File size: 13,492 Bytes
00917e9
98584fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00917e9
 
98584fe
 
 
 
 
 
00917e9
98584fe
 
 
 
 
5fe7806
 
98584fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00917e9
98584fe
 
 
 
 
 
 
5fe7806
98584fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe7806
98584fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# ANTILLES : An Open French Linguistically Enriched Part-of-Speech Corpus

## Table of Contents
- [Dataset Card for [Needs More Information]](#dataset-card-for-needs-more-information)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
- [sent_id = fr-ud-dev_00005](#sent_id--fr-ud-dev_00005)
- [text = Travail de trés grande qualité exécuté par un imprimeur artisan passionné.](#text--travail-de-trs-grande-qualit-excut-par-un-imprimeur-artisan-passionn)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://github.com/qanastek/ANTILLES
- **Repository:** https://github.com/qanastek/ANTILLES
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** yanis.labrak@univ-avignon.fr

### Dataset Summary

`ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb).

Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation script `transform.py`, we obtain 60 different classes which add semantic information such as: the gender, number, mood, person, tense or verb form given in the different CoNLL-U fields from the original corpora.

We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001.

<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.

### Supported Tasks and Leaderboards

`part-of-speech-tagging`: The dataset can be used to train a model for part-of-speech-tagging. The performance is measured by how high its F1 score is. A Flair Sequence-To-Sequence model trained to tag tokens from Wikipedia passages achieves a F1 score (micro) of 0.952.

### Languages

The text in the dataset is in French, as spoken by [Wikipedia](https://en.wikipedia.org/wiki/Main_Page) users. The associated [BCP-47](https://tools.ietf.org/html/bcp47) code is `fr`.

## Dataset Structure

### Data Instances

```plain

# sent_id = fr-ud-dev_00005

# text = Travail de trés grande qualité exécuté par un imprimeur artisan passionné.

1	Travail	travail	NMS	_	Gender=Masc|Number=Sing	0	root	_	wordform=travail

2	de	de	PREP	_	_	5	case	_	_

3	trés	trés	ADV	_	_	4	advmod	_	_

4	grande	grand	ADJFS	_	Gender=Fem|Number=Sing	5	amod	_	_

5	qualité	qualité	NFS	_	Gender=Fem|Number=Sing	1	nmod	_	_

6	exécuté	exécuter	VPPMS	_	Gender=Masc|Number=Sing|Tense=Past|VerbForm=Part	1	acl	_	_

7	par	par	PREP	_	_	9	case	_	_

8	un	un	DINTMS	_	Definite=Ind|Gender=Masc|Number=Sing|PronType=Art	9	det	_	_

9	imprimeur	imprimeur	NMS	_	Gender=Masc|Number=Sing	6	obl:agent	_	_

10	artisan	artisan	NMS	_	Gender=Masc|Number=Sing	9	nmod	_	_

11	passionné	passionné	ADJMS	_	Gender=Masc|Number=Sing	9	amod	_	SpaceAfter=No

12	.	.	YPFOR	_	_	1	punct	_	_

```

### Data Fields

| Abbreviation | Description | Examples | # tokens |
|:--------:|:--------:|:--------:|:--------:|
| PREP | Preposition | de | 63 738 |
| AUX | Auxiliary Verb | est | 12 886 |
| ADV | Adverb | toujours | 14 969 |
| COSUB | Subordinating conjunction | que | 3 007 |
| COCO | Coordinating Conjunction | et | 10 102 |
| PART | Demonstrative particle | -t | 93 |
| PRON | Pronoun | qui ce quoi | 667 |
| PDEMMS | Singular Masculine Demonstrative Pronoun | ce | 1 950 |
| PDEMMP | Plurial Masculine Demonstrative Pronoun | ceux | 108 |
| PDEMFS | Singular Feminine Demonstrative Pronoun | cette | 1 004 |
| PDEMFP | Plurial Feminine Demonstrative Pronoun | celles | 53 |
| PINDMS | Singular Masculine Indefinite Pronoun | tout | 961 |
| PINDMP | Plurial Masculine Indefinite Pronoun | autres | 89 |
| PINDFS | Singular Feminine Indefinite Pronoun | chacune | 136 |
| PINDFP | Plurial Feminine Indefinite Pronoun | certaines | 31 |
| PROPN | Proper noun | houston | 22 135 |
| XFAMIL | Last name | levy | 6 449 |
| NUM | Numerical Adjectives | trentaine vingtaine | 67 |
| DINTMS | Masculine Numerical Adjectives | un | 4 254 |
| DINTFS | Feminine Numerical Adjectives | une | 3 543 |
| PPOBJMS | Singular Masculine Pronoun complements of objects | le lui | 1 425 |
| PPOBJMP | Plurial Masculine Pronoun complements of objects | eux y | 212 |
| PPOBJFS | Singular Feminine Pronoun complements of objects | moi la | 358 |
| PPOBJFP | Plurial Feminine Pronoun complements of objects | en y | 70 |
| PPER1S | Personal Pronoun First Person Singular | je | 571 |
| PPER2S | Personal Pronoun Second Person Singular | tu | 19 |
| PPER3MS | Personal Pronoun Third Person Masculine Singular | il | 3 938 |
| PPER3MP | Personal Pronoun Third Person Masculine Plurial | ils | 513 |
| PPER3FS | Personal Pronoun Third Person Feminine Singular | elle | 992 |
| PPER3FP | Personal Pronoun Third Person Feminine Plurial | elles | 121 |
| PREFS | Reflexive Pronouns First Person of Singular | me m' | 120 |
| PREF | Reflexive Pronouns Third Person of Singular | se s' | 2 337 |
| PREFP | Reflexive Pronouns First / Second Person of Plurial | nous vous | 686 |
| VERB | Verb | obtient | 21 131 |
| VPPMS | Singular Masculine Participle Past Verb | formulé | 6 275 |
| VPPMP | Plurial Masculine Participle Past Verb | classés | 1 352 |
| VPPFS | Singular Feminine Participle Past Verb | appelée | 2 434 |
| VPPFP | Plurial Feminine Participle Past Verb | sanctionnées | 813 |
| VPPRE | Present participle | étant | 2 |
| DET | Determinant | les l' | 25 206 |
| DETMS | Singular Masculine Determinant | les | 15 444 |
| DETFS | Singular Feminine Determinant | la | 10 978 |
| ADJ | Adjective | capable sérieux | 1 075 |
| ADJMS | Singular Masculine Adjective | grand important | 8 338 |
| ADJMP | Plurial Masculine Adjective | grands petits | 3 274 |
| ADJFS | Singular Feminine Adjective | franéaise petite | 8 004 |
| ADJFP | Plurial Feminine Adjective | légéres petites | 3 041 |
| NOUN | Noun | temps | 1 389 |
| NMS | Singular Masculine Noun | drapeau | 29 698 |
| NMP | Plurial Masculine Noun | journalistes | 10 882 |
| NFS | Singular Feminine Noun | téte | 25 414 |
| NFP | Plurial Feminine Noun | ondes | 7 448 |
| PREL | Relative Pronoun | qui dont | 2 976 |
| PRELMS | Singular Masculine Relative Pronoun | lequel | 94 |
| PRELMP | Plurial Masculine Relative Pronoun | lesquels | 29 |
| PRELFS | Singular Feminine Relative Pronoun | laquelle | 70 |
| PRELFP | Plurial Feminine Relative Pronoun | lesquelles | 25 |
| PINTFS | Singular Feminine Interrogative Pronoun | laquelle | 3 |
| INTJ | Interjection | merci bref | 75 |
| CHIF | Numbers | 1979 10 | 10 417 |
| SYM | Symbol | é % | 705 |
| YPFOR | Endpoint | . | 15 088 |
| PUNCT | Ponctuation | : , | 28 918 |
| MOTINC | Unknown words | Technology Lady | 2 022 |
| X | Typos & others | sfeir 3D statu | 175 |

