2180adbf072beeac5a609527434db063adc375c2097e1bd148e9e0e7876f938b
Browse files- python_code_instructions_filtered_55.txt +0 -0
- python_code_instructions_filtered_550.txt +0 -0
- python_code_instructions_filtered_551.txt +0 -0
- python_code_instructions_filtered_552.txt +0 -0
- python_code_instructions_filtered_553.txt +0 -0
- python_code_instructions_filtered_554.txt +0 -0
- python_code_instructions_filtered_555.txt +0 -0
- python_code_instructions_filtered_556.txt +0 -0
- python_code_instructions_filtered_557.txt +0 -0
- python_code_instructions_filtered_558.txt +0 -0
- python_code_instructions_filtered_559.txt +0 -0
- python_code_instructions_filtered_56.txt +0 -0
- python_code_instructions_filtered_560.txt +0 -0
- python_code_instructions_filtered_561.txt +0 -0
- python_code_instructions_filtered_562.txt +0 -0
- python_code_instructions_filtered_563.txt +0 -0
- python_code_instructions_filtered_564.txt +0 -0
- python_code_instructions_filtered_565.txt +0 -0
- python_code_instructions_filtered_566.txt +0 -0
- python_code_instructions_filtered_567.txt +0 -0
- python_code_instructions_filtered_568.txt +0 -0
- python_code_instructions_filtered_569.txt +3086 -0
- python_code_instructions_filtered_57.txt +0 -0
- python_code_instructions_filtered_58.txt +0 -0
- python_code_instructions_filtered_59.txt +0 -0
- python_code_instructions_filtered_6.txt +0 -0
- python_code_instructions_filtered_60.txt +0 -0
- python_code_instructions_filtered_61.txt +0 -0
- python_code_instructions_filtered_62.txt +0 -0
- python_code_instructions_filtered_63.txt +0 -0
- python_code_instructions_filtered_64.txt +0 -0
- python_code_instructions_filtered_65.txt +0 -0
- python_code_instructions_filtered_66.txt +0 -0
- python_code_instructions_filtered_67.txt +0 -0
- python_code_instructions_filtered_68.txt +0 -0
- python_code_instructions_filtered_69.txt +0 -0
- python_code_instructions_filtered_7.txt +0 -0
- python_code_instructions_filtered_70.txt +0 -0
- python_code_instructions_filtered_71.txt +0 -0
- python_code_instructions_filtered_72.txt +0 -0
- python_code_instructions_filtered_73.txt +0 -0
- python_code_instructions_filtered_74.txt +0 -0
- python_code_instructions_filtered_75.txt +0 -0
- python_code_instructions_filtered_76.txt +0 -0
- python_code_instructions_filtered_77.txt +0 -0
- python_code_instructions_filtered_78.txt +0 -0
- python_code_instructions_filtered_79.txt +0 -0
- python_code_instructions_filtered_8.txt +0 -0
- python_code_instructions_filtered_80.txt +0 -0
- python_code_instructions_filtered_81.txt +0 -0
python_code_instructions_filtered_55.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_550.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_551.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_552.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_553.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_554.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_555.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_556.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_557.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_558.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_559.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_56.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_560.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_561.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_562.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_563.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_564.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_565.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_566.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_567.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_568.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_569.txt
ADDED
@@ -0,0 +1,3086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
return prod
|
2 |
+
|
3 |
+
|
4 |
+
n = 7
|
5 |
+
print(multiply_by_fifteen(n))
|
6 |
+
|
7 |
+
def check(a, n):
|
8 |
+
"""
|
9 |
+
Modify a binary array to Bitwise AND of all elements as 1
|
10 |
+
"""
|
11 |
+
for i in range(n):
|
12 |
+
if (a[i]):
|
13 |
+
return True
|
14 |
+
return False
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == '__main__':
|
18 |
+
a = [0, 1, 0, 1]
|
19 |
+
n = len(a)
|
20 |
+
if (check(a, n)):
|
21 |
+
print("YES")
|
22 |
+
else:
|
23 |
+
print("NO")
|
24 |
+
|
25 |
+
def is_equal_block(n):
|
26 |
+
"""
|
27 |
+
Check if the binary representation of a number has equal number of 0 s and 1 s in blocks
|
28 |
+
"""
|
29 |
+
first_bit = n % 2
|
30 |
+
first_count = 1
|
31 |
+
n = n // 2
|
32 |
+
while n % 2 == first_bit and n > 0:
|
33 |
+
n = n // 2
|
34 |
+
first_count += 1
|
35 |
+
if n == 0:
|
36 |
+
return False
|
37 |
+
while n > 0:
|
38 |
+
first_bit = n % 2
|
39 |
+
curr_count = 1
|
40 |
+
n = n // 2
|
41 |
+
while n % 2 == first_bit:
|
42 |
+
n = n // 2
|
43 |
+
curr_count += 1
|
44 |
+
if curr_count != first_count:
|
45 |
+
return False
|
46 |
+
return True
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
n = 51
|
51 |
+
if is_equal_block(n):
|
52 |
+
print("Yes")
|
53 |
+
else:
|
54 |
+
print("No")
|
55 |
+
|
56 |
+
def calculate(X):
|
57 |
+
"""
|
58 |
+
Find a value whose XOR with given number is maximum
|
59 |
+
"""
|
60 |
+
number_of_bits = 8
|
61 |
+
return ((1 << number_of_bits) - 1) ^ X
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
X = 4
|
66 |
+
print("Required Number is:", calculate(X))
|
67 |
+
|
68 |
+
def count_zeros(x):
|
69 |
+
"""
|
70 |
+
Number of leading zeros in binary representation of a given number
|
71 |
+
"""
|
72 |
+
total_bits = 32
|
73 |
+
res = 0
|
74 |
+
while ((x & (1 << (total_bits - 1))) == 0):
|
75 |
+
x = (x << 1)
|
76 |
+
res += 1
|
77 |
+
return res
|
78 |
+
|
79 |
+
|
80 |
+
x = 101
|
81 |
+
print(count_zeros(x))
|
82 |
+
|
83 |
+
def set_rightmost_unset_bit(n):
|
84 |
+
"""
|
85 |
+
Set the rightmost off bit
|
86 |
+
"""
|
87 |
+
if n & (n + 1) == 0:
|
88 |
+
return n
|
89 |
+
return n | (n + 1)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
n = 21
|
94 |
+
print(set_rightmost_unset_bit(n))
|
95 |
+
|
96 |
+
def increment(i):
|
97 |
+
"""
|
98 |
+
Increment a number without using ++ or +
|
99 |
+
"""
|
100 |
+
i = -(~i)
|
101 |
+
return i
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
n = 3
|
106 |
+
print(increment(n))
|
107 |
+
|
108 |
+
def xor_pair_sum(ar, n):
|
109 |
+
"""
|
110 |
+
Sum of XOR of sum of all pairs in an array
|
111 |
+
"""
|
112 |
+
total = 0
|
113 |
+
for i in range(n):
|
114 |
+
total = total ^ ar[i]
|
115 |
+
return 2 * total
|
116 |
+
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
data = [1, 2, 3]
|
120 |
+
print(xor_pair_sum(data, len(data)))
|
121 |
+
|
122 |
+
def kth_character(m, n, k):
|
123 |
+
"""
|
124 |
+
Find iâ €™ th index character in a binary string obtained after n iterations
|
125 |
+
"""
|
126 |
+
distance = pow(2, n)
|
127 |
+
Block_number = int(k / distance)
|
128 |
+
remaining = k % distance
|
129 |
+
s = [0] * 32
|
130 |
+
x = 0
|
131 |
+
while (m > 0):
|
132 |
+
s[x] = m % 2
|
133 |
+
m = int(m / 2)
|
134 |
+
x += 1
|
135 |
+
root = s[x - 1 - Block_number]
|
136 |
+
if (remaining == 0):
|
137 |
+
print(root)
|
138 |
+
return
|
139 |
+
flip = True
|
140 |
+
while (remaining > 1):
|
141 |
+
if (remaining & 1):
|
142 |
+
flip = not (flip)
|
143 |
+
remaining = remaining >> 1
|
144 |
+
if (flip):
|
145 |
+
print(not (root))
|
146 |
+
else:
|
147 |
+
print(root)
|
148 |
+
|
149 |
+
|
150 |
+
m = 5
|
151 |
+
k = 5
|
152 |
+
n = 3
|
153 |
+
kth_character(m, n, k)
|
154 |
+
|
155 |
+
from math import pow
|
156 |
+
|
157 |
+
|
158 |
+
def get_integer(L, R):
|
159 |
+
"""
|
160 |
+
Number with set bits only between L
|
161 |
+
"""
|
162 |
+
number = 0
|
163 |
+
for i in range(L, R + 1, 1):
|
164 |
+
number += pow(2, i)
|
165 |
+
return number
|
166 |
+
|
167 |
+
|
168 |
+
if __name__ == '__main__':
|
169 |
+
L = 2
|
170 |
+
R = 5
|
171 |
+
print(int(get_integer(L, R)))
|
172 |
+
|
173 |
+
def find_eletobe_inserted(A, n, k):
|
174 |
+
"""
|
175 |
+
Number whose XOR sum with given array is a given number k
|
176 |
+
"""
|
177 |
+
ans = k
|
178 |
+
for i in range(n):
|
179 |
+
return ans
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == '__main__':
|
183 |
+
A = [1, 2, 3, 4, 5]
|
184 |
+
n = len(A)
|
185 |
+
k = 10
|
186 |
+
print(
|
187 |
+
find_eletobe_inserted(
|
188 |
+
A,
|
189 |
+
n,
|
190 |
+
k),
|
191 |
+
"has to be inserted in the given",
|
192 |
+
"array to make xor sum of",
|
193 |
+
k)
|
194 |
+
|
195 |
+
def minimize(a):
|
196 |
+
"""
|
197 |
+
Minimum number using set bits of a given number
|
198 |
+
"""
|
199 |
+
n = bin(a).count("1")
|
200 |
+
return (pow(2, n) - 1)
|
201 |
+
|
202 |
+
|
203 |
+
a = 11
|
204 |
+
print(minimize(a))
|
205 |
+
|
206 |
+
def count_set_bits(n):
|
207 |
+
"""
|
208 |
+
Maximum steps to transform 0 to X with bitwise AND
|
209 |
+
"""
|
210 |
+
count = 0
|
211 |
+
while (n):
|
212 |
+
count += n & 1
|
213 |
+
n >>= 1
|
214 |
+
return count
|
215 |
+
|
216 |
+
|
217 |
+
i = 3
|
218 |
+
print(count_set_bits(i))
|
219 |
+
|
220 |
+
def is_even(n):
|
221 |
+
"""
|
222 |
+
Check a number is odd or even without modulus operator
|
223 |
+
"""
|
224 |
+
return (int(n / 2) * 2 == n)
|
225 |
+
|
226 |
+
|
227 |
+
n = 101
|
228 |
+
if (is_even(n)):
|
229 |
+
print("Even")
|
230 |
+
else:
|
231 |
+
print("Odd")
|
232 |
+
|
233 |
+
def add(x, y):
|
234 |
+
"""
|
235 |
+
Bitwise recursive addition of two integers
|
236 |
+
"""
|
237 |
+
keep = (x & y) << 1
|
238 |
+
res = x ^ y
|
239 |
+
if (keep == 0):
|
240 |
+
return res
|
241 |
+
return add(keep, res)
|
242 |
+
|
243 |
+
|
244 |
+
print(add(15, 38))
|
245 |
+
|
246 |
+
def divide(dividend, divisor):
|
247 |
+
"""
|
248 |
+
Divide two integers without using multiplication , division and mod operator
|
249 |
+
"""
|
250 |
+
sign = (-1 if ((dividend < 0) ^ (divisor < 0))else 1)
|
251 |
+
dividend = abs(dividend)
|
252 |
+
divisor = abs(divisor)
|
253 |
+
quotient = 0
|
254 |
+
temp = 0
|
255 |
+
for i in range(31, -1, -1):
|
256 |
+
if (temp + (divisor << i) <= dividend):
|
257 |
+
temp += divisor << i
|
258 |
+
quotient |= 1 << i
|
259 |
+
if sign == -1:
|
260 |
+
quotient = -quotient
|
261 |
+
return quotient
|
262 |
+
|
263 |
+
|
264 |
+
a = 10
|
265 |
+
b = 3
|
266 |
+
print(divide(a, b))
|
267 |
+
a = 43
|
268 |
+
b = -8
|
269 |
+
print(divide(a, b))
|
270 |
+
|
271 |
+
def toggle_bits(n1, n2):
|
272 |
+
"""
|
273 |
+
For every set bit of a number toggle bits of other
|
274 |
+
"""
|
275 |
+
return (n1 ^ n2)
|
276 |
+
|
277 |
+
|
278 |
+
n1 = 2
|
279 |
+
n2 = 5
|
280 |
+
print(toggle_bits(n1, n2))
|
281 |
+
|
282 |
+
def max_xor_sum(n, k):
|
283 |
+
"""
|
284 |
+
Maximum XOR using K numbers from 1 to n
|
285 |
+
"""
|
286 |
+
if k == 1:
|
287 |
+
return n
|
288 |
+
res = 1
|
289 |
+
while res <= n:
|
290 |
+
res <<= 1
|
291 |
+
return res - 1
|
292 |
+
|
293 |
+
|
294 |
+
n = 4
|
295 |
+
k = 3
|
296 |
+
print(max_xor_sum(n, k))
|
297 |
+
|
298 |
+
def maximum_sum(a, b, n):
|
299 |
+
"""
|
300 |
+
Maximum OR sum of sub
|
301 |
+
"""
|
302 |
+
sum1 = 0
|
303 |
+
sum2 = 0
|
304 |
+
for i in range(0, n):
|
305 |
+
sum1 |= a[i]
|
306 |
+
sum2 |= b[i]
|
307 |
+
print(sum1 + sum2)
|
308 |
+
|
309 |
+
|
310 |
+
A = [1, 2, 4, 3, 2]
|
311 |
+
B = [2, 3, 3, 12, 1]
|
312 |
+
n = len(A)
|
313 |
+
maximum_sum(A, B, n)
|
314 |
+
|
315 |
+
def multiply(x, n):
|
316 |
+
"""
|
317 |
+
Multiplication with a power of 2
|
318 |
+
"""
|
319 |
+
return x << n
|
320 |
+
|
321 |
+
|
322 |
+
x = 70
|
323 |
+
n = 2
|
324 |
+
print(multiply(x, n))
|
325 |
+
|
326 |
+
def adjacent_set(n):
|
327 |
+
"""
|
328 |
+
Check if a number has two adjacent set bits
|
329 |
+
"""
|
330 |
+
return (n & (n >> 1))
|
331 |
+
|
332 |
+
|
333 |
+
if __name__ == '__main__':
|
334 |
+
n = 3
|
335 |
+
if (adjacent_set(n)):
|
336 |
+
print("Yes")
|
337 |
+
else:
|
338 |
+
print("No")
|
339 |
+
|
340 |
+
def multiply(n, m):
|
341 |
+
"""
|
342 |
+
Multiplication of two numbers with shift operator
|
343 |
+
"""
|
344 |
+
ans = 0
|
345 |
+
count = 0
|
346 |
+
while (m):
|
347 |
+
if (m % 2 == 1):
|
348 |
+
ans += n << count
|
349 |
+
count += 1
|
350 |
+
m = int(m / 2)
|
351 |
+
return ans
|
352 |
+
|
353 |
+
|
354 |
+
if __name__ == '__main__':
|
355 |
+
n = 20
|
356 |
+
m = 13
|
357 |
+
print(multiply(n, m))
|
358 |
+
|
359 |
+
def equal_number(A, B):
|
360 |
+
"""
|
361 |
+
Compare two integers without using any Comparison operator
|
362 |
+
"""
|
363 |
+
return (A ^ B)
|
364 |
+
|
365 |
+
|
366 |
+
A = 5
|
367 |
+
B = 6
|
368 |
+
print(int(not (equal_number(A, B))))
|
369 |
+
|
370 |
+
def multiply_ten(n):
|
371 |
+
"""
|
372 |
+
Multiply a number with 10 without using multiplication operator
|
373 |
+
"""
|
374 |
+
return (n << 1) + (n << 3)
|
375 |
+
|
376 |
+
|
377 |
+
n = 50
|
378 |
+
print(multiply_ten(n))
|
379 |
+
|
380 |
+
def count_values(n):
|
381 |
+
"""
|
382 |
+
Equal Sum and XOR
|
383 |
+
"""
|
384 |
+
unset_bits = 0
|
385 |
+
while (n):
|
386 |
+
if n & 1 == 0:
|
387 |
+
unset_bits += 1
|
388 |
+
n = n >> 1
|
389 |
+
return 1 << unset_bits
|
390 |
+
|
391 |
+
|
392 |
+
if __name__ == '__main__':
|
393 |
+
n = 12
|
394 |
+
print(count_values(n))
|
395 |
+
|
396 |
+
def swap_bits(n, p1, p2):
|
397 |
+
"""
|
398 |
+
How to swap two bits in a given integer ?
