leonleyang commited on
Commit
78ed321
·
verified ·
1 Parent(s): e02d8d1

Create cub200.py

Browse files
Files changed (1) hide show
  1. cub200.py +131 -0
cub200.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ from PIL import Image
3
+ import pandas as pd
4
+ from pathlib import Path
5
+
6
+
7
+ class CUB200(datasets.GeneratorBasedBuilder):
8
+ """Caltech-UCSD Birds-200-2011 (CUB-200-2011) Dataset"""
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+
12
+ def _info(self):
13
+ return datasets.DatasetInfo(
14
+ description="""The Caltech-UCSD Birds-200-2011 dataset consists of 11,788 images of 200 bird species.""",
15
+ features=datasets.Features(
16
+ {
17
+ "image": datasets.Image(),
18
+ "label": datasets.ClassLabel(names=self._labels())
19
+ }
20
+ ),
21
+ supervised_keys=("image", "label"),
22
+ homepage="https://www.vision.caltech.edu/datasets/cub_200_2011/",
23
+ citation="""@techreport{WahCUB_200_2011,
24
+ Title = {The Caltech-UCSD Birds-200-2011 Dataset},
25
+ Author = {Wah, C. and Branson, S. and Welinder, P. and Perona, P. and Belongie, S.},
26
+ Year = {2011},
27
+ Institution = {California Institute of Technology},
28
+ Number = {CNS-TR-2011-001}}"""
29
+ )
30
+
31
+ def _split_generators(self, dl_manager):
32
+ # Download and extract in a single step
33
+ extracted_path = dl_manager.download_and_extract("https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz?download=1")
34
+ data_dir = Path(extracted_path) / "CUB_200_2011"
35
+
36
+ return [
37
+ datasets.SplitGenerator(
38
+ name=datasets.Split.TRAIN,
39
+ gen_kwargs={"data_dir": data_dir, "split": "train"},
40
+ ),
41
+ datasets.SplitGenerator(
42
+ name=datasets.Split.TEST,
43
+ gen_kwargs={"data_dir": data_dir, "split": "test"},
44
+ )
45
+ ]
46
+
47
+ def _generate_examples(self, data_dir, split):
48
+ """Generate examples from the extracted directory."""
49
+ # Paths to metadata files in the extracted directory
50
+ image_labels_path = data_dir / "image_class_labels.txt"
51
+ image_paths_path = data_dir / "images.txt"
52
+ train_test_split_path = data_dir / "train_test_split.txt"
53
+
54
+ # Load metadata
55
+ images_df = pd.read_csv(image_paths_path, sep='\s+', header=None, names=["image_id", "file_path"])
56
+ labels_df = pd.read_csv(image_labels_path, sep='\s+', header=None, names=["image_id", "label"])
57
+ split_df = pd.read_csv(train_test_split_path, sep='\s+', header=None, names=["image_id", "is_training"])
58
+
59
+ # Merge metadata into a single DataFrame
60
+ data_df = images_df.merge(labels_df, on="image_id").merge(split_df, on="image_id")
61
+ data_df["label"] -= 1 # Zero-index the labels
62
+
63
+ # Filter by the specified split
64
+ is_training_split = 1 if split == "train" else 0
65
+ split_data = data_df[data_df["is_training"] == is_training_split]
66
+
67
+ # Generate examples
68
+ for _, row in split_data.iterrows():
69
+ image_path = data_dir / "images" / row['file_path']
70
+ label = row["label"]
71
+
72
+ # Load the image
73
+ with open(image_path, "rb") as img_file:
74
+ image = Image.open(img_file).convert("RGB")
75
+ yield row["image_id"], {
76
+ "image": image,
77
+ "label": label,
78
+ }
79
+
80
+ @staticmethod
81
+ def _labels():
82
+ return [
83
+ "Black_footed_Albatross", "Laysan_Albatross", "Sooty_Albatross", "Groove_billed_Ani",
84
+ "Crested_Auklet", "Least_Auklet", "Parakeet_Auklet", "Rhinoceros_Auklet", "Brewer_Blackbird",
85
+ "Red_winged_Blackbird", "Rusty_Blackbird", "Yellow_headed_Blackbird", "Bobolink",
86
+ "Indigo_Bunting", "Lazuli_Bunting", "Painted_Bunting", "Cardinal", "Spotted_Catbird",
87
+ "Gray_Catbird", "Yellow_breasted_Chat", "Eastern_Towhee", "Chuck_will_Widow",
88
+ "Brandt_Cormorant", "Red_faced_Cormorant", "Pelagic_Cormorant", "Bronzed_Cowbird",
