--- # pretty_name: "" # Example: "MS MARCO Terrier Index" tags: - pyterrier - pyterrier-artifact - pyterrier-artifact.sparse_index - pyterrier-artifact.sparse_index.terrier task_categories: - text-retrieval viewer: false --- # fiqa.terrier ## Description Terrier index for Fiqa ## Usage ```python # Load the artifact import pyterrier as pt index = pt.Artifact.from_hf('pyterrier/fiqa.terrier') index.bm25() ``` ## Benchmarks `fiqa/dev` | name | nDCG@10 | R@1000 | |:-------|----------:|---------:| | bm25 | 0.2692 | 0.7645 | | dph | 0.2639 | 0.7513 | `fiqa/test` | name | nDCG@10 | R@1000 | |:-------|----------:|---------:| | bm25 | 0.2526 | 0.7742 | | dph | 0.2433 | 0.7562 | ## Reproduction ```python import pyterrier as pt from tqdm import tqdm import ir_datasets dataset = ir_datasets.load('beir/fiqa') meta_docno_len = dataset.metadata()['docs']['fields']['doc_id']['max_len'] indexer = pt.IterDictIndexer("./fiqa.terrier", meta={'docno': meta_docno_len, 'text': 4096}) docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs)) indexer.index(docs) ``` ## Metadata ``` { "type": "sparse_index", "format": "terrier", "package_hint": "python-terrier" } ```