|
399 |
+
"""
|
400 |
+
bit1 = (n >> p1) & 1
|
401 |
+
bit2 = (n >> p2) & 1
|
402 |
+
x = (bit1 ^ bit2)
|
403 |
+
x = (x << p1) | (x << p2)
|
404 |
+
result = n ^ x
|
405 |
+
return result
|
406 |
+
|
407 |
+
|
408 |
+
if __name__ == '__main__':
|
409 |
+
res = swap_bits(28, 0, 3)
|
410 |
+
print("Result = ", res)
|
411 |
+
|
412 |
+
def invert(x):
|
413 |
+
"""
|
414 |
+
Write a function that returns 2 for input 1 and returns 1 for 2 |
|
415 |
+
"""
|
416 |
+
if (x == 1):
|
417 |
+
return 2
|
418 |
+
else:
|
419 |
+
return 1
|
420 |
+
|
421 |
+
def invert_sub(x):
|
422 |
+
"""
|
423 |
+
Write a function that returns 2 for input 1 and returns 1 for 2 |
|
424 |
+
"""
|
425 |
+
return (3 - x)
|
426 |
+
|
427 |
+
def calc__expectation(a, n):
|
428 |
+
"""
|
429 |
+
Expectation or expected value of an array
|
430 |
+
"""
|
431 |
+
prb = 1 / n
|
432 |
+
sum = 0
|
433 |
+
for i in range(0, n):
|
434 |
+
sum += (a[i] * prb)
|
435 |
+
return float(sum)
|
436 |
+
|
437 |
+
|
438 |
+
n = 6
|
439 |
+
a = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
|
440 |
+
expect = calc__expectation(a, n)
|
441 |
+
print("Expectation of array E(X) is : ", expect)
|
442 |
+
|
443 |
+
def maximum_updates(arr):
|
444 |
+
"""
|
445 |
+
Number of times Maximum and minimum value updated during traversal of array
|
446 |
+
"""
|
447 |
+
min = arr[0]
|
448 |
+
max = arr[0]
|
449 |
+
minCount, maxCount = 1, 1
|
450 |
+
for arr in arr:
|
451 |
+
if arr > max:
|
452 |
+
maxCount += 1
|
453 |
+
max = arr
|
454 |
+
if arr < min:
|
455 |
+
minCount += 1
|
456 |
+
min = arr
|
457 |
+
print("Number of times maximum ", end="")
|
458 |
+
print("value updated = ", maxCount)
|
459 |
+
print("Number of times minimum ", end="")
|
460 |
+
print("value updated = ", minCount)
|
461 |
+
|
462 |
+
|
463 |
+
if __name__ == "__main__":
|
464 |
+
arr = [10, 5, 20, 22]
|
465 |
+
maximum_updates(arr)
|
466 |
+
|
467 |
+
def max_sum(a, n):
|
468 |
+
"""
|
469 |
+
Maximize sum of given array by rearranging array such that the difference between adjacent elements is atmost 1
|
470 |
+
"""
|
471 |
+
count = [0] * (n + 1)
|
472 |
+
for i in range(0, n):
|
473 |
+
count[min(a[i], n)] += 1
|
474 |
+
size = 0
|
475 |
+
ans = 0
|
476 |
+
for k in range(1, n + 1):
|
477 |
+
while (count[k] > 0 and size < k):
|
478 |
+
size += 1
|
479 |
+
ans += size
|
480 |
+
count[k] -= 1
|
481 |
+
ans += k * count[k]
|
482 |
+
return ans
|
483 |
+
|
484 |
+
|
485 |
+
if __name__ == '__main__':
|
486 |
+
arr = [3, 5, 1]
|
487 |
+
n = len(arr)
|
488 |
+
print(max_sum(arr, n))
|
489 |
+
|
490 |
+
def count_triplets(N, K):
|
491 |
+
"""
|
492 |
+
Count triplets ( a , b , c ) such that a + b , b + c and a + c are all divisible by K
|
493 |
+
"""
|
494 |
+
if (K % 2 == 0):
|
495 |
+
x = N // K
|
496 |
+
y = (N + (K // 2)) // K
|
497 |
+
return x * x * x + y * y * y
|
498 |
+
else:
|
499 |
+
x = N // K
|
500 |
+
return x * x * x
|
501 |
+
|
502 |
+
|
503 |
+
if __name__ == "__main__":
|
504 |
+
N = 2
|
505 |
+
K = 2
|
506 |
+
print(count_triplets(N, K))
|
507 |
+
|
508 |
+
def maximum_result(a, b, c):
|
509 |
+
"""
|
510 |
+
Maximize the value of the given expression
|
511 |
+
"""
|
512 |
+
countOfNegative = 0
|
513 |
+
Sum = a + b + c
|
514 |
+
product = a * b * c
|
515 |
+
largest = max(a, b, c)
|
516 |
+
smallest = min(a, b, c)
|
517 |
+
if a < 0:
|
518 |
+
countOfNegative += 1
|
519 |
+
if b < 0:
|
520 |
+
countOfNegative += 1
|
521 |
+
if c < 0:
|
522 |
+
countOfNegative += 1
|
523 |
+
if countOfNegative == 0:
|
524 |
+
return (Sum - largest) * largest
|
525 |
+
elif countOfNegative == 1:
|
526 |
+
return (product // smallest) + smallest
|
527 |
+
elif countOfNegative == 2:
|
528 |
+
return (product // largest) + largest
|
529 |
+
elif countOfNegative == 3:
|
530 |
+
return (Sum - smallest) * smallest
|
531 |
+
|
532 |
+
|
533 |
+
if __name__ == "__main__":
|
534 |
+
a, b, c = -2, -1, -4
|
535 |
+
print(maximum_result(a, b, c))
|
536 |
+
|
537 |
+
'
|
538 |
+
|
539 |
+
|
540 |
+
def solve(n, lookup={}):
|
541 |
+
"""
|
542 |
+
How to solve a Dynamic Programming Problem ?
|
543 |
+
"""
|
544 |
+
if n < 0:
|
545 |
+
return 0
|
546 |
+
if n == 0:
|
547 |
+
return 1
|
548 |
+
if n not in lookup:
|
549 |
+
lookup[n] = (solve(n - 1) + solve(n - 3) + solve(n - 5))
|
550 |
+
return lookup[n]
|
551 |
+
|
552 |
+
def number_of_paths(p, q):
|
553 |
+
"""
|
554 |
+
Count all possible paths from top left to bottom right of a mXn matrix
|
555 |
+
"""
|
556 |
+
dp = [1 for i in range(q)]
|
557 |
+
for i in range(p - 1):
|
558 |
+
for j in range(1, q):
|
559 |
+
dp[j] += dp[j - 1]
|
560 |
+
return dp[q - 1]
|
561 |
+
|
562 |
+
|
563 |
+
print(number_of_paths(3, 3))
|
564 |
+
|
565 |
+
class Solution:
|
566 |
+
|
567 |
+
"""
|
568 |
+
Longest Arithmetic Progression
|
569 |
+
"""
|
570 |
+
|
571 |
+
def solve(self, A):
|
572 |
+
ans = 2
|
573 |
+
n = len(A)
|
574 |
+
if n <= 2:
|
575 |
+
return n
|
576 |
+
llap = [2] * n
|
577 |
+
A.sort()
|
578 |
+
for j in range(n - 2, -1, -1):
|
579 |
+
i = j - 1
|
580 |
+
k = j + 1
|
581 |
+
while (i >= 0 and k < n):
|
582 |
+
if A[i] + A[k] == 2 * A[j]:
|
583 |
+
llap[j] = max(llap[k] + 1, llap[j])
|
584 |
+
ans = max(ans, llap[j])
|
585 |
+
i -= 1
|
586 |
+
k += 1
|
587 |
+
elif A[i] + A[k] < 2 * A[j]:
|
588 |
+
k += 1
|
589 |
+
else:
|
590 |
+
i -= 1
|
591 |
+
return ans
|
592 |
+
|
593 |
+
|
594 |
+
obj = Solution()
|
595 |
+
a = [9, 4, 7, 2, 10]
|
596 |
+
print(obj.solve(a))
|
597 |
+
|
598 |
+
def ending_with(str, suff):
|
599 |
+
"""
|
600 |
+
Count of words ending at the given suffix in Java
|
601 |
+
"""
|
602 |
+
c = 0
|
603 |
+
wrd = str.split(" ")
|
604 |
+
for l in wrd:
|
605 |
+
if l.endswith(suff):
|
606 |
+
c += 1
|
607 |
+
return c
|
608 |
+
|
609 |
+
|
610 |
+
str = "GeeksForGeeks is a computer science portal for geeks"
|
611 |
+
suff = "ks"
|
612 |
+
print(ending_with(str, suff))
|
613 |
+
|
614 |
+
def is_frequency_equal(string, length):
|
615 |
+
"""
|
616 |
+
Character whose frequency is equal to the sum of frequencies of other characters of the given string
|
617 |
+
"""
|
618 |
+
if length % 2 == 1:
|
619 |
+
return False
|
620 |
+
freq = [0] * 26
|
621 |
+
for i in range(0, length):
|
622 |
+
freq[ord(string[i]) - ord('a')] += 1
|
623 |
+
for i in range(0, 26):
|
624 |
+
if freq[i] == length // 2:
|
625 |
+
return True
|
626 |
+
return False
|
627 |
+
|
628 |
+
|
629 |
+
if __name__ == "__main__":
|
630 |
+
string = "geeksforgeeks"
|
631 |
+
length = len(string)
|
632 |
+
if is_frequency_equal(string, length):
|
633 |
+
print("Yes")
|
634 |
+
else:
|
635 |
+
print("No")
|
636 |
+
|
637 |
+
def round(n):
|
638 |
+
"""
|
639 |
+
Round the given number to nearest multiple of 10
|
640 |
+
"""
|
641 |
+
a = (n // 10) * 10
|
642 |
+
b = a + 10
|
643 |
+
return (b if n - a > b - n else a)
|
644 |
+
|
645 |
+
|
646 |
+
n = 4722
|
647 |
+
print(round(n))
|
648 |
+
|
649 |
+
def decode(string):
|
650 |
+
"""
|
651 |
+
Null Cipher
|
652 |
+
"""
|
653 |
+
res = ""
|
654 |
+
found = False
|
655 |
+
for character in string:
|
656 |
+
if character == ' ':
|
657 |
+
found = False
|
658 |
+
continue
|
659 |
+
if not found:
|
660 |
+
if character >= 'A' and character <= 'Z' or character >= 'a' and character <= 'z':
|
661 |
+
res += character
|
662 |
+
found = True
|
663 |
+
return res.lower()
|
664 |
+
|
665 |
+
|
666 |
+
if __name__ == "__main__":
|
667 |
+
input = "A Step by Step Guide for Placement Preparation by GeeksforGeeks"
|
668 |
+
print("Enciphered Message:", decode(input))
|
669 |
+
|
670 |
+
def count9s(number):
|
671 |
+
"""
|
672 |
+
Given a number as a string , find the number of contiguous subsequences which recursively add up to 9
|
673 |
+
"""
|
674 |
+
n = len(number)
|
675 |
+
for i in range(n):
|
676 |
+
sum = ord(number[i]) - ord('0')
|
677 |
+
if (number[i] == '9'):
|
678 |
+
count += 1
|
679 |
+
for j in range(i + 1, n):
|
680 |
+
sum = (sum + ord(number[j]) - ord('0')) % 9
|
681 |
+
if (sum == 0):
|
682 |
+
count += 1
|
683 |
+
return count
|
684 |
+
|
685 |
+
|
686 |
+
if __name__ == "__main__":
|
687 |
+
print(count9s("4189"))
|
688 |
+
print(count9s("1809"))
|
689 |
+
|
690 |
+
def count_direct_path(N):
|
691 |
+
"""
|
692 |
+
Count of Unique Direct Path Between N Points On a Plane
|
693 |
+
"""
|
694 |
+
return N + (N * (N - 3)) // 2
|
695 |
+
|
696 |
+
|
697 |
+
if __name__ == "__main__":
|
698 |
+
N = 5
|
699 |
+
print(count_direct_path(N))
|
700 |
+
|
701 |
+
def triacontagonal_num(n):
|
702 |
+
"""
|
703 |
+
Triacontagon Number
|
704 |
+
"""
|
705 |
+
return (28 * n * n - 26 * n) // 2
|
706 |
+
|
707 |
+
|
708 |
+
n = 3
|
709 |
+
print("3rd triacontagonal Number is = ", triacontagonal_num(n))
|
710 |
+
|
711 |
+
def hexacontagon_num(n):
|
712 |
+
"""
|
713 |
+
Hexacontagon Number
|
714 |
+
"""
|
715 |
+
return (58 * n * n - 56 * n) // 2
|
716 |
+
|
717 |
+
|
718 |
+
n = 3
|
719 |
+
print("3rd hexacontagon Number is = ", hexacontagon_num(n))
|
720 |
+
|
721 |
+
def icosihexagonal_num(n):
|
722 |
+
"""
|
723 |
+
Icosihexagonal Number
|
724 |
+
"""
|
725 |
+
return (24 * n * n - 22 * n) // 2
|
726 |
+
|
727 |
+
|
728 |
+
n = 3
|
729 |
+
print("3rd Icosihexagonal Number is = ", icosihexagonal_num(n))
|
730 |
+
|
731 |
+
def icosikaioctagonal_num(n):
|
732 |
+
"""
|
733 |
+
Icosikaioctagon or Icosioctagon Number
|
734 |
+
"""
|
735 |
+
return (26 * n * n - 24 * n) // 2
|
736 |
+
|
737 |
+
|
738 |
+
n = 3
|
739 |
+
print("3rd icosikaioctagonal Number is = ", icosikaioctagonal_num(n))
|
740 |
+
|
741 |
+
def octacontagon_num(n):
|
742 |
+
"""
|
743 |
+
Octacontagon Number
|
744 |
+
"""
|
745 |
+
return (78 * n * n - 76 * n) // 2
|
746 |
+
|
747 |
+
|
748 |
+
n = 3
|
749 |
+
print("3rd octacontagon Number is = ", octacontagon_num(n))
|
750 |
+
|
751 |
+
from math import sqrt
|
752 |
+
|
753 |
+
|
754 |
+
def perimeter(a, b):
|
755 |
+
"""
|
756 |
+
perimeter of an Ellipse
|
757 |
+
"""
|
758 |
+
perimeter = 0
|
759 |
+
perimeter = (2 * 3.14 * sqrt((a * a + b * b) / (2 * 1.0)))
|
760 |
+
print(perimeter)
|
761 |
+
|
762 |
+
|
763 |
+
a = 3
|
764 |
+
b = 2
|
765 |
+
perimeter(a, b)
|
766 |
+
|
767 |
+
def reuleaux_area(a):
|
768 |
+
"""
|
769 |
+
Biggest Reuleaux Triangle within A Square
|
770 |
+
"""
|
771 |
+
if (a < 0):
|
772 |
+
return -1
|
773 |
+
A = 0.70477 * pow(a, 2)
|
774 |
+
return A
|
775 |
+
|
776 |
+
|
777 |
+