89
+ "Shiny_Cowbird", "Brown_Creeper", "American_Crow", "Fish_Crow", "Black_billed_Cuckoo",
90
+ "Mangrove_Cuckoo", "Yellow_billed_Cuckoo", "Gray_crowned_Rosy_Finch", "Purple_Finch",
91
+ "Northern_Flicker", "Acadian_Flycatcher", "Great_Crested_Flycatcher", "Least_Flycatcher",
92
+ "Olive_sided_Flycatcher", "Scissor_tailed_Flycatcher", "Vermilion_Flycatcher",
93
+ "Yellow_bellied_Flycatcher", "Frigatebird", "Northern_Fulmar", "Gadwall", "American_Goldfinch",
94
+ "European_Goldfinch", "Boat_tailed_Grackle", "Eared_Grebe", "Horned_Grebe",
95
+ "Pied_billed_Grebe", "Western_Grebe", "Blue_Grosbeak", "Evening_Grosbeak", "Pine_Grosbeak",
96
+ "Rose_breasted_Grosbeak", "Pigeon_Guillemot", "California_Gull", "Glaucous_winged_Gull",
97
+ "Heermann_Gull", "Herring_Gull", "Ivory_Gull", "Ring_billed_Gull", "Slaty_backed_Gull",
98
+ "Western_Gull", "Anna_Hummingbird", "Ruby_throated_Hummingbird", "Rufous_Hummingbird",
99
+ "Green_Violetear", "Long_tailed_Jaeger", "Pomarine_Jaeger", "Blue_Jay", "Florida_Jay",
100
+ "Green_Jay", "Dark_eyed_Junco", "Tropical_Kingbird", "Gray_Kingbird", "Belted_Kingfisher",
101
+ "Green_Kingfisher", "Pied_Kingfisher", "Ringed_Kingfisher", "White_breasted_Kingfisher",
102
+ "Red_legged_Kittiwake", "Horned_Lark", "Pacific_Loon", "Mallard", "Western_Meadowlark",
103
+ "Hooded_Merganser", "Red_breasted_Merganser", "Mockingbird", "Nighthawk", "Clark_Nutcracker",
104
+ "White_breasted_Nuthatch", "Baltimore_Oriole", "Hooded_Oriole", "Orchard_Oriole",
105
+ "Scott_Oriole", "Ovenbird", "Brown_Pelican", "White_Pelican", "Western_Wood_Pewee",
106
+ "Sayornis", "American_Pipit", "Whip_poor_Will", "Horned_Puffin", "Common_Raven",
107
+ "White_necked_Raven", "American_Redstart", "Geococcyx", "Loggerhead_Shrike",
108
+ "Great_Grey_Shrike", "Baird_Sparrow", "Black_throated_Sparrow", "Brewer_Sparrow",
109
+ "Chipping_Sparrow", "Clay_colored_Sparrow", "House_Sparrow", "Field_Sparrow",
110
+ "Fox_Sparrow", "Grasshopper_Sparrow", "Harris_Sparrow", "Henslow_Sparrow",
111
+ "Le_Conte_Sparrow", "Lincoln_Sparrow", "Nelson_Sharp_tailed_Sparrow", "Savannah_Sparrow",
112
+ "Seaside_Sparrow", "Song_Sparrow", "Tree_Sparrow", "Vesper_Sparrow",
113
+ "White_crowned_Sparrow", "White_throated_Sparrow", "Cape_Glossy_Starling",
114
+ "Bank_Swallow", "Barn_Swallow", "Cliff_Swallow", "Tree_Swallow", "Scarlet_Tanager",
115
+ "Summer_Tanager", "Arctic_Tern", "Black_Tern", "Caspian_Tern", "Common_Tern",
116
+ "Elegant_Tern", "Forster_Tern", "Least_Tern", "Green_tailed_Towhee", "Brown_Thrasher",
117
+ "Sage_Thrasher", "Black_capped_Vireo", "Blue_headed_Vireo", "Philadelphia_Vireo",
118
+ "Red_eyed_Vireo", "Warbling_Vireo", "White_eyed_Vireo", "Yellow_throated_Vireo",
119
+ "Bay_breasted_Warbler", "Black_and_white_Warbler", "Black_throated_Blue_Warbler",
120
+ "Blue_winged_Warbler", "Canada_Warbler", "Cape_May_Warbler", "Cerulean_Warbler",
121
+ "Chestnut_sided_Warbler", "Golden_winged_Warbler", "Hooded_Warbler", "Kentucky_Warbler",
122
+ "Magnolia_Warbler", "Mourning_Warbler", "Myrtle_Warbler", "Nashville_Warbler",
123
+ "Orange_crowned_Warbler", "Palm_Warbler", "Pine_Warbler", "Prairie_Warbler",
124
+ "Prothonotary_Warbler", "Swainson_Warbler", "Tennessee_Warbler", "Wilson_Warbler",
125
+ "Worm_eating_Warbler", "Yellow_Warbler", "Northern_Waterthrush", "Louisiana_Waterthrush",
126
+ "Bohemian_Waxwing", "Cedar_Waxwing", "American_Three_toed_Woodpecker",
127
+ "Pileated_Woodpecker", "Red_bellied_Woodpecker", "Red_cockaded_Woodpecker",
128
+ "Red_headed_Woodpecker", "Downy_Woodpecker", "Bewick_Wren", "Cactus_Wren",
129
+ "Carolina_Wren", "House_Wren", "Marsh_Wren", "Rock_Wren", "Winter_Wren",
130
+ "Common_Yellowthroat"
131
+ ]