import datasets _CITATION = """\ @software{bact_2019_3457447, author = {Suriyawongkul, Arthit and Chuangsuwanich, Ekapol and Chormai, Pattarawat and Polpanumas, Charin}, title = {PyThaiNLP/wisesight-sentiment: First release}, month = sep, year = 2019, publisher = {Zenodo}, version = {v1.0}, doi = {10.5281/zenodo.3457447}, url = {https://doi.org/10.5281/zenodo.3457447} } """ _LICENSE = "CC0" _DESCRIPTION = """\ `wisesight1000` contains Thai social media texts randomly drawn from the full `wisesight-sentiment`, tokenized by human annotators. Out of the labels `neg` (negative), `neu` (neutral), `pos` (positive), `q` (question), 250 samples each. Some texts are removed because they look like spam.Because these samples are representative of real world content, we believe having these annotaed samples will allow the community to robustly evaluate tokenization algorithms. """ class Wisesight1000Config(datasets.BuilderConfig): def __init__(self, **kwargs): """BuilderConfig Args: **kwargs: keyword arguments forwarded to super. """ super(Wisesight1000Config, self).__init__(**kwargs) class Wisesight1000(datasets.GeneratorBasedBuilder): # Source data:"https://raw.githubusercontent.com/PyThaiNLP/wisesight-sentiment/master/word-tokenization/wisesight-1000-samples-tokenised.label" _DOWNLOAD_URL = "data/wisesight-1000-samples-tokenised.label.gz" # character type mapping from https://github.com/rkcosmos/deepcut/blob/master/deepcut/utils.py _CHAR_TYPES_DICT = { "กขฃคฆงจชซญฎฏฐฑฒณดตถทธนบปพฟภมยรลวศษสฬอ": "c", "ฅฉผฟฌหฮ": "n", "ะาำิีืึุู": "v", # า ะ ำ ิ ี ึ ื ั ู ุ "เแโใไ": "w", "่้๊๋": "t", # วรรณยุกต์ ่ ้ ๊ ๋ "์ๆฯ.": "s", # ์ ๆ ฯ . "0123456789๑๒๓๔๕๖๗๘๙": "d", '"': "q", "‘": "q", "’": "q", "'": "q", " ": "p", "abcdefghijklmnopqrstuvwxyz": "s_e", "ABCDEFGHIJKLMNOPQRSTUVWXYZ": "b_e", } _CHAR_TYPE_FLATTEN = {} for ks, v in _CHAR_TYPES_DICT.items(): for k in ks: _CHAR_TYPE_FLATTEN[k] = v _CHAR_TYPES = ["b_e", "c", "d", "n", "o", "p", "q", "s", "s_e", "t", "v", "w"] BUILDER_CONFIGS = [ Wisesight1000Config( name="wisesight1000", version=datasets.Version("1.0.0"), description="993 word-annotated social media messages sampled from `wisesight-sentiment`", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "char": datasets.Sequence(datasets.Value("string")), "char_type": datasets.Sequence(datasets.features.ClassLabel(names=self._CHAR_TYPES)), "is_beginning": datasets.Sequence(datasets.features.ClassLabel(names=["neg", "pos"])), } ), supervised_keys=None, homepage="https://github.com/PyThaiNLP/wisesight-sentiment", citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): data_path = dl_manager.download_and_extract(self._DOWNLOAD_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path}, ), ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for _id, line in enumerate(f): chars = [] char_types = [] is_beginnings = [] # tokens are pipe separated splits = line.split("|") for token in splits: for i in range(len(token)): chars.append(token[i]) char_types.append(self._CHAR_TYPE_FLATTEN.get(token[i], "o")) is_beginning = 1 if i == 0 else 0 is_beginnings.append(is_beginning) yield _id, { "char": chars, "char_type": char_types, "is_beginning": is_beginnings, }