if __name__ == "__main__":
|
778 |
+
a = 6
|
779 |
+
print(reuleaux_area(a))
|
780 |
+
|
781 |
+
def hexagonside(a):
|
782 |
+
"""
|
783 |
+
Largest hexagon that can be inscribed within a square
|
784 |
+
"""
|
785 |
+
if (a < 0):
|
786 |
+
return -1
|
787 |
+
x = 0.5176 * a
|
788 |
+
return x
|
789 |
+
|
790 |
+
|
791 |
+
a = 6
|
792 |
+
print(hexagonside(a))
|
793 |
+
|
794 |
+
def hexagonside(a):
|
795 |
+
"""
|
796 |
+
Largest hexagon that can be inscribed within an equilateral triangle
|
797 |
+
"""
|
798 |
+
if a < 0:
|
799 |
+
return -1
|
800 |
+
x = a // 3
|
801 |
+
return x
|
802 |
+
|
803 |
+
|
804 |
+
a = 6
|
805 |
+
print(hexagonside(a))
|
806 |
+
|
807 |
+
def find_segment(n, m, segment_length):
|
808 |
+
"""
|
809 |
+
Find middle point segment from given segment lengths
|
810 |
+
"""
|
811 |
+
meet_point = (1.0 * n) / 2.0
|
812 |
+
sum = 0
|
813 |
+
segment_number = 0
|
814 |
+
for i in range(0, m, 1):
|
815 |
+
sum += segment_length[i]
|
816 |
+
if (sum == meet_point):
|
817 |
+
segment_number = -1
|
818 |
+
break
|
819 |
+
if (sum > meet_point):
|
820 |
+
segment_number = i + 1
|
821 |
+
break
|
822 |
+
return segment_number
|
823 |
+
|
824 |
+
|
825 |
+
if __name__ == '__main__':
|
826 |
+
n = 13
|
827 |
+
m = 3
|
828 |
+
segment_length = [3, 2, 8]
|
829 |
+
ans = find_segment(n, m, segment_length)
|
830 |
+
print(ans)
|
831 |
+
|
832 |
+
def count_max_intersect(n):
|
833 |
+
"""
|
834 |
+
Maximum points of intersection n lines
|
835 |
+
"""
|
836 |
+
return int(n * (n - 1) / 2)
|
837 |
+
|
838 |
+
|
839 |
+
if __name__ == '__main__':
|
840 |
+
n = 8
|
841 |
+
print(count_max_intersect(n))
|
842 |
+
|
843 |
+
def checkpoint(h, k, x, y, a):
|
844 |
+
"""
|
845 |
+
Check if a point is inside , outside or on the parabola
|
846 |
+
"""
|
847 |
+
p = pow((y - k), 2) - 4 * a * (x - h)
|
848 |
+
return p
|
849 |
+
|
850 |
+
|
851 |
+
if __name__ == "__main__":
|
852 |
+
h = 0
|
853 |
+
k = 0
|
854 |
+
x = 2
|
855 |
+
y = 1
|
856 |
+
a = 4
|
857 |
+
if checkpoint(h, k, x, y, a) > 0:
|
858 |
+
print("Outside")
|
859 |
+
elif checkpoint(h, k, x, y, a) == 0:
|
860 |
+
print("Ontheparabola")
|
861 |
+
else:
|
862 |
+
print("Inside")
|
863 |
+
|
864 |
+
import math
|
865 |
+
|
866 |
+
|
867 |
+
def checkpoint(h, k, x, y, a, b):
|
868 |
+
"""
|
869 |
+
Check if a point is inside , outside or on the ellipse
|
870 |
+
"""
|
871 |
+
p = ((math.pow((x - h), 2) // math.pow(a, 2)) +
|
872 |
+
(math.pow((y - k), 2) // math.pow(b, 2)))
|
873 |
+
return p
|
874 |
+
|
875 |
+
|
876 |
+
if __name__ == "__main__":
|
877 |
+
h = 0
|
878 |
+
k = 0
|
879 |
+
x = 2
|
880 |
+
y = 1
|
881 |
+
a = 4
|
882 |
+
b = 5
|
883 |
+
if (checkpoint(h, k, x, y, a, b) > 1):
|
884 |
+
print("Outside")
|
885 |
+
elif (checkpoint(h, k, x, y, a, b) == 1):
|
886 |
+
print("On the ellipse")
|
887 |
+
else:
|
888 |
+
print("Inside")
|
889 |
+
|
890 |
+
def circlearea(a, b):
|
891 |
+
"""
|
892 |
+
Area of circle inscribed within rhombus
|
893 |
+
"""
|
894 |
+
if (a < 0 or b < 0):
|
895 |
+
return -1
|
896 |
+
A = ((3.14 * pow(a, 2) * pow(b, 2)) / (4 * (pow(a, 2) + pow(b, 2))))
|
897 |
+
return A
|
898 |
+
|
899 |
+
|
900 |
+
if __name__ == "__main__":
|
901 |
+
a = 8
|
902 |
+
b = 10
|
903 |
+
print(circlearea(a, b))
|
904 |
+
|
905 |
+
def circlearea(l, b):
|
906 |
+
"""
|
907 |
+
The biggest possible circle that can be inscribed in a rectangle
|
908 |
+
"""
|
909 |
+
if (l < 0 or b < 0):
|
910 |
+
return -1
|
911 |
+
if (l < b):
|
912 |
+
return 3.14 * pow(l // 2, 2)
|
913 |
+
else:
|
914 |
+
return 3.14 * pow(b // 2, 2)
|
915 |
+
|
916 |
+
|
917 |
+
if __name__ == "__main__":
|
918 |
+
l = 4
|
919 |
+
b = 8
|
920 |
+
print(circlearea(l, b))
|
921 |
+
|
922 |
+
def centered_cube(n):
|
923 |
+
"""
|
924 |
+
Centered cube number
|
925 |
+
"""
|
926 |
+
return (2 * n + 1) * (n * n + n + 1)
|
927 |
+
|
928 |
+
|
929 |
+
if __name__ == '__main__':
|
930 |
+
n = 3
|
931 |
+
print(n, "th Centered cube " + "number : ", centered_cube(n))
|
932 |
+
n = 10
|
933 |
+
print(n, "th Centered cube " + "number : ", centered_cube(n))
|
934 |
+
|
935 |
+
def center(x1, x2, y1, y2):
|
936 |
+
"""
|
937 |
+
Find the center of the circle using endpoints of diameter
|
938 |
+
"""
|
939 |
+
print(int((x1 + x2) / 2), end="")
|
940 |
+
print(",", int((y1 + y2) / 2))
|
941 |
+
|
942 |
+
|
943 |
+
x1 = -9
|
944 |
+
y1 = 3
|
945 |
+
x2 = 5
|
946 |
+
y2 = -7
|
947 |
+
center(x1, x2, y1, y2)
|
948 |
+
|
949 |
+
import math
|
950 |
+
|
951 |
+
|
952 |
+
def vol_of_octahedron(side):
|
953 |
+
"""
|
954 |
+
Program to calculate volume of Octahedron
|
955 |
+
"""
|
956 |
+
return ((side * side * side) * (math.sqrt(2) / 3))
|
957 |
+
|
958 |
+
|
959 |
+
side = 3
|
960 |
+
print("Volume of octahedron =", round(vol_of_octahedron(side), 4))
|
961 |
+
|
962 |
+
def count(N):
|
963 |
+
"""
|
964 |
+
Minimum count of consecutive integers till N whose bitwise AND is 0 with N
|
965 |
+
"""
|
966 |
+
a = bin(N)
|
967 |
+
a = a[2:]
|
968 |
+
m = len(a) - 1
|
969 |
+
res = N - (2 ** m - 1)
|
970 |
+
return res
|
971 |
+
|
972 |
+
|
973 |
+
N = 18
|
974 |
+
print(count(N))
|
975 |
+
|
976 |
+
def find_cycles(N):
|
977 |
+
"""
|
978 |
+
Number of cycles formed by joining vertices of n sided polygon at the center
|
979 |
+
"""
|
980 |
+
res = 0
|
981 |
+
finalResult = 0
|
982 |
+
val = 2 * N - 1
|
983 |
+
s = val
|
984 |
+
res = (N - 1) * (N - 2)
|
985 |
+
finalResult = res + s
|
986 |
+
return finalResult
|
987 |
+
|
988 |
+
|
989 |
+
if __name__ == '__main__':
|
990 |
+
N = 5
|
991 |
+
print(find_cycles(N))
|
992 |
+
|
993 |
+
def find(a, n, k):
|
994 |
+
"""
|
995 |
+
Split a given array into K subarrays minimizing the difference between their maximum and minimum
|
996 |
+
"""
|
997 |
+
v = []
|
998 |
+
for i in range(1, n):
|
999 |
+
v.append(a[i - 1] - a[i])
|
1000 |
+
v.sort()
|
1001 |
+
res = a[n - 1] - a[0]
|
1002 |
+
for i in range(k - 1):
|
1003 |
+
res += v[i]
|
1004 |
+
return res
|
1005 |
+
|
1006 |
+
|
1007 |
+
arr = [4, 8, 15, 16, 23, 42]
|
1008 |
+
N = len(arr)
|
1009 |
+
K = 3
|
1010 |
+
print(find(arr, N, K))
|
1011 |
+
|
1012 |
+
def smallest_div(n):
|
1013 |
+
"""
|
1014 |
+
Find the Smallest number that divides X ^ X
|
1015 |
+
"""
|
1016 |
+
i = 2
|
1017 |
+
while i * i <= n:
|
1018 |
+
if (n % i == 0):
|
1019 |
+
return i
|
1020 |
+
i += 1
|
1021 |
+
return n
|
1022 |
+
|
1023 |
+
|
1024 |
+
if __name__ == "__main__":
|
1025 |
+
X = 385
|
1026 |
+
ans = smallest_div(X)
|
1027 |
+
print(ans)
|
1028 |
+
|
1029 |
+
def power(x, y, p):
|
1030 |
+
"""
|
1031 |
+
Find number of magical pairs of string of length L
|
1032 |
+
"""
|
1033 |
+
res = 1
|
1034 |
+
x = x % p
|
1035 |
+
while (y > 0):
|
1036 |
+
if (y % 2 == 1):
|
1037 |
+
res = (res * x) % p
|
1038 |
+
x = (x * x) % p
|
1039 |
+
return res
|
1040 |
+
|
1041 |
+
|
1042 |
+
L = 2
|
1043 |
+
P = pow(10, 9)
|
1044 |
+
ans = power(325, L, P)
|
1045 |
+
print(ans)
|
1046 |
+
|
1047 |
+
MAXN = 30
|
1048 |
+
|
1049 |
+
|
1050 |
+
def count_max_length(N):
|
1051 |
+
"""
|
1052 |
+
Longest substring of only 4 's from the first N characters of the infinite string
|
1053 |
+
"""
|
1054 |
+
pre = [0 for i in range(MAXN)]
|
1055 |
+
p = 1
|
1056 |
+
pre[0] = 0
|
1057 |
+
for i in range(1, MAXN, 1):
|
1058 |
+
p *= 2
|
1059 |
+
pre[i] = pre[i - 1] + i * p
|
1060 |
+
for i in range(1, MAXN, 1):
|
1061 |
+
if (pre[i] >= N):
|
1062 |
+
ind = i
|
1063 |
+
break
|
1064 |
+
x = N - pre[ind - 1]
|
1065 |
+
y = 2 * ind - 1
|
1066 |
+
if (x >= y):
|
1067 |
+
res = min(x, y)
|
1068 |
+
else:
|
1069 |
+
res = max(x, 2 * (ind - 2) + 1)
|
1070 |
+
return res
|
1071 |
+
|
1072 |
+
|
1073 |
+
if __name__ == '__main__':
|
1074 |
+
N = 25
|
1075 |
+
print(count_max_length(N))
|
1076 |
+
|
1077 |
+
def minimum(N, K):
|
1078 |
+
"""
|
1079 |
+
minimum count of numbers needed from 1 to N that yields the sum as K
|
1080 |
+
"""
|
1081 |
+
sum = N * (N + 1) // 2
|
1082 |
+
if (K > sum):
|
1083 |
+
return -1
|
1084 |
+
if (K <= N):
|
1085 |
+
return 1
|
1086 |
+
sum = 0
|
1087 |
+
count = 0
|
1088 |
+
while (N >= 1 and sum < K):
|
1089 |
+
count += 1
|
1090 |
+
sum += N
|
1091 |
+
N -= 1
|
1092 |
+
return count
|
1093 |
+
|
1094 |
+
|
1095 |
+
if __name__ == '__main__':
|
1096 |
+
N = 5
|
1097 |
+
K = 10
|
1098 |
+
print(minimum(N, K))
|
1099 |
+
|
1100 |
+
def count(N, K):
|
1101 |
+
"""
|
1102 |
+
Maximize X such that sum of numbers in range [ 1 , X ] is at most K
|
1103 |
+
"""
|
1104 |
+
if (K == 0):
|
1105 |
+
return 0
|
1106 |
+
res = 0
|
1107 |
+
low = 1
|
1108 |
+
high = N
|
1109 |
+
while (low <= high):
|
1110 |
+
mid = (low + high) // 2
|
1111 |
+
sum = (mid * mid + mid) // 2
|
1112 |
+
if (sum <= K):
|
1113 |
+
res = max(res, mid)
|
1114 |
+
low = mid + 1
|
1115 |
+
else:
|
1116 |
+
high = mid - 1
|
1117 |
+
return res
|
1118 |
+
|
1119 |
+
|
1120 |
+
if __name__ == '__main__':
|
1121 |
+
N = 6
|
1122 |
+
K = 14
|
1123 |
+
print(count(N, K))
|
1124 |
+
|
1125 |
+
def find_element(A, N, X):
|
1126 |
+
"""
|
1127 |
+
Check if an element is present in an array using at most floor ( N / 2 ) + 2 comparisons
|
1128 |
+
"""
|
1129 |
+
i = 0
|
1130 |
+
Comparisons = 0
|
1131 |
+
T = 1
|
1132 |
+
Found = "No"
|
1133 |
+
Comparisons += 1
|
1134 |
+
if (N % 2 == 1):
|
1135 |
+
i = 1
|
1136 |
+
T *= (A[0] - X)
|
1137 |
+
while (i < N):
|
1138 |
+
Comparisons += 1
|
1139 |
+
T *= (A[i] - X)
|
1140 |
+
T *= (A[i + 1] - X)
|
1141 |
+
i += 2
|
1142 |
+
Comparisons += 1
|
1143 |
+
if (T == 0):
|
1144 |
+
print("Yes", Comparisons)
|
1145 |
+
else:
|
1146 |
+
print("No")
|
1147 |
+
|
1148 |
+
|
1149 |
+
if __name__ == '__main__':
|
1150 |
+
A = [-3, 5, 11, 3, 100, 2, 88, 22, 7, 900, 23, 4, 1]
|
1151 |
+
N = len(A)
|
1152 |
+
X = 1
|
1153 |
+
find_element(A, N, X)
|
1154 |
+
|
1155 |
+
def find(arr, N, key):
|
1156 |
+
"""
|
1157 |
+
Search an element in a sorted array formed by reversing subarrays from a random index
|
1158 |
+
"""
|
1159 |
+
l = 0
|
1160 |
+
h = N - 1
|
1161 |
+
while l <= h:
|
1162 |
+
mid = (l + h) // 2
|
1163 |
+
if arr[mid] == key:
|
1164 |
+
return mid
|
1165 |
+
if arr[l] >= arr[mid]:
|
1166 |
+
if arr[l] >= key >= arr[mid]:
|
1167 |
+
h = mid - 1
|
1168 |
+
else:
|
1169 |
+
l = mid + 1
|
1170 |
+
else:
|
1171 |
+
if arr[mid] >= key >= arr[h]:
|
1172 |
+
l = mid + 1
|
1173 |
+
else:
|
1174 |
+
h = mid - 1
|
1175 |
+
return -1
|
1176 |
+
|
