import gzip import numpy as np import datasets class FashionMNIST(datasets.GeneratorBasedBuilder): """Grayscale image classification. `Fashion-MNIST` is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. """ VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description="Fashion-MNIST is a dataset of Zalando's article images for image classification tasks.", features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(names=[ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot" ]) } ), supervised_keys=("image", "label"), homepage="https://github.com/zalandoresearch/fashion-mnist", license="MIT License", citation="""@article{xiao2017fashion, title={Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms}, author={Xiao, Han and Rasul, Kashif and Vollgraf, Roland}, journal={arXiv preprint arXiv:1708.07747}, year={2017}}""" ) def _split_generators(self, dl_manager): urls = { "train_images": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz", "train_labels": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz", "test_images": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz", "test_labels": "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz", } downloaded_files = dl_manager.download(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images_path": downloaded_files["train_images"], "labels_path": downloaded_files["train_labels"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images_path": downloaded_files["test_images"], "labels_path": downloaded_files["test_labels"], }, ), ] def _generate_examples(self, images_path, labels_path): with gzip.open(images_path, "rb") as img_path: images = np.frombuffer(img_path.read(), dtype=np.uint8, offset=16).reshape(-1, 28, 28) with gzip.open(labels_path, "rb") as lbl_path: labels = np.frombuffer(lbl_path.read(), dtype=np.uint8, offset=8) for idx, (image, label) in enumerate(zip(images, labels)): yield idx, {"image": image, "label": label}