import os import pandas as pd from tqdm import tqdm from tabulate import tabulate from translate.storage.tmx import tmxfile # http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/storage.html INPUT_DIR = "corpus/" OUTPUT_PATH = "csv_corpus/" os.makedirs(OUTPUT_PATH, exist_ok=True) x = [] # For each language file for file_name in tqdm(os.listdir(INPUT_DIR)): if ".tmx" not in file_name: continue # Documents counter cpt = 0 # Lenght of the sentences source_lens = [] target_lens = [] print("file_name : ", file_name) # Get the languages LANG_PAIR = file_name.split(".")[0] L1, L2 = LANG_PAIR.split("-") data = [] df = pd.DataFrame(data={ 'id': [], 'lang': [], 'source_text': [], 'target_text': [] }) # Read the file with open(INPUT_DIR + file_name, 'rb') as fin: # For each sentence for node in tmxfile(fin, L1, L2).unit_iter(): # Add the sentence pair data.append({ 'id': node.getid(), 'lang': LANG_PAIR, 'source_text': node.source, 'target_text': node.target }) cpt += 1 source_lens.append(len(node.source.split(" "))) target_lens.append(len(node.target.split(" "))) x.append([ L2, cpt, int(sum(source_lens) / len(source_lens)), int(sum(target_lens) / len(target_lens)) ]) # Add to the data frame df = df.append(data) # Convert to CSV df.to_csv(OUTPUT_PATH + LANG_PAIR + ".csv", index=False) log_file = open("stats.md","w") log_file.write(str( tabulate(x, headers=['Lang', '# Docs', 'Avg. # Source Tokens', 'Avg. # Target Tokens'], tablefmt='orgtbl') ).replace("+","|")) log_file.close()