1177 |
+
|
1178 |
+
if __name__ == "__main__":
|
1179 |
+
arr = [10, 8, 6, 5, 2, 1, 13, 12]
|
1180 |
+
N = len(arr)
|
1181 |
+
key = 8
|
1182 |
+
ans = find(arr, N, key)
|
1183 |
+
print(ans)
|
1184 |
+
|
1185 |
+
def max_items(n, m, a, b, K):
|
1186 |
+
"""
|
1187 |
+
Maximum elements that can be removed from front of two arrays such that their sum is at most K
|
1188 |
+
"""
|
1189 |
+
count = 0
|
1190 |
+
A = [0 for i in range(n + 1)]
|
1191 |
+
B = [0 for i in range(m + 1)]
|
1192 |
+
for i in range(1, n + 1, 1):
|
1193 |
+
A[i] = a[i - 1] + A[i - 1]
|
1194 |
+
for i in range(1, m + 1, 1):
|
1195 |
+
B[i] = b[i - 1] + B[i - 1]
|
1196 |
+
for i in range(n + 1):
|
1197 |
+
if (A[i] > K):
|
1198 |
+
break
|
1199 |
+
rem = K - A[i]
|
1200 |
+
j = 0
|
1201 |
+
lo = 0
|
1202 |
+
hi = m
|
1203 |
+
while (lo <= hi):
|
1204 |
+
mid = (lo + hi) // 2
|
1205 |
+
if (B[mid] <= rem):
|
1206 |
+
j = mid
|
1207 |
+
lo = mid + 1
|
1208 |
+
else:
|
1209 |
+
hi = mid - 1
|
1210 |
+
count = max(j + i, count)
|
1211 |
+
print(count)
|
1212 |
+
|
1213 |
+
|
1214 |
+
if __name__ == '__main__':
|
1215 |
+
n = 4
|
1216 |
+
m = 5
|
1217 |
+
K = 7
|
1218 |
+
A = [2, 4, 7, 3]
|
1219 |
+
B = [1, 9, 3, 4, 5]
|
1220 |
+
max_items(n, m, A, B, K)
|
1221 |
+
|
1222 |
+
def minimum_swaps(arr, n):
|
1223 |
+
"""
|
1224 |
+
Minimize swaps required to make the first and last elements the largest and smallest elements in the array respectively
|
1225 |
+
"""
|
1226 |
+
count = 0
|
1227 |
+
max_el = max(arr)
|
1228 |
+
min_el = min(arr)
|
1229 |
+
if (min_el == max_el):
|
1230 |
+
return 0
|
1231 |
+
index_max = -1
|
1232 |
+
index_min = -1
|
1233 |
+
for i in range(n):
|
1234 |
+
if (arr[i] == max_el and index_max == -1):
|
1235 |
+
index_max = i
|
1236 |
+
if (arr[i] == min_el):
|
1237 |
+
index_min = i
|
1238 |
+
count += index_max
|
1239 |
+
count += (n - 1 - index_min)
|
1240 |
+
if (index_min < index_max):
|
1241 |
+
count -= 1
|
1242 |
+
return count
|
1243 |
+
|
1244 |
+
|
1245 |
+
if __name__ == '__main__':
|
1246 |
+
arr = [2, 4, 1, 6, 5]
|
1247 |
+
N = len(arr)
|
1248 |
+
print(minimum_swaps(arr, N))
|
1249 |
+
|
1250 |
+
def least_weighted_sum_path(n, edges, src, dst, K):
|
1251 |
+
"""
|
1252 |
+
Minimum cost path from source node to destination node via K intermediate nodes
|
1253 |
+
"""
|
1254 |
+
graph = [[]for i in range(3)]
|
1255 |
+
for edge in edges:
|
1256 |
+
graph[edge[0]].append([edge[1], edge[2]])
|
1257 |
+
pq = []
|
1258 |
+
costs = [[10 ** 9 for i in range(K + 2)]for i in range(n)]
|
1259 |
+
costs[src][K + 1] = 0
|
1260 |
+
pq.append([0, src, K + 1])
|
1261 |
+
pq = sorted(pq)[::-1]
|
1262 |
+
while (len(pq) > 0):
|
1263 |
+
top = pq[-1]
|
1264 |
+
del pq[-1]
|
1265 |
+
if (top[1] == dst):
|
1266 |
+
return top[0]
|
1267 |
+
if (top[2] == 0):
|
1268 |
+
continue
|
1269 |
+
for neighbor in graph[top[1]]:
|
1270 |
+
if (costs[neighbor[0]][top[2] - 1] < neighbor[1] + top[0]):
|
1271 |
+
continue
|
1272 |
+
costs[neighbor[0]][top[2] - 1] = neighbor[1] + top[0]
|
1273 |
+
pq.append([neighbor[1] + top[0], neighbor[0], top[2] - 1])
|
1274 |
+
pq = sorted(pq)[::-1]
|
1275 |
+
return -1
|
1276 |
+
|
1277 |
+
|
1278 |
+
if __name__ == '__main__':
|
1279 |
+
n, src, dst, k = 3, 0, 2, 1
|
1280 |
+
edges = [[0, 1, 100], [1, 2, 100], [0, 2, 500]]
|
1281 |
+
print(least_weighted_sum_path(n, edges, src, dst, k))
|
1282 |
+
|
1283 |
+
def kth_character(S, N, K):
|
1284 |
+
"""
|
1285 |
+
Frequency of lexicographically Kth smallest character in the a string
|
1286 |
+
"""
|
1287 |
+
strarray = [char for char in S]
|
1288 |
+
strarray.sort()
|
1289 |
+
ch = strarray[K - 1]
|
1290 |
+
count = 0
|
1291 |
+
for c in strarray:
|
1292 |
+
if (c == ch):
|
1293 |
+
count += 1
|
1294 |
+
print(count)
|
1295 |
+
|
1296 |
+
|
1297 |
+
if __name__ == '__main__':
|
1298 |
+
S = "geeksforgeeks"
|
1299 |
+
N = len(S)
|
1300 |
+
K = 3
|
1301 |
+
kth_character(S, N, K)
|
1302 |
+
|
1303 |
+
def max_non_emp_sub_seq(a, n):
|
1304 |
+
"""
|
1305 |
+
Maximum Sum Subsequence
|
1306 |
+
"""
|
1307 |
+
sum = 0
|
1308 |
+
maxm = max(a)
|
1309 |
+
if (maxm <= 0):
|
1310 |
+
return maxm
|
1311 |
+
for i in range(n):
|
1312 |
+
if (a[i] > 0):
|
1313 |
+
sum += a[i]
|
1314 |
+
return sum
|
1315 |
+
|
1316 |
+
|
1317 |
+
if __name__ == '__main__':
|
1318 |
+
arr = [-2, 11, -4, 2, -3, -10]
|
1319 |
+
N = len(arr)
|
1320 |
+
print(max_non_emp_sub_seq(arr, N))
|
1321 |
+
|
1322 |
+
def find_intersecting_range(tup, N, ranges):
|
1323 |
+
"""
|
1324 |
+
Find a pair of intersecting ranges from a given array
|
1325 |
+
"""
|
1326 |
+
curr = 0
|
1327 |
+
currPos = 0
|
1328 |
+
for i in range(N):
|
1329 |
+
x = ranges[i][0]
|
1330 |
+
y = ranges[i][1]
|
1331 |
+
tup.append([[x, y], i + 1])
|
1332 |
+
tup = sorted(tup)
|
1333 |
+
curr = tup[0][0][1]
|
1334 |
+
currPos = tup[0][1]
|
1335 |
+
for i in range(1, N):
|
1336 |
+
Q = tup[i - 1][0][0]
|
1337 |
+
R = tup[i][0][0]
|
1338 |
+
if (Q == R):
|
1339 |
+
if (tup[i - 1][0][1] < tup[i][0][1]):
|
1340 |
+
print(tup[i - 1][1], tup[i][1])
|
1341 |
+
else:
|
1342 |
+
print(tup[i][1], tup[i - 1][1])
|
1343 |
+
return
|
1344 |
+
T = tup[i][0][1]
|
1345 |
+
if (T <= curr):
|
1346 |
+
print(tup[i][1], currPos)
|
1347 |
+
return
|
1348 |
+
else:
|
1349 |
+
curr = T
|
1350 |
+
currPos = tup[i][1]
|
1351 |
+
print("-1 -1")
|
1352 |
+
|
1353 |
+
|
1354 |
+
if __name__ == '__main__':
|
1355 |
+
N = 5
|
1356 |
+
ranges = [[1, 5], [2, 10], [3, 10], [2, 2], [2, 15]]
|
1357 |
+
find_intersecting_range([], N, ranges)
|
1358 |
+
|
1359 |
+
def find_index(arr, n, B):
|
1360 |
+
"""
|
1361 |
+
Search insert position of K in a sorted array
|
1362 |
+
"""
|
1363 |
+
start = 0
|
1364 |
+
end = n - 1
|
1365 |
+
while start <= end:
|
1366 |
+
mid = (start + end) // 2
|
1367 |
+
if arr[mid] == K:
|
1368 |
+
return mid
|
1369 |
+
elif arr[mid] < K:
|
1370 |
+
start = mid + 1
|
1371 |
+
else:
|
1372 |
+
end = mid - 1
|
1373 |
+
return end + 1
|
1374 |
+
|
1375 |
+
|
1376 |
+
arr = [1, 3, 5, 6]
|
1377 |
+
n = len(arr)
|
1378 |
+
K = 2
|
1379 |
+
print(find_index(arr, n, K))
|
1380 |
+
|
1381 |
+
def binary_search(arr, N, X):
|
1382 |
+
"""
|
1383 |
+
Search an element in a reverse sorted array
|
1384 |
+
"""
|
1385 |
+
start = 0
|
1386 |
+
end = N
|
1387 |
+
while (start <= end):
|
1388 |
+
mid = start + (end - start) // 2
|
1389 |
+
if (X == arr[mid]):
|
1390 |
+
return mid
|
1391 |
+
elif (X < arr[mid]):
|
1392 |
+
start = mid + 1
|
1393 |
+
else:
|
1394 |
+
end = mid - 1
|
1395 |
+
return -1
|
1396 |
+
|
1397 |
+
|
1398 |
+
if __name__ == '__main__':
|
1399 |
+
arr = [5, 4, 3, 2, 1]
|
1400 |
+
N = len(arr)
|
1401 |
+
X = 5
|
1402 |
+
print(binary_search(arr, N, X))
|
1403 |
+
|
1404 |
+
def check_hex(s):
|
1405 |
+
"""
|
1406 |
+
Check if a string represents a hexadecimal number or not
|
1407 |
+
"""
|
1408 |
+
for ch in s:
|
1409 |
+
if ((ch < '0' or ch > '9') and (ch < 'A' or ch > 'F')):
|
1410 |
+
print("No")
|
1411 |
+
return
|
1412 |
+
print("Yes")
|
1413 |
+
|
1414 |
+
|
1415 |
+
s = "BF57C"
|
1416 |
+
check_hex(s)
|
1417 |
+
|
1418 |
+
def check_same_diag(x, y):
|
1419 |
+
"""
|
1420 |
+
Check if two elements of a matrix are on the same diagonal or not
|
1421 |
+
"""
|
1422 |
+
for i in range(m):
|
1423 |
+
for j in range(n):
|
1424 |
+
if li[i][j] == x:
|
1425 |
+
I, J = i, j
|
1426 |
+
if li[i][j] == y:
|
1427 |
+
P, Q = i, j
|
1428 |
+
if P - Q == I - J or P + Q == I + J:
|
1429 |
+
print("YES")
|
1430 |
+
else:
|
1431 |
+
print("NO")
|
1432 |
+
|
1433 |
+
|
1434 |
+
if __name__ == "__main__":
|
1435 |
+
m, n = 6, 5
|
1436 |
+
li = [[32, 94, 99, 26, 82], [51, 69, 52, 63, 17], [90, 36, 88, 55, 33], [
|
1437 |
+
93, 42, 73, 39, 28], [81, 31, 83, 53, 10], [12, 29, 85, 80, 87]]
|
1438 |
+
x, y = 42, 80
|
1439 |
+
check_same_diag(x, y)
|
1440 |
+
|
1441 |
+
def calc_distance(A, B, n):
|
1442 |
+
"""
|
1443 |
+
Distance Traveled by Two Trains together in the same Direction
|
1444 |
+
"""
|
1445 |
+
distance_traveled_A = 0
|
1446 |
+
distance_traveled_B = 0
|
1447 |
+
answer = 0
|
1448 |
+
for i in range(5):
|
1449 |
+
distance_traveled_A += A[i]
|
1450 |
+
distance_traveled_B += B[i]
|
1451 |
+
if ((distance_traveled_A == distance_traveled_B) and (A[i] == B[i])):
|
1452 |
+
answer += A[i]
|
1453 |
+
return answer
|
1454 |
+
|
1455 |
+
|
1456 |
+
A = [1, 2, 3, 2, 4]
|
1457 |
+
B = [2, 1, 3, 1, 4]
|
1458 |
+
N = len(A)
|
1459 |
+
print(calc_distance(A, B, N))
|
1460 |
+
|
1461 |
+
from collections import defaultdict
|
1462 |
+
|
1463 |
+
|
1464 |
+
def get_count(N, s):
|
1465 |
+
"""
|
1466 |
+
Count of pairs of strings whose concatenation forms a palindromic string
|
1467 |
+
"""
|
1468 |
+
mp = defaultdict(lambda: 0)
|
1469 |
+
ans = 0
|
1470 |
+
for i in range(N):
|
1471 |
+
a = [0] * 26
|
1472 |
+
for j in range(len(s[i])):
|
1473 |
+
a[ord(s[i][j]) - ord('a')] += 1
|
1474 |
+
for j in range(26):
|
1475 |
+
a[j] = a[j] % 2
|
1476 |
+
ans += mp[tuple(a)]
|
1477 |
+
for j in range(26):
|
1478 |
+
changedCount = a[:]
|
1479 |
+
if (a[j] == 0):
|
1480 |
+
changedCount[j] = 1
|
1481 |
+
else:
|
1482 |
+
changedCount[j] = 0
|
1483 |
+
ans += mp[tuple(changedCount)]
|
1484 |
+
mp[tuple(a)] += 1
|
1485 |
+
return ans
|
1486 |
+
|
1487 |
+
|
1488 |
+
if __name__ == '__main__':
|
1489 |
+
N = 6
|
1490 |
+
A = ["aab", "abcac", "dffe", "ed", "aa", "aade"]
|
1491 |
+
print(get_count(N, A))
|
1492 |
+
|
1493 |
+
def checkrules(s):
|
1494 |
+
"""
|
1495 |
+
Check if given Binary string follows then given condition or not
|
1496 |
+
"""
|
1497 |
+
if len(s) == 0:
|
1498 |
+
return True
|
1499 |
+
if s[0] != '1':
|
1500 |
+
return False
|
1501 |
+
if len(s) > 2:
|
1502 |
+
if s[1] == '0' and s[2] == '0':
|
1503 |
+
return checkrules(s[3:])
|
1504 |
+
return checkrules(s[1:])
|
1505 |
+
|
1506 |
+
|
1507 |
+
if __name__ == '__main__':
|
1508 |
+
s = '1111'
|
1509 |
+
if checkrules(s):
|
1510 |
+
print('valid string')
|
1511 |
+
else:
|
1512 |
+
print('invalid string')
|
1513 |
+
|
1514 |
+
def split_array(arr, N):
|
1515 |
+
"""
|
1516 |
+
Partition a set into two subsets such that difference between max of one and min of other is minimized
|
1517 |
+
"""
|
1518 |
+
arr = sorted(arr)
|
1519 |
+
result = 10 ** 9
|
1520 |
+
for i in range(1, N):
|
1521 |
+
result = min(result, arr[i] - arr[i - 1])
|
1522 |
+
return result
|
1523 |
+
|
1524 |
+
|
1525 |
+