### Data Splits

|                    | Train  |  Dev   | Test  |
|:------------------:|:------:|:------:|:-----:|
|       # Docs       | 14 449 | 1 476  |  416  |
| Avg # Tokens / Doc | 24.54  | 24.19  | 24.08 |

## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The corpora is free of personal or sensitive information since it has been based on `Wikipedia` articles content.

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

The nature of the corpora introduce various biases such as the names of the streets which are temporaly based and can therefore introduce named entity like author or event names. For example, street names such as `Rue Victor-Hugo` or `Rue Pasteur` doesn't exist before the 20's century in France.

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

__ANTILLES__: Labrak Yanis, Dufour Richard

__UD_FRENCH-GSD__: de Marneffe Marie-Catherine, Guillaume Bruno, McDonald Ryan, Suhr Alane, Nivre Joakim, Grioni Matias, Dickerson Carly, Perrier Guy



__Universal Dependency__: Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee



### Licensing Information



```plain

For the following languages



  German, Spanish, French, Indonesian, Italian, Japanese, Korean and Brazilian

  Portuguese



we will distinguish between two portions of the data.



1. The underlying text for sentences that were annotated. This data Google

   asserts no ownership over and no copyright over. Some or all of these

   sentences may be copyrighted in some jurisdictions.  Where copyrighted,

   Google collected these sentences under exceptions to copyright or implied

   license rights.  GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY

   WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED.



2. The annotations -- part-of-speech tags and dependency annotations. These are

   made available under a CC BY-SA 4.0. GOOGLE MAKES

   THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER

   EXPRESS OR IMPLIED. See attached LICENSE file for the text of CC BY-NC-SA.



Portions of the German data were sampled from the CoNLL 2006 Tiger Treebank

data. Hans Uszkoreit graciously gave permission to use the underlying

sentences in this data as part of this release.



Any use of the data should reference the above plus:



  Universal Dependency Annotation for Multilingual Parsing

  Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,

  Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang,

  Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee

  Proceedings of ACL 2013

```



### Citation Information



Please cite the following paper when using this model.



UD_French-GSD corpora:



```latex

@misc{

    universaldependencies,

    title={UniversalDependencies/UD_French-GSD},

    url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub},

    author={UniversalDependencies}

}

```



{U}niversal {D}ependency Annotation for Multilingual Parsing:



```latex

@inproceedings{mcdonald-etal-2013-universal,

    title = "{U}niversal {D}ependency Annotation for Multilingual Parsing",

    author = {McDonald, Ryan  and

      Nivre, Joakim  and

      Quirmbach-Brundage, Yvonne  and

      Goldberg, Yoav  and

      Das, Dipanjan  and

      Ganchev, Kuzman  and

      Hall, Keith  and

      Petrov, Slav  and

      Zhang, Hao  and

      T{\"a}ckstr{\"o}m, Oscar  and

      Bedini, Claudia  and

      Bertomeu Castell{\'o}, N{\'u}ria  and

      Lee, Jungmee},

    booktitle = "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",

    month = aug,

    year = "2013",

    address = "Sofia, Bulgaria",

    publisher = "Association for Computational Linguistics",

    url = "https://aclanthology.org/P13-2017",

    pages = "92--97",

}

```



LIA TAGG:



```latex

@techreport{LIA_TAGG,

  author = {Frédéric Béchet},

  title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer},

  institution = {Aix-Marseille University & CNRS},

  year = {2001}

}

```