"] = negative_prompt
|
|
value_dict["target_width"] = params.width
|
|
value_dict["target_height"] = params.height
|
|
return do_sample(
|
|
self.model,
|
|
sampler,
|
|
value_dict,
|
|
samples,
|
|
params.height,
|
|
params.width,
|
|
self.specs.channels,
|
|
self.specs.factor,
|
|
force_uc_zero_embeddings=["txt"] if not self.specs.is_legacy else [],
|
|
return_latents=return_latents,
|
|
filter=None,
|
|
)
|
|
|
|
def image_to_image(
|
|
self,
|
|
params: SamplingParams,
|
|
image,
|
|
prompt: str,
|
|
negative_prompt: str = "",
|
|
samples: int = 1,
|
|
return_latents: bool = False,
|
|
):
|
|
sampler = get_sampler_config(params)
|
|
|
|
if params.img2img_strength < 1.0:
|
|
sampler.discretization = Img2ImgDiscretizationWrapper(
|
|
sampler.discretization,
|
|
strength=params.img2img_strength,
|
|
)
|
|
height, width = image.shape[2], image.shape[3]
|
|
value_dict = asdict(params)
|
|
value_dict["prompt"] = prompt
|
|
value_dict["negative_prompt"] = negative_prompt
|
|
value_dict["target_width"] = width
|
|
value_dict["target_height"] = height
|
|
return do_img2img(
|
|
image,
|
|
self.model,
|
|
sampler,
|
|
value_dict,
|
|
samples,
|
|
force_uc_zero_embeddings=["txt"] if not self.specs.is_legacy else [],
|
|
return_latents=return_latents,
|
|
filter=None,
|
|
)
|
|
|
|
def refiner(
|
|
self,
|
|
params: SamplingParams,
|
|
image,
|
|
prompt: str,
|
|
negative_prompt: Optional[str] = None,
|
|
samples: int = 1,
|
|
return_latents: bool = False,
|
|
):
|
|
sampler = get_sampler_config(params)
|
|
value_dict = {
|
|
"orig_width": image.shape[3] * 8,
|
|
"orig_height": image.shape[2] * 8,
|
|
"target_width": image.shape[3] * 8,
|
|
"target_height": image.shape[2] * 8,
|
|
"prompt": prompt,
|
|
"negative_prompt": negative_prompt,
|
|
"crop_coords_top": 0,
|
|
"crop_coords_left": 0,
|
|
"aesthetic_score": 6.0,
|
|
"negative_aesthetic_score": 2.5,
|
|
}
|
|
|
|
return do_img2img(
|
|
image,
|
|
self.model,
|
|
sampler,
|
|
value_dict,
|
|
samples,
|
|
skip_encode=True,
|
|
return_latents=return_latents,
|
|
filter=None,
|
|
)
|
|
|
|
|
|
def get_guider_config(params: SamplingParams):
|
|
if params.guider == Guider.IDENTITY:
|
|
guider_config = {
|
|
"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"
|
|
}
|
|
elif params.guider == Guider.VANILLA:
|
|
scale = params.scale
|
|
|
|
thresholder = params.thresholder
|
|
|
|
if thresholder == Thresholder.NONE:
|
|
dyn_thresh_config = {
|
|
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
|
|
}
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
guider_config = {
|
|
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
|
|
"params": {"scale": scale, "dyn_thresh_config": dyn_thresh_config},
|
|
}
|
|
else:
|
|
raise NotImplementedError
|
|
return guider_config
|
|
|
|
|
|
def get_discretization_config(params: SamplingParams):
|
|
if params.discretization == Discretization.LEGACY_DDPM:
|
|
discretization_config = {
|
|
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
|
|
}
|
|
elif params.discretization == Discretization.EDM:
|
|
discretization_config = {
|
|
"target": "sgm.modules.diffusionmodules.discretizer.EDMDiscretization",
|
|
"params": {
|
|
"sigma_min": params.sigma_min,
|
|
"sigma_max": params.sigma_max,
|
|
"rho": params.rho,
|
|
},
|
|
}
|
|
else:
|
|
raise ValueError(f"unknown discretization {params.discretization}")
|
|
return discretization_config
|
|
|
|
|
|
def get_sampler_config(params: SamplingParams):
|
|
discretization_config = get_discretization_config(params)
|
|
guider_config = get_guider_config(params)
|
|
sampler = None
|
|
if params.sampler == Sampler.EULER_EDM:
|
|
return EulerEDMSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
s_churn=params.s_churn,
|
|
s_tmin=params.s_tmin,
|
|
s_tmax=params.s_tmax,
|
|
s_noise=params.s_noise,
|
|
verbose=True,
|
|
)
|
|
if params.sampler == Sampler.HEUN_EDM:
|
|
return HeunEDMSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
s_churn=params.s_churn,
|
|
s_tmin=params.s_tmin,
|
|
s_tmax=params.s_tmax,
|
|
s_noise=params.s_noise,
|
|
verbose=True,
|
|
)
|
|
if params.sampler == Sampler.EULER_ANCESTRAL:
|
|
return EulerAncestralSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
eta=params.eta,
|
|
s_noise=params.s_noise,
|
|
verbose=True,
|
|
)
|
|
if params.sampler == Sampler.DPMPP2S_ANCESTRAL:
|
|
return DPMPP2SAncestralSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
eta=params.eta,
|
|
s_noise=params.s_noise,
|
|
verbose=True,
|
|
)
|
|
if params.sampler == Sampler.DPMPP2M:
|
|
return DPMPP2MSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
verbose=True,
|
|
)
|
|
if params.sampler == Sampler.LINEAR_MULTISTEP:
|
|
return LinearMultistepSampler(
|
|
num_steps=params.steps,
|
|
discretization_config=discretization_config,
|
|
guider_config=guider_config,
|
|
order=params.order,
|
|
verbose=True,
|
|
)
|
|
|
|
raise ValueError(f"unknown sampler {params.sampler}!")
|
|
|