if __name__ == '__main__':
|
1526 |
+
arr = [3, 1, 2, 6, 4]
|
1527 |
+
N = len(arr)
|
1528 |
+
print(split_array(arr, N))
|
1529 |
+
|
1530 |
+
def find_value(R, C):
|
1531 |
+
"""
|
1532 |
+
Find the element at R ' th ▁ row ▁ and ▁ C ' th column in given a 2D pattern
|
1533 |
+
"""
|
1534 |
+
k = (R * (R - 1)) // 2 + 1
|
1535 |
+
diff = R + 1
|
1536 |
+
for i in range(1, C):
|
1537 |
+
k = (k + diff)
|
1538 |
+
diff += 1
|
1539 |
+
return k
|
1540 |
+
|
1541 |
+
|
1542 |
+
if __name__ == "__main__":
|
1543 |
+
R = 4
|
1544 |
+
C = 4
|
1545 |
+
k = find_value(R, C)
|
1546 |
+
print(k)
|
1547 |
+
|
1548 |
+
def find_minimum_k(a, n, s):
|
1549 |
+
"""
|
1550 |
+
Minimum K such that sum of array elements after division by K does not exceed S
|
1551 |
+
"""
|
1552 |
+
maximum = a[0]
|
1553 |
+
for i in range(n):
|
1554 |
+
maximum = max(maximum, a[i])
|
1555 |
+
low = 1
|
1556 |
+
high = maximum + 1
|
1557 |
+
ans = high
|
1558 |
+
while (low <= high):
|
1559 |
+
mid = (low + high) // 2
|
1560 |
+
sum = 0
|
1561 |
+
for i in range(n):
|
1562 |
+
sum += (a[i] // mid)
|
1563 |
+
if (sum > s):
|
1564 |
+
low = mid + 1
|
1565 |
+
else:
|
1566 |
+
ans = min(ans, mid)
|
1567 |
+
high = mid - 1
|
1568 |
+
return ans
|
1569 |
+
|
1570 |
+
|
1571 |
+
a = [10, 7, 8, 10, 12, 19]
|
1572 |
+
n = len(a)
|
1573 |
+
s = 27
|
1574 |
+
print(find_minimum_k(a, n, s))
|
1575 |
+
|
1576 |
+
def max_sum(arr, n, K):
|
1577 |
+
"""
|
1578 |
+
Find maximum sum taking every Kth element in the array
|
1579 |
+
"""
|
1580 |
+
maximum = -2 ** 32
|
1581 |
+
sum = [0] * n
|
1582 |
+
for i in range(n - 1, -1, -1):
|
1583 |
+
if (i + K < n):
|
1584 |
+
sum[i] = sum[i + K] + arr[i]
|
1585 |
+
else:
|
1586 |
+
sum[i] = arr[i]
|
1587 |
+
maximum = max(maximum, sum[i])
|
1588 |
+
return maximum
|
1589 |
+
|
1590 |
+
|
1591 |
+
arr = [3, 6, 4, 7, 2]
|
1592 |
+
n = len(arr)
|
1593 |
+
K = 2
|
1594 |
+
print(max_sum(arr, n, K))
|
1595 |
+
|
1596 |
+
def find_min_difference(arr, n):
|
1597 |
+
"""
|
1598 |
+
Minimize the maximum minimum difference after one removal from array
|
1599 |
+
"""
|
1600 |
+
arr.sort()
|
1601 |
+
diff1 = arr[n - 1] - arr[1]
|
1602 |
+
diff2 = arr[n - 2] - arr[0]
|
1603 |
+
return min(diff1, diff2)
|
1604 |
+
|
1605 |
+
|
1606 |
+
if __name__ == "__main__":
|
1607 |
+
arr = [1, 2, 4, 3, 4]
|
1608 |
+
n = len(arr)
|
1609 |
+
print(find_min_difference(arr, n))
|
1610 |
+
|
1611 |
+
def col_max_diff(mat):
|
1612 |
+
"""
|
1613 |
+
Find pair with maximum difference in any column of a Matrix
|
1614 |
+
"""
|
1615 |
+
max_diff = 0
|
1616 |
+
for i in range(N):
|
1617 |
+
max_val = mat[0][i]
|
1618 |
+
min_val = mat[0][i]
|
1619 |
+
for j in range(1, N):
|
1620 |
+
max_val = max(max_val, mat[j][i])
|
1621 |
+
min_val = min(min_val, mat[j][i])
|
1622 |
+
max_diff = max(max_diff, max_val - min_val)
|
1623 |
+
return max_diff
|
1624 |
+
|
1625 |
+
|
1626 |
+
if __name__ == "__main__":
|
1627 |
+
mat = [[1, 2, 3, 4, 5], [5, 3, 5, 4, 0], [
|
1628 |
+
5, 6, 7, 8, 9], [0, 6, 3, 4, 12], [9, 7, 12, 4, 3]]
|
1629 |
+
print("Max difference :", col_max_diff(mat))
|
1630 |
+
|
1631 |
+
def search(ar, size):
|
1632 |
+
"""
|
1633 |
+
Find the Missing Number in a sorted array
|
1634 |
+
"""
|
1635 |
+
a = 0
|
1636 |
+
b = size - 1
|
1637 |
+
mid = 0
|
1638 |
+
while b > a + 1:
|
1639 |
+
mid = (a + b) // 2
|
1640 |
+
if (ar[a] - a) != (ar[mid] - mid):
|
1641 |
+
b = mid
|
1642 |
+
elif (ar[b] - b) != (ar[mid] - mid):
|
1643 |
+
a = mid
|
1644 |
+
return ar[a] + 1
|
1645 |
+
|
1646 |
+
|
1647 |
+
a = [1, 2, 3, 4, 5, 6, 8]
|
1648 |
+
n = len(a)
|
1649 |
+
print("Missing number:", search(a, n))
|
1650 |
+
|
1651 |
+
def count_triplets_less_than_l(n, L, arr):
|
1652 |
+
"""
|
1653 |
+
Ways to choose three points with distance between the most distant points <= L
|
1654 |
+
"""
|
1655 |
+
arr.sort()
|
1656 |
+
ways = 0
|
1657 |
+
for i in range(n):
|
1658 |
+
for j in range(i + 1, n):
|
1659 |
+
for k in range(j + 1, n):
|
1660 |
+
mostDistantDistance = arr[k] - arr[i]
|
1661 |
+
if (mostDistantDistance <= L):
|
1662 |
+
ways += 1
|
1663 |
+
return ways
|
1664 |
+
|
1665 |
+
|
1666 |
+
if __name__ == "__main__":
|
1667 |
+
arr = [1, 2, 3, 4]
|
1668 |
+
n = len(arr)
|
1669 |
+
L = 3
|
1670 |
+
ans = count_triplets_less_than_l(n, L, arr)
|
1671 |
+
print("Total Number of ways =", ans)
|
1672 |
+
|
1673 |
+
def count_max_set_bits(left, right):
|
1674 |
+
"""
|
1675 |
+
Smallest number whose set bits are maximum in a given range
|
1676 |
+
"""
|
1677 |
+
while (left | (left + 1)) <= right:
|
1678 |
+
left |= left + 1
|
1679 |
+
return left
|
1680 |
+
|
1681 |
+
|
1682 |
+
l = 1
|
1683 |
+
r = 5
|
1684 |
+
print(count_max_set_bits(l, r))
|
1685 |
+
l = 1
|
1686 |
+
r = 10
|
1687 |
+
print(count_max_set_bits(l, r))
|
1688 |
+
|
1689 |
+
def maximum_mex(arr, N):
|
1690 |
+
"""
|
1691 |
+
Rearrange array elements to maximize the sum of MEX of all prefix arrays
|
1692 |
+
"""
|
1693 |
+
ans = []
|
1694 |
+
arr = sorted(arr)
|
1695 |
+
for i in range(N):
|
1696 |
+
if (i == 0 or arr[i] != arr[i - 1]):
|
1697 |
+
ans.append(arr[i])
|
1698 |
+
for i in range(N):
|
1699 |
+
if (i > 0 and arr[i] == arr[i - 1]):
|
1700 |
+
ans.append(arr[i])
|
1701 |
+
for i in range(N):
|
1702 |
+
print(ans[i], end=" ")
|
1703 |
+
|
1704 |
+
|
1705 |
+
if __name__ == '__main__':
|
1706 |
+
arr = [1, 0, 0]
|
1707 |
+
N = len(arr)
|
1708 |
+
maximum_mex(arr, N)
|
1709 |
+
|
1710 |
+
def getcount(arr, N):
|
1711 |
+
"""
|
1712 |
+
Count triplets from an array which can form quadratic equations with real roots
|
1713 |
+
"""
|
1714 |
+
count = 0
|
1715 |
+
if (N < 3):
|
1716 |
+
return 0
|
1717 |
+
for b in range(0, N):
|
1718 |
+
for a in range(0, N):
|
1719 |
+
if (a == b):
|
1720 |
+
continue
|
1721 |
+
for c in range(0, N):
|
1722 |
+
if (c == a or c == b):
|
1723 |
+
continue
|
1724 |
+
d = arr[b] * arr[b] // 4
|
1725 |
+
if (arr[a] * arr) <= d:
|
1726 |
+
count += 1
|
1727 |
+
return count
|
1728 |
+
|
1729 |
+
|
1730 |
+
arr = [1, 2, 3, 4, 5]
|
1731 |
+
N = len(arr)
|
1732 |
+
print(getcount(arr, N))
|
1733 |
+
|
1734 |
+
def check(a, b, Na, Nb, k, m):
|
1735 |
+
"""
|
1736 |
+
Check if X and Y elements can be selected from two arrays respectively such that the maximum in X is less than the minimum in Y
|
1737 |
+
"""
|
1738 |
+
if (Na < k or Nb < m):
|
1739 |
+
return "No"
|
1740 |
+
a.sort()
|
1741 |
+
a.sort()
|
1742 |
+
if (a[k - 1] < b[Nb - m]):
|
1743 |
+
return "Yes"
|
1744 |
+
return "No"
|
1745 |
+
|
1746 |
+
|
1747 |
+
arr1 = [1, 2, 3]
|
1748 |
+
arr2 = [3, 4, 5]
|
1749 |
+
N = len(arr1)
|
1750 |
+
M = len(arr2)
|
1751 |
+
X = 2
|
1752 |
+
Y = 1
|
1753 |
+
print(check(arr1, arr2, N, M, X, Y))
|
1754 |
+
|
1755 |
+
def split_array(arr, N):
|
1756 |
+
"""
|
1757 |
+
Partition array into two subsets with minimum Bitwise XOR between their maximum and minimum
|
1758 |
+
"""
|
1759 |
+
arr = sorted(arr)
|
1760 |
+
result = 10 ** 9
|
1761 |
+
for i in range(1, N):
|
1762 |
+
result = min(result, arr[i] ^ arr[i - 1])
|
1763 |
+
return result
|
1764 |
+
|
1765 |
+
|
1766 |
+
if __name__ == '__main__':
|
1767 |
+
arr = [3, 1, 2, 6, 4]
|
1768 |
+
N = len(arr)
|
1769 |
+
print(split_array(arr, N))
|
1770 |
+
|
1771 |
+
from bisect import bisect_left
|
1772 |
+
|
1773 |
+
|
1774 |
+
def maximum_shops(opening, closing, n, k):
|
1775 |
+
"""
|
1776 |
+
Activity selection problem with K persons
|
1777 |
+
"""
|
1778 |
+
a = [[0, 0]for i in range(n)]
|
1779 |
+
for i in range(n):
|
1780 |
+
a[i][0] = opening[i]
|
1781 |
+
a[i][1] = closing[i]
|
1782 |
+
a = sorted(a)
|
1783 |
+
count = 1
|
1784 |
+
st = {}
|
1785 |
+
for i in range(n):
|
1786 |
+
flag = False
|
1787 |
+
if (len(st) == 0):
|
1788 |
+
ar = list(st.keys())
|
1789 |
+
it = bisect_left(ar, a[i][0])
|
1790 |
+
if (it != 0):
|
1791 |
+
it -= 1
|
1792 |
+
if (ar[it] <= a[i][0]):
|
1793 |
+
del st[it]
|
1794 |
+
st[a[i][1]] = 1
|
1795 |
+
count += 1
|
1796 |
+
flag = True
|
1797 |
+
if (len(st) < k and flag == False):
|
1798 |
+
st[a[i][1]] = 1
|
1799 |
+
count += 1
|
1800 |
+
return count
|
1801 |
+
|
1802 |
+
|
1803 |
+
if __name__ == '__main__':
|
1804 |
+
S = [1, 8, 3, 2, 6]
|
1805 |
+
E = [5, 10, 6, 5, 9]
|
1806 |
+
K, N = 2, len(S)
|
1807 |
+
print(maximum_shops(S, E, N, K))
|
1808 |
+
|
1809 |
+
def count_pairs(A, N):
|
1810 |
+
"""
|
1811 |
+
Count pairs with Bitwise XOR greater than both the elements of the pair
|
1812 |
+
"""
|
1813 |
+
count = 0
|
1814 |
+
for i in range(0, N):
|
1815 |
+
for j in range(i + 1, N):
|
1816 |
+
xo = (A[i] ^ A[j])
|
1817 |
+
mx = max(A[i], A[j])
|
1818 |
+
if (xo > mx):
|
1819 |
+
count += 1
|
1820 |
+
print(count)
|
1821 |
+
|
1822 |
+
|
1823 |
+
if __name__ == '__main__':
|
1824 |
+
arr = [2, 4, 3]
|
1825 |
+
N = len(arr)
|
1826 |
+
count_pairs(arr, N)
|
1827 |
+
|
1828 |
+
MOD = 1000000007
|
1829 |
+
|
1830 |
+
|
1831 |
+
def solve(values, salary):
|
1832 |
+
"""
|
1833 |
+
Count ways to distribute exactly one coin to each worker
|
1834 |
+
"""
|
1835 |
+
ret = 1
|
1836 |
+
amt = 0
|
1837 |
+
values = sorted(values)
|
1838 |
+
salary = sorted(salary)
|
1839 |
+
while (len(salary) > 0):
|
1840 |
+
while ((len(values) and values[-1] >= salary[-1])):
|
1841 |
+
amt += 1
|
1842 |
+
del values[-1]
|
1843 |
+
if (amt == 0):
|
1844 |
+
return 0
|
1845 |
+
ret *= amt
|
1846 |
+
amt -= 1
|
1847 |
+
ret %= MOD
|
1848 |
+
del salary[-1]
|
1849 |
+
return ret
|
1850 |
+
|
1851 |
+
|
1852 |
+
if __name__ == '__main__':
|
1853 |
+
values = [1, 2]
|
1854 |
+
salary = [2]
|
1855 |
+
print(solve(values, salary))
|
1856 |
+
|
1857 |
+
def count_pairs(arr, n):
|
1858 |
+
"""
|
1859 |
+
Count of index pairs with equal elements in an array
|
1860 |
+
"""
|
1861 |
+
ans = 0
|
1862 |
+
arr.sort()
|
1863 |
+
left = 0
|
1864 |
+
right = 1
|
1865 |
+
while (right < n):
|
1866 |
+
if (arr[left] == arr[right]):
|
1867 |
+
ans += right - left
|
1868 |
+
else:
|
1869 |
+
left = right
|
1870 |
+
right += 1
|
1871 |
+
return ans
|
1872 |
+
|
1873 |
+
|
1874 |
+
if __name__ == "__main__":
|
1875 |
+
arr = [2, 2, 3, 2, 3]
|
1876 |
+
N = len(arr)
|
1877 |
+
print(count_pairs(arr, N))
|
1878 |
+
|
1879 |
+
def calculate_minimum_split(a, k):
|
1880 |
+
"""
|
1881 |
+
Divide a sorted array in K parts with sum of difference of max and min minimized in each part
|
1882 |
+
"""
|
1883 |
+
p = []
|
1884 |
+
n = len(a)
|
1885 |
+
