File size: 2,437 Bytes
6555ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fae6
6555ae7
 
 
 
 
 
ae7fae6
6555ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7ff1e
1ee6507
6555ae7
 
 
 
 
4d7ff1e
1ee6507
6555ae7
 
 
 
1ee6507
e75c387
6555ae7
1ee6507
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (C) 2022, Pyronear.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.

"""OpenFire dataset."""

import os
import json

import datasets


_HOMEPAGE = "https://pyronear.org/pyro-vision/datasets.html#openfire"

_LICENSE = "Apache License 2.0"

_CITATION = """\
@software{Pyronear_PyroVision_2019,
    title={Pyrovision: wildfire early detection},
    author={Pyronear contributors},
    year={2019},
    month={October},
    publisher = {GitHub},
    url = {https://github.com/pyronear/pyro-vision}
}
"""

_DESCRIPTION = """\
OpenFire is an image classification dataset for wildfire detection, collected
from web searches.
"""


_REPO = "https://huggingface.co/datasets/pyronear/openfire/resolve/main/data"
_URLS = {
    "train": f"{_REPO}/openfire_train.json",
    "validation": f"{_REPO}/openfire_val.json",
}


class OpenFire(datasets.GeneratorBasedBuilder):
    """OpenFire dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_url": datasets.Value("string", id=None),
                    "is_wildfire": datasets.Value("bool"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, "rb") as f:
            urls = json.load(f)
            idx = 0
            for label in range(2):
                for url in urls[str(label)]:
                    yield idx, {"image_url": url, "is_wildfire": bool(label)}
                    idx += 1