File size: 4,141 Bytes
4e5bc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb0de4
 
 
 
 
 
 
 
 
 
 
4e5bc8c
fcb0de4
 
 
106b198
fcb0de4
106b198
546d881
106b198
0ba692b
 
106b198
fcb0de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
dataset_info:
  features:
  - name: emoji
    dtype: string
  - name: message
    dtype: string
  - name: embed
    sequence: float64
  splits:
  - name: train
    num_bytes: 30665042
    num_examples: 3722
  download_size: 24682308
  dataset_size: 30665042
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: mit
task_categories:
- feature-extraction
language:
- en
tags:
- semantic-search
- embeddings
- emoji
size_categories:
- 1K<n<10K
---

# local emoji semantic search

Emoji, their text descriptions and precomputed text embeddings with [Alibaba-NLP/gte-large-en-v1.5](https://hf.co/Alibaba-NLP/gte-large-en-v1.5) for use in emoji semantic search. 


This work is largely inspired by the original [emoji-semantic-search repo](https://archive.md/ikcze) and aims to provide the data for fully local use, as the [demo](https://www.emojisearch.app/) is [not working](https://github.com/lilianweng/emoji-semantic-search/issues/6#issue-2724936875) as of a few days ago.

- This repo only contains a precomputed embedding "database", equivalent to [server/emoji-embeddings.jsonl.gz](https://github.com/lilianweng/emoji-semantic-search/blob/6a6f351852b99e7b899437fa31309595a9008cd1/server/emoji-embeddings.jsonl.gz) in the original repo, to be used as the database for semantic search,
  - If working with the original repo, the [inference class](https://github.com/lilianweng/emoji-semantic-search/blob/6a6f351852b99e7b899437fa31309595a9008cd1/server/app.py#L18) also needs to be updated to use SentenceTransformers instead of OpenAI calls (_see below example_)
- The provided inference code is almost instant even on CPU 🔥

## basic inference example 


since the dataset is tiny, just load with pandas:

```py
import pandas as pd

df = pd.read_parquet("hf://datasets/pszemraj/local-emoji-search-gte/data/train-00000-of-00001.parquet")
print(df.info())
```

load the sentence-transformers model:

```py
# Requires sentence_transformers>=2.7.0

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
```

define a minimal semantic search inference function:

<details>
  <summary>Click me to expand the inference function code</summary>
  

```py
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import semantic_search


def get_top_emojis(
    query: str,
    emoji_df: pd.DataFrame,
    model,
    top_k: int = 5,
    num_digits: int = 4,
) -> list:
    """
    Performs semantic search to find the most relevant emojis for a given query.

    Args:
        query (str): The search query.
        emoji_df (pd.DataFrame): DataFrame containing emoji metadata and embeddings.
        model (SentenceTransformer): The sentence transformer model for encoding.
        top_k (int): Number of top results to return.
        num_digits (int): Number of digits to round scores to

    Returns:
        list: A list of dicts, where each dict represents a top match. Each dict has keys 'emoji', 'message', and 'score'
    """
    query_embed = model.encode(query)
    embeddings_array = np.vstack(emoji_df.embed.values, dtype=np.float32)

    hits = semantic_search(query_embed, embeddings_array, top_k=top_k)[0]

    # Extract the top hits + metadata
    results = [
        {
            "emoji": emoji_df.loc[hit["corpus_id"], "emoji"],
            "message": emoji_df.loc[hit["corpus_id"], "message"],
            "score": round(hit["score"], num_digits),
        }
        for hit in hits
    ]
    return results

```

</details>

run inference!

```py
import pprint as pp

query_text = "that is flames"
top_emojis = get_top_emojis(query_text, df, model, top_k=5)

pp.pprint(top_emojis, indent=2)

# [ {'emoji': '❤\u200d🔥', 'message': 'heart on fire', 'score': 0.7043},
#   {'emoji': '🥵', 'message': 'hot face', 'score': 0.694},
#   {'emoji': '😳', 'message': 'flushed face', 'score': 0.6794},
#   {'emoji': '🔥', 'message': 'fire', 'score': 0.6744},
#   {'emoji': '🧨', 'message': 'firecracker', 'score': 0.663}]
```