for i in range(1, n):
|
1886 |
+
p.append(a[i] - a[i - 1])
|
1887 |
+
p.sort(reverse=True)
|
1888 |
+
min_sum = sum(p[:k - 1])
|
1889 |
+
res = a[n - 1] - a[0] - min_sum
|
1890 |
+
return res
|
1891 |
+
|
1892 |
+
|
1893 |
+
/*Driver code * /
|
1894 |
+
if __name__ == "__main__":
|
1895 |
+
arr = [4, 8, 15, 16, 23, 42]
|
1896 |
+
K = 3
|
1897 |
+
print(calculate_minimum_split(arr, K))
|
1898 |
+
|
1899 |
+
import numpy as np
|
1900 |
+
N = 100
|
1901 |
+
INF = 1000000
|
1902 |
+
dp = np.zeros((N, N))
|
1903 |
+
vis = np.zeros((N, N))
|
1904 |
+
|
1905 |
+
|
1906 |
+
def find_sum(arr, n, k, l, r):
|
1907 |
+
"""
|
1908 |
+
Minimize the sum of differences of consecutive elements after removing exactly K elements
|
1909 |
+
"""
|
1910 |
+
if ((l) + (n - 1 - r) == k):
|
1911 |
+
return arr[r] - arr[l]
|
1912 |
+
if (vis[l][r]):
|
1913 |
+
return dp[l][r]
|
1914 |
+
vis[l][r] = 1
|
1915 |
+
dp[l][r] = min(find_sum(arr, n, k, l, r - 1), find_sum(arr, n, k, l + 1, r))
|
1916 |
+
return dp[l][r]
|
1917 |
+
|
1918 |
+
|
1919 |
+
if __name__ == "__main__":
|
1920 |
+
arr = [1, 2, 100, 120, 140]
|
1921 |
+
k = 2
|
1922 |
+
n = len(arr)
|
1923 |
+
print(find_sum(arr, n, k, 0, n - 1))
|
1924 |
+
|
1925 |
+
def get_number(n, k):
|
1926 |
+
"""
|
1927 |
+
Find Kth element in an array containing odd elements first and then even elements
|
1928 |
+
"""
|
1929 |
+
if (n % 2 == 0):
|
1930 |
+
pos = n // 2
|
1931 |
+
else:
|
1932 |
+
pos = (n // 2) + 1
|
1933 |
+
if (k <= pos):
|
1934 |
+
return (k * 2 - 1)
|
1935 |
+
else:
|
1936 |
+
return ((k - pos) * 2)
|
1937 |
+
|
1938 |
+
|
1939 |
+
if __name__ == "__main__":
|
1940 |
+
n = 8
|
1941 |
+
k = 5
|
1942 |
+
print(get_number(n, k))
|
1943 |
+
|
1944 |
+
def count_points(n, m, a, b, x, y):
|
1945 |
+
"""
|
1946 |
+
Maximum number of segments that can contain the given points
|
1947 |
+
"""
|
1948 |
+
a.sort()
|
1949 |
+
b.sort()
|
1950 |
+
j, count = 0, 0
|
1951 |
+
for i in range(0, n):
|
1952 |
+
while j < m:
|
1953 |
+
if a[i] + y < b[j]:
|
1954 |
+
break
|
1955 |
+
if (b[j] >= a[i] - x and b[j] <= a[i] + y):
|
1956 |
+
count += 1
|
1957 |
+
j += 1
|
1958 |
+
break
|
1959 |
+
else:
|
1960 |
+
j += 1
|
1961 |
+
return count
|
1962 |
+
|
1963 |
+
|
1964 |
+
if __name__ == "__main__":
|
1965 |
+
x, y = 1, 4
|
1966 |
+
a = [1, 5]
|
1967 |
+
n = len(a)
|
1968 |
+
b = [1, 1, 2]
|
1969 |
+
m = len(b)
|
1970 |
+
print(count_points(n, m, a, b, x, y))
|
1971 |
+
|
1972 |
+
def min_operations(n, m, k, matrix):
|
1973 |
+
"""
|
1974 |
+
Minimum operations of given type to make all elements of a matrix equal
|
1975 |
+
"""
|
1976 |
+
arr = []
|
1977 |
+
if (matrix[0][0] < 0):
|
1978 |
+
mod = k - (abs(matrix[0][0]) % k)
|
1979 |
+
else:
|
1980 |
+
mod = matrix[0][0] % k
|
1981 |
+
for i in range(n):
|
1982 |
+
for j in range(m):
|
1983 |
+
arr.append(matrix[i][j])
|
1984 |
+
val = matrix[i][j]
|
1985 |
+
if (val < 0):
|
1986 |
+
res = k - (abs(val) % k)
|
1987 |
+
if (res != mod):
|
1988 |
+
return -1
|
1989 |
+
else:
|
1990 |
+
foo = matrix[i][j]
|
1991 |
+
if (foo % k != mod):
|
1992 |
+
return -1
|
1993 |
+
arr.sort()
|
1994 |
+
median = arr[(n * m) // 2]
|
1995 |
+
min_operations = 0
|
1996 |
+
for i in range(n * m):
|
1997 |
+
min_operations += abs(arr[i] - median) // k
|
1998 |
+
if ((n * m) % 2 == 0):
|
1999 |
+
median2 = arr[((n * m) // 2) - 1]
|
2000 |
+
min_operations2 = 0
|
2001 |
+
for i in range(n * m):
|
2002 |
+
min_operations2 += abs(arr[i] - median2) / k
|
2003 |
+
min_operations = min(min_operations, min_operations2)
|
2004 |
+
return min_operations
|
2005 |
+
|
2006 |
+
|
2007 |
+
if __name__ == "__main__":
|
2008 |
+
matrix = [[2, 4, 6], [8, 10, 12], [14, 16, 18], [20, 22, 24]]
|
2009 |
+
n = len(matrix)
|
2010 |
+
m = len(matrix[0])
|
2011 |
+
k = 2
|
2012 |
+
print(min_operations(n, m, k, matrix))
|
2013 |
+
|
2014 |
+
def count_sequences(arr, n):
|
2015 |
+
"""
|
2016 |
+
Minimum number of consecutive sequences that can be formed in an array
|
2017 |
+
"""
|
2018 |
+
count = 1
|
2019 |
+
arr.sort()
|
2020 |
+
for i in range(n - 1):
|
2021 |
+
if (arr[i] + 1 != arr[i + 1]):
|
2022 |
+
count += 1
|
2023 |
+
return count
|
2024 |
+
|
2025 |
+
|
2026 |
+
if __name__ == "__main__":
|
2027 |
+
arr = [1, 7, 3, 5, 10]
|
2028 |
+
n = len(arr)
|
2029 |
+
print(count_sequences(arr, n))
|
2030 |
+
|
2031 |
+
def minimum_moves(a, n):
|
2032 |
+
"""
|
2033 |
+
Minimum number of increment / decrement operations such that array contains all elements from 1 to N
|
2034 |
+
"""
|
2035 |
+
operations = 0
|
2036 |
+
a.sort(reverse=False)
|
2037 |
+
for i in range(0, n, 1):
|
2038 |
+
operations = operations + abs(a[i] - (i + 1))
|
2039 |
+
return operations
|
2040 |
+
|
2041 |
+
|
2042 |
+
if __name__ == '__main__':
|
2043 |
+
arr = [5, 3, 2]
|
2044 |
+
n = len(arr)
|
2045 |
+
print(minimum_moves(arr, n))
|
2046 |
+
|
2047 |
+
def max_array_cover(a, n, x):
|
2048 |
+
"""
|
2049 |
+
Covering maximum array elements with given value
|
2050 |
+
"""
|
2051 |
+
a.sort()
|
2052 |
+
cc = 0
|
2053 |
+
s = 0
|
2054 |
+
for i in range(n):
|
2055 |
+
s += a[i]
|
2056 |
+
if (s > x):
|
2057 |
+
break
|
2058 |
+
cc += 1
|
2059 |
+
if (sum(a) == x):
|
2060 |
+
return n
|
2061 |
+
else:
|
2062 |
+
if (cc == n):
|
2063 |
+
return n - 1
|
2064 |
+
else:
|
2065 |
+
return cc
|
2066 |
+
|
2067 |
+
|
2068 |
+
if __name__ == '__main__':
|
2069 |
+
n, x = 3, 70
|
2070 |
+
a = [10, 20, 30]
|
2071 |
+
print(max_array_cover(a, n, x))
|
2072 |
+
|
2073 |
+
def maximum_sop(a, b):
|
2074 |
+
"""
|
2075 |
+
Maximum Sum of Products of Two Arrays
|
2076 |
+
"""
|
2077 |
+
sop = 0
|
2078 |
+
n = len(a)
|
2079 |
+
a.sort()
|
2080 |
+
b.sort()
|
2081 |
+
for i in range(n):
|
2082 |
+
sop += a[i] * b[i]
|
2083 |
+
return sop
|
2084 |
+
|
2085 |
+
|
2086 |
+
if __name__ == "__main__":
|
2087 |
+
A = [1, 2, 3]
|
2088 |
+
B = [4, 5, 1]
|
2089 |
+
print(maximum_sop(A, B))
|
2090 |
+
|
2091 |
+
def count_triplets(arr, n, m):
|
2092 |
+
"""
|
2093 |
+
Count number of triplets with product equal to given number
|
2094 |
+
"""
|
2095 |
+
count = 0
|
2096 |
+
arr.sort()
|
2097 |
+
for end in range(n - 1, 1, -1):
|
2098 |
+
start = 0
|
2099 |
+
mid = end - 1
|
2100 |
+
while (start < mid):
|
2101 |
+
prod = (arr[end] * arr[start] * arr[mid])
|
2102 |
+
if (prod > m):
|
2103 |
+
mid -= 1
|
2104 |
+
elif (prod < m):
|
2105 |
+
start += 1
|
2106 |
+
elif (prod == m):
|
2107 |
+
count += 1
|
2108 |
+
mid -= 1
|
2109 |
+
start += 1
|
2110 |
+
return count
|
2111 |
+
|
2112 |
+
|
2113 |
+
if __name__ == "__main__":
|
2114 |
+
arr = [1, 1, 1, 1, 1, 1]
|
2115 |
+
n = len(arr)
|
2116 |
+
m = 1
|
2117 |
+
print(count_triplets(arr, n, m))
|
2118 |
+
|
2119 |
+
def distribution(arr, n):
|
2120 |
+
"""
|
2121 |
+
Equally divide into two sets such that one set has maximum distinct elements
|
2122 |
+
"""
|
2123 |
+
resources = set()
|
2124 |
+
for i in range(n):
|
2125 |
+
resources.add(arr[i])
|
2126 |
+
return min(len(resources), n // 2)
|
2127 |
+
|
2128 |
+
|
2129 |
+
if __name__ == '__main__':
|
2130 |
+
arr = [1, 1, 2, 1, 3, 4]
|
2131 |
+
n = len(arr)
|
2132 |
+
print(distribution(arr, n), "")
|
2133 |
+
|
2134 |
+
def check_fitting_arrays(A, B, N):
|
2135 |
+
"""
|
2136 |
+
Check whether an array can be fit into another array rearranging the elements in the array
|
2137 |
+
"""
|
2138 |
+
A = sorted(A)
|
2139 |
+
B = sorted(B)
|
2140 |
+
for i in range(N):
|
2141 |
+
if (A[i] > B[i]):
|
2142 |
+
return False
|
2143 |
+
return True
|
2144 |
+
|
2145 |
+
|
2146 |
+
A = [7, 5, 3, 2]
|
2147 |
+
B = [5, 4, 8, 7]
|
2148 |
+
N = len(A)
|
2149 |
+
if (check_fitting_arrays(A, B, N)):
|
2150 |
+
print("YES")
|
2151 |
+
else:
|
2152 |
+
print("NO")
|
2153 |
+
|
2154 |
+
def maximum_toys(cost, N, K):
|
2155 |
+
"""
|
2156 |
+
Maximise the number of toys that can be purchased with amount K
|
2157 |
+
"""
|
2158 |
+
count = 0
|
2159 |
+
sum = 0
|
2160 |
+
cost.sort(reverse=False)
|
2161 |
+
for i in range(0, N, 1):
|
2162 |
+
if (sum + cost[i] <= K):
|
2163 |
+
sum = sum + cost[i]
|
2164 |
+
count += 1
|
2165 |
+
return count
|
2166 |
+
|
2167 |
+
|
2168 |
+
if __name__ == '__main__':
|
2169 |
+
K = 50
|
2170 |
+
cost = [1, 12, 5, 111, 200, 1000, 10, 9, 12, 15]
|
2171 |
+
N = len(cost)
|
2172 |
+
print(maximum_toys(cost, N, K))
|
2173 |
+
|
2174 |
+
def almost_sort(A, n):
|
2175 |
+
"""
|
2176 |
+
Check if given array is almost sorted ( elements are at
|
2177 |
+
"""
|
2178 |
+
i = 0
|
2179 |
+
while i < n - 1:
|
2180 |
+
if A[i] > A[i + 1]:
|
2181 |
+
A[i], A[i + 1] = A[i + 1], A[i]
|
2182 |
+
i += 1
|
2183 |
+
i += 1
|
2184 |
+
for i in range(0, n - 1):
|
2185 |
+
if A[i] > A[i + 1]:
|
2186 |
+
return False
|
2187 |
+
return True
|
2188 |
+
|
2189 |
+
|
2190 |
+
if __name__ == "__main__":
|
2191 |
+
A = [1, 3, 2, 4, 6, 5]
|
2192 |
+
n = len(A)
|
2193 |
+
if almost_sort(A, n):
|
2194 |
+
print("Yes")
|
2195 |
+
else:
|
2196 |
+
print("No")
|
2197 |
+
|
2198 |
+
def distinct_count(arr, n):
|
2199 |
+
"""
|
2200 |
+
Absolute distinct count in a sorted array
|
2201 |
+
"""
|
2202 |
+
s = set()
|
2203 |
+
for i in range(n):
|
2204 |
+
s.add(abs(arr[i]))
|
2205 |
+
return len(s)
|
2206 |
+
|
2207 |
+
|
2208 |
+
arr = [-2, -1, 0, 1, 1]
|
2209 |
+
n = len(arr)
|
2210 |
+
print("Count of absolute distinct values:", distinct_count(arr, n))
|
2211 |
+
|
2212 |
+
def gen_string(N):
|
2213 |
+
"""
|
2214 |
+
Lexicographically smallest numeric string having odd digit counts
|
2215 |
+
"""
|
2216 |
+
ans = ""
|
2217 |
+
if (N % 2 == 0):
|
2218 |
+
ans = "".join("1"for i in range(N - 1))
|
2219 |
+
ans = ans + "2"
|
2220 |
+
else:
|
2221 |
+
ans = "".join("1"for i in range(N))
|
2222 |
+
return ans
|
2223 |
+
|
2224 |
+
|
2225 |
+
if __name__ == "__main__":
|
2226 |
+
N = 5
|
2227 |
+
print(gen_string(N))
|
2228 |
+
|
2229 |
+
def find(arr, N):
|
2230 |
+
"""
|
2231 |
+
Minimize moves required to make array elements equal by incrementing and decrementing pairs
|
2232 |
+
"""
|
2233 |
+
Sum = sum(arr)
|
2234 |
+
if Sum % N:
|
2235 |
+
return -1
|
2236 |
+
else:
|
2237 |
+
k = Sum // N
|
2238 |
+
ans = 0
|
2239 |
+
i = 0
|
2240 |
+
while i < N:
|
2241 |
+
ans = ans + abs(k - arr[i])
|
2242 |
+
i += 1
|
2243 |
+
return ans // 2
|
2244 |
+
|
2245 |
+
|
2246 |
+
if __name__ == '__main__':
|
2247 |
+
arr = [5, 4, 1, 10]
|
2248 |
+
N = len(arr)
|
2249 |
+
print(find(arr, N))
