Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- dataset_infos.json +1 -1
- squad.py +6 -0
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"plain_text": {"description": "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "squad", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "
|
|
|
1 |
+
{"plain_text": {"description": "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 79317110, "num_examples": 87599, "dataset_name": "squad"}, "validation": {"name": "validation", "num_bytes": 10472653, "num_examples": 10570, "dataset_name": "squad"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json": {"num_bytes": 30288272, "checksum": "3527663986b8295af4f7fcdff1ba1ff3f72d07d61a20f487cb238a6ef92fd955"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json": {"num_bytes": 4854279, "checksum": "95aa6a52d5d6a735563366753ca50492a658031da74f301ac5238b03966972c9"}}, "download_size": 35142551, "post_processing_size": null, "dataset_size": 89789763, "size_in_bytes": 124932314}}
|
squad.py
CHANGED
@@ -20,6 +20,7 @@
|
|
20 |
import json
|
21 |
|
22 |
import datasets
|
|
|
23 |
|
24 |
|
25 |
logger = datasets.logging.get_logger(__name__)
|
@@ -98,6 +99,11 @@ class Squad(datasets.GeneratorBasedBuilder):
|
|
98 |
supervised_keys=None,
|
99 |
homepage="https://rajpurkar.github.io/SQuAD-explorer/",
|
100 |
citation=_CITATION,
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
|
103 |
def _split_generators(self, dl_manager):
|
|
|
20 |
import json
|
21 |
|
22 |
import datasets
|
23 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
24 |
|
25 |
|
26 |
logger = datasets.logging.get_logger(__name__)
|
|
|
99 |
supervised_keys=None,
|
100 |
homepage="https://rajpurkar.github.io/SQuAD-explorer/",
|
101 |
citation=_CITATION,
|
102 |
+
task_templates=[
|
103 |
+
QuestionAnsweringExtractive(
|
104 |
+
question_column="question", context_column="context", answers_column="answers"
|
105 |
+
)
|
106 |
+
],
|
107 |
)
|
108 |
|
109 |
def _split_generators(self, dl_manager):
|