--- license: mit --- ## This is the benchmark dataset for ["A Benchmark for Multi-modal Foundation Models on Low-level Vision: from Single Images to Pairs"](https://arxiv.org/abs/2402.07116) # The structure of the jsonl files is as follows: 1. q-bench2-a1-dev.jsonl (**with** *img_path*, *question*, *answer_candidates*, *correct_answer*) 2. q-bench2-a1-test.jsonl (**with** *img_path*, *question*, *answer_candidates*, **without** *correct_answer*) 3. q-bench2-a2.jsonl (**with** *img_path*, *empty response*) # The img_path is organized as *prefix* + *img1* + \_cat\_ + *img2* + *.jpg* For example, if the img_path is "llvisionqa_compare_dev\\\\00079.jpg_cat_09769.jpg.jpg", then the prefix is "llvisionqa_compare_dev", img1 is "00079.jpg", img2 is "09769.jpg". You can use the function to get the image paths: ``` def get_img_names(img_path, prefix = "path_to_all_single_images"): img_paths = img_path.split('\\')[1][:-4].split("_cat_") img1_name = os.path.join(prefix,img_paths[0]) img2_name = os.path.join(prefix,img_paths[1]) return img1_name,img2_name ``` # The image file structure is: 1. all_single_images: all of the single images used 2. llvisionqa_compare_dev: the concatenated images for the dev subset of the perception-compare task 3. llvisionqa_compare_test: the concatenated images for the test subset of the perception-compare task 4. lldescribe_compare: the concatenated images for the description-compare task # Submission for test your own MLLM on q-bench2 1. Perception-compare task (a1): organize your jsonl file "q-bench2-a1-test_(YOUR_MLLM_NAME).jsonl" as the structure of the provided "q-bench2-a1-dev.jsonl" 2. Description-compare task (a2): simply complete the empty "response" of "q-bench2-a2.jsonl" file and rename into "q-bench2-a2_(YOUR_MLLM_NAME).jsonl" Please contact any of the first authors to get the results of your MLLM with the submission files. Zicheng Zhang, zzc1998@sjtu.edu.cn Haoning Wu, haoning001@e.ntu.edu.sg