|
2250 |
+
|
2251 |
+
def minimum_steps(a, b):
|
2252 |
+
"""
|
2253 |
+
Convert A into B by incrementing or decrementing 1 , 2 , or 5 any number of times
|
2254 |
+
"""
|
2255 |
+
cnt = 0
|
2256 |
+
a = abs(a - b)
|
2257 |
+
cnt = (a // 5) + (a % 5) // 2 + (a % 5) % 2
|
2258 |
+
return cnt
|
2259 |
+
|
2260 |
+
|
2261 |
+
A = 3
|
2262 |
+
B = 9
|
2263 |
+
print(minimum_steps(A, B))
|
2264 |
+
|
2265 |
+
def smallest_non_subsequence(S, N):
|
2266 |
+
"""
|
2267 |
+
Lexicographically smallest string which is not a subsequence of given string
|
2268 |
+
"""
|
2269 |
+
freq = 0
|
2270 |
+
for i in range(N):
|
2271 |
+
if (S[i] == 'a'):
|
2272 |
+
freq += 1
|
2273 |
+
ans = ""
|
2274 |
+
for i in range(freq):
|
2275 |
+
ans += 'a'
|
2276 |
+
if (freq == N):
|
2277 |
+
ans = ans.replace(ans[freq - 1], 'b')
|
2278 |
+
else:
|
2279 |
+
ans += 'a'
|
2280 |
+
return ans
|
2281 |
+
|
2282 |
+
|
2283 |
+
if __name__ == '__main__':
|
2284 |
+
S = "abcdefghijklmnopqrstuvwxyz"
|
2285 |
+
N = len(S)
|
2286 |
+
print(smallest_non_subsequence(S, N))
|
2287 |
+
|
2288 |
+
from collections import defaultdict
|
2289 |
+
|
2290 |
+
|
2291 |
+
def least_bricks(wall):
|
2292 |
+
"""
|
2293 |
+
Minimum number of bricks that can be intersected
|
2294 |
+
"""
|
2295 |
+
map = defaultdict(int)
|
2296 |
+
res = 0
|
2297 |
+
for list in wall:
|
2298 |
+
width = 0
|
2299 |
+
for i in range(len(list) - 1):
|
2300 |
+
width += list[i]
|
2301 |
+
map[width] += 1
|
2302 |
+
res = max(res, map[width])
|
2303 |
+
print(len(wall) - res)
|
2304 |
+
|
2305 |
+
|
2306 |
+
if __name__ == "__main__":
|
2307 |
+
arr = [[1, 2, 2, 1], [3, 1, 2], [1, 3, 2], [2, 4], [3, 1, 2], [1, 3, 1, 1]]
|
2308 |
+
least_bricks(arr)
|
2309 |
+
|
2310 |
+
def number_of_ways(N, X, Y):
|
2311 |
+
"""
|
2312 |
+
Maximize count of distinct profits possible by N transactions
|
2313 |
+
"""
|
2314 |
+
S1 = (N - 1) * X + Y
|
2315 |
+
S2 = (N - 1) * Y + X
|
2316 |
+
return (S2 - S1 + 1)
|
2317 |
+
|
2318 |
+
|
2319 |
+
if __name__ == '__main__':
|
2320 |
+
N = 3
|
2321 |
+
X = 13
|
2322 |
+
Y = 15
|
2323 |
+
print(number_of_ways(N, X, Y))
|
2324 |
+
|
2325 |
+
def minimum_operations(A, N, K):
|
2326 |
+
"""
|
2327 |
+
Minimum number of operations required to make a permutation of first N natural numbers equal
|
2328 |
+
"""
|
2329 |
+
Count = 0
|
2330 |
+
i = 0
|
2331 |
+
while (i < N - 1):
|
2332 |
+
i = i + K - 1
|
2333 |
+
Count += 1
|
2334 |
+
return Count
|
2335 |
+
|
2336 |
+
|
2337 |
+
if __name__ == '__main__':
|
2338 |
+
A = [5, 4, 3, 1, 2]
|
2339 |
+
K = 3
|
2340 |
+
N = len(A)
|
2341 |
+
print(minimum_operations(A, N, K))
|
2342 |
+
|
2343 |
+
from collections import Counter
|
2344 |
+
|
2345 |
+
|
2346 |
+
def construct_digits(s):
|
2347 |
+
"""
|
2348 |
+
Reorder characters of a string to valid English representations of digits
|
2349 |
+
"""
|
2350 |
+
k = ["z", "w", "u", "x", "g", "h", "o", "f", "v", "i"]
|
2351 |
+
l = [
|
2352 |
+
"zero",
|
2353 |
+
"two",
|
2354 |
+
"four",
|
2355 |
+
"six",
|
2356 |
+
"eight",
|
2357 |
+
"three",
|
2358 |
+
"one",
|
2359 |
+
"five",
|
2360 |
+
"seven",
|
2361 |
+
"nine"]
|
2362 |
+
c = [0, 2, 4, 6, 8, 3, 1, 5, 7, 9]
|
2363 |
+
ans = []
|
2364 |
+
d = Counter(s)
|
2365 |
+
for i in range(len(k)):
|
2366 |
+
x = d.get(k[i], 0)
|
2367 |
+
for j in range(len(l[i])):
|
2368 |
+
d[l[i][j]] -= x
|
2369 |
+
ans.append(str(c[i]) * x)
|
2370 |
+
ans.sort()
|
2371 |
+
return "".join(ans)
|
2372 |
+
|
2373 |
+
|
2374 |
+
s = "fviefuro"
|
2375 |
+
print(construct_digits(s))
|
2376 |
+
|
2377 |
+
def dist_integers(L, R):
|
2378 |
+
"""
|
2379 |
+
Count distinct sum of pairs possible from a given range
|
2380 |
+
"""
|
2381 |
+
return 2 * R - 2 * L + 1
|
2382 |
+
|
2383 |
+
|
2384 |
+
if __name__ == '__main__':
|
2385 |
+
L, R = 3, 8
|
2386 |
+
print(dist_integers(L, R))
|
2387 |
+
|
2388 |
+
from math import sqrt
|
2389 |
+
|
2390 |
+
|
2391 |
+
def count_occurrences(N, X):
|
2392 |
+
"""
|
2393 |
+
Count occurrences of an element in a matrix of size N * N generated such that each element is equal to product of its indices
|
2394 |
+
"""
|
2395 |
+
count = 0
|
2396 |
+
for i in range(1, int(sqrt(X)) + 1):
|
2397 |
+
if X % i == 0:
|
2398 |
+
a = i
|
2399 |
+
b = X // i
|
2400 |
+
if a <= N and b <= N:
|
2401 |
+
if a == b:
|
2402 |
+
count += 1
|
2403 |
+
else:
|
2404 |
+
count += 2
|
2405 |
+
return count
|
2406 |
+
|
2407 |
+
|
2408 |
+
if __name__ == '__main__':
|
2409 |
+
N = 7
|
2410 |
+
X = 12
|
2411 |
+
print(count_occurrences(N, X))
|
2412 |
+
|
2413 |
+
def count_pairs(L, R):
|
2414 |
+
"""
|
2415 |
+
Count pairs having distinct sum from a given range
|
2416 |
+
"""
|
2417 |
+
firstNum = 2 * L
|
2418 |
+
lastNum = 2 * R
|
2419 |
+
Cntpairs = lastNum - firstNum + 1
|
2420 |
+
print(Cntpairs)
|
2421 |
+
|
2422 |
+
|
2423 |
+
if __name__ == '__main__':
|
2424 |
+
L, R = 2, 3
|
2425 |
+
count_pairs(L, R)
|
2426 |
+
|
2427 |
+
from collections import defaultdict
|
2428 |
+
|
2429 |
+
|
2430 |
+
def count_pairs(A, n):
|
2431 |
+
"""
|
2432 |
+
Count pairs from an array whose Bitwise OR is greater than Bitwise AND
|
2433 |
+
"""
|
2434 |
+
count = (n * (n - 1)) // 2
|
2435 |
+
ump = defaultdict(int)
|
2436 |
+
for i in range(n):
|
2437 |
+
ump[A[i]] += 1
|
2438 |
+
for it in ump.keys():
|
2439 |
+
c = ump[it]
|
2440 |
+
count = count - (c * (c - 1)) // 2
|
2441 |
+
print(count)
|
2442 |
+
|
2443 |
+
|
2444 |
+
if __name__ == "__main__":
|
2445 |
+
A = [1, 4, 7]
|
2446 |
+
N = len(A)
|
2447 |
+
count_pairs(A, N)
|
2448 |
+
|
2449 |
+
def check(current_row, current_col, destination_row, destination_col):
|
2450 |
+
"""
|
2451 |
+
Check if a Rook can reach the given destination in a single move
|
2452 |
+
"""
|
2453 |
+
if (current_row == destination_row):
|
2454 |
+
return ("POSSIBLE")
|
2455 |
+
elif (current_col == destination_col):
|
2456 |
+
return ("POSSIBLE")
|
2457 |
+
else:
|
2458 |
+
return ("NOT POSSIBLE")
|
2459 |
+
|
2460 |
+
|
2461 |
+
current_row = 8
|
2462 |
+
current_col = 8
|
2463 |
+
destination_row = 8
|
2464 |
+
destination_col = 4
|
2465 |
+
output = check(current_row, current_col, destination_row, destination_col)
|
2466 |
+
print(output)
|
2467 |
+
|
2468 |
+
def minimum_moves(arr, N):
|
2469 |
+
"""
|
2470 |
+
Minimum increments to modify array such that value of any array element can be splitted to make all remaining elements equal
|
2471 |
+
"""
|
2472 |
+
sum = 0
|
2473 |
+
maxelement = -1
|
2474 |
+
if (N == 2):
|
2475 |
+
print(0, end="")
|
2476 |
+
for i in range(N):
|
2477 |
+
sum += arr[i]
|
2478 |
+
maxelement = max(maxelement, arr[i])
|
2479 |
+
K = (sum + N - 2) // (N - 1)
|
2480 |
+
K = max(maxelement, K)
|
2481 |
+
ans = K * (N - 1) - sum
|
2482 |
+
print(ans)
|
2483 |
+
|
2484 |
+
|
2485 |
+
if __name__ == '__main__':
|
2486 |
+
arr = [2, 3, 7]
|
2487 |
+
N = 3
|
2488 |
+
minimum_moves(arr, N)
|
2489 |
+
|
2490 |
+
def max_sum_of_squares(N, S):
|
2491 |
+
"""
|
2492 |
+
Maximum possible sum of squares of stack elements satisfying the given properties
|
2493 |
+
"""
|
2494 |
+
res = 0
|
2495 |
+
if (S < N or S > 9 * N):
|
2496 |
+
cout << -1
|
2497 |
+
return
|
2498 |
+
S = S - N
|
2499 |
+
c = 0
|
2500 |
+
while (S > 0):
|
2501 |
+
c += 1
|
2502 |
+
if (S // 8 > 0):
|
2503 |
+
res += 9 * 9
|
2504 |
+
S -= 8
|
2505 |
+
else:
|
2506 |
+
res += (S + 1) * (S + 1)
|
2507 |
+
break
|
2508 |
+
res = res + (N - c)
|
2509 |
+
print(res)
|
2510 |
+
|
2511 |
+
|
2512 |
+
if __name__ == '__main__':
|
2513 |
+
N = 3
|
2514 |
+
S = 12
|
2515 |
+
max_sum_of_squares(N, S)
|
2516 |
+
|
2517 |
+
def clear_last_bit(N, K):
|
2518 |
+
"""
|
2519 |
+
Unset least significant K bits of a given number
|
2520 |
+
"""
|
2521 |
+
mask = (-1 << K + 1)
|
2522 |
+
N = N & mask
|
2523 |
+
return N
|
2524 |
+
|
2525 |
+
|
2526 |
+
N = 730
|
2527 |
+
K = 3
|
2528 |
+
print(clear_last_bit(N, K))
|
2529 |
+
|
2530 |
+
def areaof_rectangle(L, W):
|
2531 |
+
"""
|
2532 |
+
Maximum area of a Rectangle that can be circumscribed about a given Rectangle of size LxW
|
2533 |
+
"""
|
2534 |
+
area = (W + L) * (W + L) / 2
|
2535 |
+
return area
|
2536 |
+
|
2537 |
+
|
2538 |
+
if __name__ == "__main__":
|
2539 |
+
L = 18
|
2540 |
+
W = 12
|
2541 |
+
print(areaof_rectangle(L, W))
|
2542 |
+
|
2543 |
+
def down_to_zero(n):
|
2544 |
+
"""
|
2545 |
+
Minimum number of operations required to reduce N to 0
|
2546 |
+
"""
|
2547 |
+
if (n <= 3):
|
2548 |
+
return n
|
2549 |
+
if (n % 2 == 0):
|
2550 |
+
return 3
|
2551 |
+
else:
|
2552 |
+
return 4
|
2553 |
+
|
2554 |
+
|
2555 |
+
if __name__ == '__main__':
|
2556 |
+
n = 4
|
2557 |
+
print(down_to_zero(n))
|
2558 |
+
|
2559 |
+
def minimumrequired(A, N):
|
2560 |
+
"""
|
2561 |
+
Minimum count of elements required to obtain the given Array by repeated mirror operations
|
2562 |
+
"""
|
2563 |
+
K = N
|
2564 |
+
while (K > 0):
|
2565 |
+
if (K % 2) == 1:
|
2566 |
+
ans = K
|
2567 |
+
break
|
2568 |
+
ispalindrome = 1
|
2569 |
+
for i in range(0, K // 2):
|
2570 |
+
if (A[i] != A[K - 1 - i]):
|
2571 |
+
ispalindrome = 0
|
2572 |
+
if (ispalindrome == 1):
|
2573 |
+
ans = K // 2
|
2574 |
+
K = K // 2
|
2575 |
+
else:
|
2576 |
+
ans = K
|
2577 |
+
break
|
2578 |
+
return ans
|
2579 |
+
|
2580 |
+
|
2581 |
+
A = [1, 2, 2, 1, 1, 2, 2, 1]
|
2582 |
+
N = len(A)
|
2583 |
+
print(minimumrequired(A, N))
|
2584 |
+
|
2585 |
+
def sum_of_factors(N):
|
2586 |
+
"""
|
2587 |
+
Sum of product of all integers upto N with their count of divisors
|
2588 |
+
"""
|
2589 |
+
ans = 0
|
2590 |
+
for i in range(1, N + 1):
|
2591 |
+
first = i
|
2592 |
+
last = (N // i) * i
|
2593 |
+
factors = (last - first) // i + 1
|
2594 |
+
totalContribution = (((factors * (factors + 1)) // 2) * i)
|
2595 |
+
ans += totalContribution
|
2596 |
+
return ans
|
2597 |
+
|
2598 |
+
|
2599 |
+
N = 3
|
2600 |
+
print(sum_of_factors(N))
|
2601 |
+
|
2602 |
+
def get_max_difference(N):
|
2603 |
+
"""
|
2604 |
+
Find a number M < N such that difference between their XOR and AND is maximum
|
2605 |
+
"""
|
2606 |
+
M = -1
|
2607 |
+
maxDiff = 0
|
2608 |
+
for i in range(N):
|
2609 |
+
diff = (N ^ i) - (N & i)
|
2610 |
+
if (diff >= maxDiff):
|
2611 |
+
maxDiff = diff
|
2612 |
+
M = i
|
2613 |
+
return M
|
2614 |
+
|
2615 |
+
|
2616 |
+
if __name__ == '__main__':
|
2617 |
+
N = 6
|
2618 |
+
print(get_max_difference(N))
|
2619 |
+
|
2620 |
+
