# This code is an adaptation of https://huggingface.co/spaces/ybelkada/cocoevaluate from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from datasets import Dataset from PIL import Image from torchvision.datasets.vision import VisionDataset _TYPING_BOXES = Tuple[float, float, float, float] _TYPING_ANNOTS = Dict[str, Union[int, str, _TYPING_BOXES]] _TYPING_LABELS = Dict[str, torch.Tensor] class COCODataset(VisionDataset): """ A class that extends VisionDataset and represents a COCO detection dataset. """ def __init__( self, loaded_json: _TYPING_ANNOTS, ids_mapping: Dict[int, int], dataset: Dataset, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: """ Arguments: loaded_json: A dictionary that contains loaded json. ids_mapping (Dict[int, int]): A dictionary that maps the index to the id. dataset (Dataset): The data which is going to be used. transforms (Optional): A function/transform that takes in an PIL image and returns a transformed version. transform (Optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (Optional): A function/transform that takes in the target and transforms it. """ root = "" super().__init__(root, transforms, transform, target_transform) self.ids_mapping = ids_mapping self.dataset = dataset self.images = {img["id"]: img for img in loaded_json["images"]} self.ids = sorted(self.images) self.annotations = {} for annot in loaded_json["annotations"]: img_id = annot["image_id"] self.annotations.setdefault(img_id, []).append(annot) def _load_image(self, idx: int) -> Image: """ Load an image given its id. Arguments: idx: Index of the image to be loaded. Returns: PIL Image instance. """ id = self.ids_mapping[idx] img = self.dataset[id]["image"].convert("RGB") return img def _load_target(self, idx: int) -> List[Any]: """ Load the annotations of an image given its id. Arguments: idx: Index of the image to load its annotations. Returns: List containing the annotations of the image. """ if idx not in self.annotations: return [] return self.annotations[idx] def __len__(self) -> int: """ Returns the number of elements in the dataset. Returns: int: Number of images in the dataset. """ return len(self.ids) def __getitem__(self, index: int) -> Dict[str, Union[torch.Tensor, _TYPING_LABELS]]: """ Given an index, it preprocesses and returns the image and its associated annotations \ at a that index. Arguments: index: Index of the image. Returns: Dictionary containing preprocessed image as pixel values and its associated \ annotations as labels. """ image_id = self.ids[index] # PIL Image image = self._load_image(image_id) # List of annotation dicts 'id', 'category_id', 'iscrowd', 'imageid', 'area', 'bbox' annot_dicts = self._load_target(image_id) target = {"image_id": image_id, "annotations": annot_dicts} return {"image": image, "target": target}