MORFITT / MORFITT.py
qanastek's picture
Update MORFITT.py
79ff1f3
raw
history blame
3.43 kB
import os
import json
import random
import datasets
import numpy as np
import pandas as pd
_CITATION = """\
ddd
"""
_DESCRIPTION = """\
This article presents MORFITT, the first multi-label corpus in French annotated in
specialties in the medical field. MORFITT is composed of 3~624 abstracts of scientific
articles from PubMed, annotated in 12 specialties for a total of 5,116 annotations.
We detail the corpus, the experiments and the preliminary results obtained using a
classifier based on the pre-trained language model CamemBERT. These preliminary results
demonstrate the difficulty of the task, with a weighted average F1-score of 61.78%.
"""
_HOMEPAGE = "ddd"
_URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"
_LICENSE = "unknown"
_SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']
class MORFITT(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "source"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"abstract": datasets.Value("string"),
"specialities": datasets.Sequence(
datasets.features.ClassLabel(names=_SPECIALITIES),
),
"specialities_one_hot": datasets.Sequence(
datasets.Value("float"),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tsv_file": data_dir + "/train.tsv",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tsv_file": data_dir + "/dev.tsv",
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tsv_file": data_dir + "/test.tsv",
"split": "test",
},
),
]
def _generate_examples(self, tsv_file, split):
# Load TSV file
df = pd.read_csv(tsv_file, sep="\t")
for index, e in df.iterrows():
specialities = e["specialities"].split("|")
# Empty one hot vector
one_hot = [0.0 for i in _SPECIALITIES]
# Fill up the one hot vector
for s in specialities:
one_hot[_SPECIALITIES.index(s)] = 1.0
yield e["identifier"], {
"id": e["identifier"],
"abstract": e["abstract"],
"specialities": specialities,
"specialities_one_hot": one_hot,
}