qanastek commited on
Commit
d9255d7
·
1 Parent(s): 13ecfe7

Update morfitt.py

Browse files
Files changed (1) hide show
  1. morfitt.py +50 -62
morfitt.py CHANGED
@@ -1,42 +1,34 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """MORFITT: A multi-label corpus of French biomedical literature"""
16
-
17
  import os
18
  import json
 
19
 
20
  import datasets
 
 
 
 
 
 
21
 
22
  _DESCRIPTION = """\
23
- We introduce MORFITT corpus, the first multi-label corpus for the classification of specialties in the medical field in French. MORFITT is composed of 3,624 summaries of scientific articles from PubMed, annotated in 12 specialties. The article details the corpus, the experiments and the preliminary results obtained using a classifier based on the pre-trained language model CamemBERT.
24
  """
25
 
26
- _HOMEPAGE = "https://github.com/qanastek/MORFITT"
27
 
28
- _LICENSE = "Apache License 2.0"
29
 
30
- _URL = "https://huggingface.co/datasets/qanastek/MORFITT/resolve/main/data.zip"
31
 
32
- _CITATION = """\
33
- (comming soon)
34
- """
35
 
36
  class MORFITT(datasets.GeneratorBasedBuilder):
37
- """MORFITT: A multi-label corpus of French biomedical literature"""
38
 
39
- VERSION = datasets.Version("1.0.0")
 
 
 
 
40
 
41
  def _info(self):
42
 
@@ -44,75 +36,71 @@ class MORFITT(datasets.GeneratorBasedBuilder):
44
  {
45
  "id": datasets.Value("string"),
46
  "abstract": datasets.Value("string"),
47
- "labels": datasets.Sequence(datasets.features.ClassLabel(
48
- names=[
49
- 'chemistry',
50
- 'etiology',
51
- 'genetics',
52
- 'immunology',
53
- 'microbiology',
54
- 'parasitology',
55
- 'pharmacology',
56
- 'physiology',
57
- 'psychology',
58
- 'surgery',
59
- 'veterinary',
60
- 'virology',
61
- ],
62
- )),
63
  }
64
  )
65
-
66
  return datasets.DatasetInfo(
67
  description=_DESCRIPTION,
68
  features=features,
 
69
  homepage=_HOMEPAGE,
70
- license=_LICENSE,
71
  citation=_CITATION,
72
  )
73
 
74
  def _split_generators(self, dl_manager):
75
- """Returns SplitGenerators."""
76
-
77
- data_dir = dl_manager.download_and_extract(_URL)
78
 
 
 
79
  return [
80
  datasets.SplitGenerator(
81
  name=datasets.Split.TRAIN,
82
  gen_kwargs={
83
- "filepath": os.path.join(data_dir, "train.txt"),
 
84
  },
85
  ),
86
  datasets.SplitGenerator(
87
  name=datasets.Split.VALIDATION,
88
  gen_kwargs={
89
- "filepath": os.path.join(data_dir, "dev.txt"),
 
90
  },
91
  ),
92
  datasets.SplitGenerator(
93
  name=datasets.Split.TEST,
94
  gen_kwargs={
95
- "filepath": os.path.join(data_dir, "test.txt"),
 
96
  },
97
  ),
98
  ]
99
 
100
- def _generate_examples(self, filepath):
 
 
 
101
 
102
- f_in = open(f"{filepath}","r")
103
- content = f_in.read()
104
- f_in.close()
105
 
106
- for key, line in enumerate(content.split("\n")[1:]):
107
 
108
- if len(line) <= 0:
109
- continue
110
 
111
- identifier, abstract, labels = line.split("\t")
112
- labels = labels.split("|")
 
113
 
114
- yield key, {
115
- "id": identifier,
116
- "abstract": abstract,
117
- "labels": labels,
 
118
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import json
3
+ import random
4
 
5
  import datasets
6
+ import numpy as np
7
+ import pandas as pd
8
+
9
+ _CITATION = """\
10
+ ddd
11
+ """
12
 
13
  _DESCRIPTION = """\
14
+ ddd
15
  """
16
 
17
+ _HOMEPAGE = "ddd"
18
 
19
+ _URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"
20
 
21
+ _LICENSE = "unknown"
22
 
23
+ _SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']
 
 
24
 
25
  class MORFITT(datasets.GeneratorBasedBuilder):
 
26
 
27
+ DEFAULT_CONFIG_NAME = "source"
28
+
29
+ BUILDER_CONFIGS = [
30
+ datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
31
+ ]
32
 
33
  def _info(self):
34
 
 
36
  {
37
  "id": datasets.Value("string"),
38
  "abstract": datasets.Value("string"),
39
+ "specialities": datasets.Sequence(
40
+ datasets.features.ClassLabel(names=_SPECIALITIES),
41
+ ),
42
+ "specialities_one_hot": datasets.Sequence(
43
+ datasets.Value("float"),
44
+ ),
 
 
 
 
 
 
 
 
 
 
45
  }
46
  )
47
+
48
  return datasets.DatasetInfo(
49
  description=_DESCRIPTION,
50
  features=features,
51
+ supervised_keys=None,
52
  homepage=_HOMEPAGE,
53
+ license=str(_LICENSE),
54
  citation=_CITATION,
55
  )
56
 
57
  def _split_generators(self, dl_manager):
 
 
 
58
 
59
+ data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
60
+
61
  return [
62
  datasets.SplitGenerator(
63
  name=datasets.Split.TRAIN,
64
  gen_kwargs={
65
+ "tsv_file": data_dir + "/train.tsv",
66
+ "split": "train",
67
  },
68
  ),
69
  datasets.SplitGenerator(
70
  name=datasets.Split.VALIDATION,
71
  gen_kwargs={
72
+ "tsv_file": data_dir + "/dev.tsv",
73
+ "split": "validation",
74
  },
75
  ),
76
  datasets.SplitGenerator(
77
  name=datasets.Split.TEST,
78
  gen_kwargs={
79
+ "tsv_file": data_dir + "/test.tsv",
80
+ "split": "test",
81
  },
82
  ),
83
  ]
84
 
85
+ def _generate_examples(self, tsv_file, split):
86
+
87
+ # Load TSV file
88
+ df = pd.read_csv(tsv_file, sep="\t")
89
 
90
+ for index, e in df.iterrows():
 
 
91
 
92
+ specialities = e["specialities"].split("|")
93
 
94
+ # Empty one hot vector
95
+ one_hot = [0.0 for i in _SPECIALITIES]
96
 
97
+ # Fill up the one hot vector
98
+ for s in specialities:
99
+ one_hot[_SPECIALITIES.index(s)] = 1.0
100
 
101
+ yield e["identifier"], {
102
+ "id": e["identifier"],
103
+ "abstract": e["abstract"],
104
+ "specialities": specialities,
105
+ "specialities_one_hot": one_hot,
106
  }