def count_substrings(s):
|
2621 |
+
"""
|
2622 |
+
Count substring of Binary string such that each character belongs to a palindrome of size greater than 1
|
2623 |
+
"""
|
2624 |
+
n = len(s)
|
2625 |
+
answer = (n * (n - 1)) // 2
|
2626 |
+
cnt = 1
|
2627 |
+
v = []
|
2628 |
+
for i in range(1, n):
|
2629 |
+
if (s[i] == s[i - 1]):
|
2630 |
+
cnt += 1
|
2631 |
+
else:
|
2632 |
+
v.append(cnt)
|
2633 |
+
cnt = 1
|
2634 |
+
if (cnt > 0):
|
2635 |
+
v.append(cnt)
|
2636 |
+
for i in range(len(v) - 1):
|
2637 |
+
answer -= (v[i] + v[i + 1] - 1)
|
2638 |
+
return answer
|
2639 |
+
|
2640 |
+
|
2641 |
+
if __name__ == '__main__':
|
2642 |
+
s = "00111"
|
2643 |
+
print(count_substrings(s))
|
2644 |
+
|
2645 |
+
def max_modulosum(a, n):
|
2646 |
+
"""
|
2647 |
+
Maximize the sum of modulus with every Array element
|
2648 |
+
"""
|
2649 |
+
sum1 = 0
|
2650 |
+
for i in range(0, n):
|
2651 |
+
sum1 += a[i]
|
2652 |
+
return sum1 - n
|
2653 |
+
|
2654 |
+
|
2655 |
+
a = [3, 4, 6]
|
2656 |
+
n = len(a)
|
2657 |
+
print(max_modulosum(a, n))
|
2658 |
+
|
2659 |
+
def min_occupied_position(A, n):
|
2660 |
+
"""
|
2661 |
+
Minimize the non
|
2662 |
+
"""
|
2663 |
+
minPos = 0
|
2664 |
+
i = 0
|
2665 |
+
while i < n:
|
2666 |
+
if (A[i] > 0):
|
2667 |
+
minPos += 1
|
2668 |
+
i += 2
|
2669 |
+
i += 1
|
2670 |
+
return minPos
|
2671 |
+
|
2672 |
+
|
2673 |
+
if __name__ == '__main__':
|
2674 |
+
A = [8, 0, 7, 0, 0, 6]
|
2675 |
+
n = len(A)
|
2676 |
+
print(min_occupied_position(A, n))
|
2677 |
+
|
2678 |
+
def largest_num(n):
|
2679 |
+
"""
|
2680 |
+
Find the largest number smaller than integer N with maximum number of set bits
|
2681 |
+
"""
|
2682 |
+
num = 0
|
2683 |
+
for i in range(32):
|
2684 |
+
x = (1 << i)
|
2685 |
+
if ((x - 1) <= n):
|
2686 |
+
num = (1 << i) - 1
|
2687 |
+
else:
|
2688 |
+
break
|
2689 |
+
return num
|
2690 |
+
|
2691 |
+
|
2692 |
+
if __name__ == "__main__":
|
2693 |
+
N = 345
|
2694 |
+
print(largest_num(N))
|
2695 |
+
|
2696 |
+
def segments(n):
|
2697 |
+
"""
|
2698 |
+
Maximum number on 7
|
2699 |
+
"""
|
2700 |
+
if (n == 1 or n == 0):
|
2701 |
+
return
|
2702 |
+
if (n % 2 == 0):
|
2703 |
+
print("1", end="")
|
2704 |
+
segments(n - 2)
|
2705 |
+
elif (n % 2 == 1):
|
2706 |
+
print("7", end="")
|
2707 |
+
segments(n - 3)
|
2708 |
+
|
2709 |
+
|
2710 |
+
if __name__ == "__main__":
|
2711 |
+
n = 11
|
2712 |
+
segments(n)
|
2713 |
+
|
2714 |
+
MAX_SIZE = 10
|
2715 |
+
|
2716 |
+
|
2717 |
+
def convolution(x, h, n, m):
|
2718 |
+
"""
|
2719 |
+
Circular Convolution using Matrix Method
|
2720 |
+
"""
|
2721 |
+
row_vec = [0] * MAX_SIZE
|
2722 |
+
col_vec = [0] * MAX_SIZE
|
2723 |
+
out = [0] * MAX_SIZE
|
2724 |
+
circular_shift_mat = [[0 for i in range(MAX_SIZE)]for j in range(MAX_SIZE)]
|
2725 |
+
if (n > m):
|
2726 |
+
maxSize = n
|
2727 |
+
else:
|
2728 |
+
maxSize = m
|
2729 |
+
for i in range(maxSize):
|
2730 |
+
if (i >= n):
|
2731 |
+
row_vec[i] = 0
|
2732 |
+
else:
|
2733 |
+
row_vec[i] = x[i]
|
2734 |
+
for i in range(maxSize):
|
2735 |
+
if (i >= m):
|
2736 |
+
col_vec[i] = 0
|
2737 |
+
else:
|
2738 |
+
col_vec[i] = h[i]
|
2739 |
+
k = 0
|
2740 |
+
d = 0
|
2741 |
+
for i in range(maxSize):
|
2742 |
+
curIndex = k - d
|
2743 |
+
for j in range(maxSize):
|
2744 |
+
circular_shift_mat[j][i] = row_vec[curIndex % maxSize]
|
2745 |
+
curIndex += 1
|
2746 |
+
k = maxSize
|
2747 |
+
d += 1
|
2748 |
+
for i in range(maxSize):
|
2749 |
+
for j in range(maxSize):
|
2750 |
+
out[i] += circular_shift_mat[i][j] * col_vec[j]
|
2751 |
+
print(out[i], end=" ")
|
2752 |
+
|
2753 |
+
|
2754 |
+
if __name__ == '__main__':
|
2755 |
+
x = [5, 7, 3, 2]
|
2756 |
+
n = len(x)
|
2757 |
+
h = [1, 5]
|
2758 |
+
m = len(h)
|
2759 |
+
convolution(x, h, n, m)
|
2760 |
+
|
2761 |
+
def get_maximum(s, a):
|
2762 |
+
"""
|
2763 |
+
Maximize the given number by replacing a segment of digits with the alternate digits given
|
2764 |
+
"""
|
2765 |
+
s = list(s)
|
2766 |
+
n = len(s)
|
2767 |
+
for i in range(n):
|
2768 |
+
if (ord(s[i]) - ord('0') < a[ord(s[i]) - ord('0')]):
|
2769 |
+
j = i
|
2770 |
+
while (j < n and (ord(s[j]) - ord('0')
|
2771 |
+
<= a[ord(s[j]) - ord('0')])):
|
2772 |
+
s[j] = chr(ord('0') + a[ord(s[j]) - ord('0')])
|
2773 |
+
j += 1
|
2774 |
+
return "".join(s)
|
2775 |
+
return s
|
2776 |
+
|
2777 |
+
|
2778 |
+
if __name__ == "__main__":
|
2779 |
+
s = "1337"
|
2780 |
+
a = [0, 1, 2, 5, 4, 6, 6, 3, 1, 9]
|
2781 |
+
print(get_maximum(s, a))
|
2782 |
+
|
2783 |
+
from math import sqrt
|
2784 |
+
|
2785 |
+
|
2786 |
+
def count_steps(n):
|
2787 |
+
"""
|
2788 |
+
Number of times the largest perfect square number can be subtracted from N
|
2789 |
+
"""
|
2790 |
+
steps = 0
|
2791 |
+
while (n):
|
2792 |
+
largest = int(sqrt(n))
|
2793 |
+
n -= (largest * largest)
|
2794 |
+
steps += 1
|
2795 |
+
return steps
|
2796 |
+
|
2797 |
+
|
2798 |
+
if __name__ == "__main__":
|
2799 |
+
n = 85
|
2800 |
+
print(count_steps(n))
|
2801 |
+
|
2802 |
+
def maxsum(c1, c2, c3, c4):
|
2803 |
+
"""
|
2804 |
+
Given count of digits 1 , 2 , 3 , 4 , find the maximum sum possible
|
2805 |
+
"""
|
2806 |
+
sum = 0
|
2807 |
+
two34 = min(c2, min(c3, c4))
|
2808 |
+
sum = two34 * 234
|
2809 |
+
c2 -= two34
|
2810 |
+
sum += min(c2, c1) * 12
|
2811 |
+
return sum
|
2812 |
+
|
2813 |
+
|
2814 |
+
c1 = 5
|
2815 |
+
c2 = 2
|
2816 |
+
c3 = 3
|
2817 |
+
c4 = 4
|
2818 |
+
print(maxsum(c1, c2, c3, c4))
|
2819 |
+
|
2820 |
+
def find_count_of_pairs(a, b, n):
|
2821 |
+
"""
|
2822 |
+
Count of pairs from 1 to a and 1 to b whose sum is divisible by N
|
2823 |
+
"""
|
2824 |
+
ans = 0
|
2825 |
+
ans += n * int(a / n) * int(b / n)
|
2826 |
+
ans += int(a / n) * (b % n)
|
2827 |
+
ans += (a % n) * int(b / n)
|
2828 |
+
ans += int(((a % n) + (b % n)) / n)
|
2829 |
+
return ans
|
2830 |
+
|
2831 |
+
|
2832 |
+
if __name__ == '__main__':
|
2833 |
+
a = 5
|
2834 |
+
b = 13
|
2835 |
+
n = 3
|
2836 |
+
print(find_count_of_pairs(a, b, n))
|
2837 |
+
|
2838 |
+
def count_minimum_operations(n):
|
2839 |
+
"""
|
2840 |
+
Minimum number of operations required to reduce N to 1
|
2841 |
+
"""
|
2842 |
+
count = 0
|
2843 |
+
while (n > 1):
|
2844 |
+
if (n % 3 == 0):
|
2845 |
+
n //= 3
|
2846 |
+
elif (n % 3 == 1):
|
2847 |
+
n -= 1
|
2848 |
+
else:
|
2849 |
+
if (n == 2):
|
2850 |
+
n -= 1
|
2851 |
+
else:
|
2852 |
+
n += 1
|
2853 |
+
count += 1
|
2854 |
+
return count
|
2855 |
+
|
2856 |
+
|
2857 |
+
if __name__ == "__main__":
|
2858 |
+
n = 4
|
2859 |
+
ans = count_minimum_operations(n)
|
2860 |
+
print(ans)
|
2861 |
+
|
2862 |
+
def count_minimum_operations(n):
|
2863 |
+
"""
|
2864 |
+
Minimum number of operations required to reduce N to 1
|
2865 |
+
"""
|
2866 |
+
if (n == 2):
|
2867 |
+
return 1
|
2868 |
+
elif (n == 1):
|
2869 |
+
return 0
|
2870 |
+
if (n % 3 == 0):
|
2871 |
+
return 1 + count_minimum_operations(n / 3)
|
2872 |
+
elif (n % 3 == 1):
|
2873 |
+
return 1 + count_minimum_operations(n - 1)
|
2874 |
+
else:
|
2875 |
+
return 1 + count_minimum_operations(n + 1)
|
2876 |
+
|
2877 |
+
|
2878 |
+
n = 4
|
2879 |
+
ans = count_minimum_operations(n)
|
2880 |
+
print(ans)
|
2881 |
+
|
2882 |
+
def problems_left(K, P, N):
|
2883 |
+
"""
|
2884 |
+
Problems not solved at the end of Nth day
|
2885 |
+
"""
|
2886 |
+
if (K <= P):
|
2887 |
+
return 0
|
2888 |
+
else:
|
2889 |
+
return ((K - P) * N)
|
2890 |
+
|
2891 |
+
|
2892 |
+
K, P, N = 4, 1, 10
|
2893 |
+
print(problems_left(K, P, N))
|
2894 |
+
|
2895 |
+
def results(n, k):
|
2896 |
+
"""
|
2897 |
+
Number of chocolates left after k iterations
|
2898 |
+
"""
|
2899 |
+
return round(pow(n, (1.0 / pow(2, k))))
|
2900 |
+
|
2901 |
+
|
2902 |
+
k = 3
|
2903 |
+
n = 100000000
|
2904 |
+
print("Chocolates left after"),
|
2905 |
+
print(k),
|
2906 |
+
print("iterations are"),
|
2907 |
+
print(int(results(n, k)))
|
2908 |
+
|
2909 |
+
def max_sum_wo3_consec(A, N):
|
2910 |
+
"""
|
2911 |
+
Maximum subsequence sum such that no three are consecutive in O ( 1 ) space
|
2912 |
+
"""
|
2913 |
+
if (N == 1):
|
2914 |
+
return A[0]
|
2915 |
+
if (N == 2):
|
2916 |
+
return A[0] + A[1]
|
2917 |
+
third = A[0]
|
2918 |
+
second = third + A[1]
|
2919 |
+
first = max(second, A[1] + A[2])
|
2920 |
+
sum = max(max(third, second), first)
|
2921 |
+
for i in range(3, N, 1):
|
2922 |
+
sum = max(max(first, second + A[i]), third + A[i] + A[i - 1])
|
2923 |
+
third = second
|
2924 |
+
second = first
|
2925 |
+
first = sum
|
2926 |
+
return sum
|
2927 |
+
|
2928 |
+
|
2929 |
+
if __name__ == '__main__':
|
2930 |
+
A = [3000, 2000, 1000, 3, 10]
|
2931 |
+
N = len(A)
|
2932 |
+
print(max_sum_wo3_consec(A, N))
|
2933 |
+
|
2934 |
+
def find_min_operations(n):
|
2935 |
+
"""
|
2936 |
+
Minimum number of given operations required to reduce a number to 2
|
2937 |
+
"""
|
2938 |
+
dp = [0 for i in range(n + 1)]
|
2939 |
+
for i in range(n + 1):
|
2940 |
+
dp[i] = 999999
|
2941 |
+
dp[2] = 0
|
2942 |
+
for i in range(2, n + 1):
|
2943 |
+
if (i * 5 <= n):
|
2944 |
+
dp[i * 5] = min(dp[i * 5], dp[i] + 1)
|
2945 |
+
if (i + 3 <= n):
|
2946 |
+
dp[i + 3] = min(dp[i + 3], dp[i] + 1)
|
2947 |
+
return dp[n]
|
2948 |
+
|
2949 |
+
|
2950 |
+
if __name__ == '__main__':
|
2951 |
+
n = 28
|
2952 |
+
m = find_min_operations(n)
|
2953 |
+
if (m != 9999):
|
2954 |
+
print(m)
|
2955 |
+
else:
|
2956 |
+
print(-1)
|
2957 |
+
|
2958 |
+
def get_value(arr, N):
|
2959 |
+
"""
|
2960 |
+
Split array into subarrays such that sum of difference between their maximums and minimums is maximum
|
2961 |
+
"""
|
2962 |
+
dp = [0 for i in range(N)]
|
2963 |
+
for i in range(1, N):
|
2964 |
+
minn = arr[i]
|
2965 |
+
maxx = arr[i]
|
2966 |
+
j = i
|
2967 |
+
while (j >= 0):
|
2968 |
+
minn = min(arr[j], minn)
|
2969 |
+
maxx = max(arr[j], maxx)
|
2970 |
+
dp[i] = max(dp[i], maxx - minn + (dp[j - 1]if (j >= 1)else 0))
|
2971 |
+
j -= 1
|
2972 |
+
return dp[N - 1]
|
2973 |
+
|
2974 |
+
|
2975 |
+
if __name__ == '__main__':
|
2976 |
+
arr = [8, 1, 7, 9, 2]
|
2977 |
+
N = len(arr)
|
2978 |
+
print(get_value(arr, N))
|
2979 |
+
|
2980 |
+
dp = dict()
|
2981 |
+
|
2982 |
+
|
2983 |
+
def max_score(s, a):
|
2984 |
+
"""
|
2985 |
+
Maximum score possible by removing substrings made up of single distinct character
|
2986 |
+
"""
|
2987 |
+
if s in dp:
|
2988 |
+
return dp[s]
|
2989 |
+
n = len(s)
|
2990 |
+
if n == 0:
|
2991 |
+
return 0
|
2992 |
+
if n == 1:
|
2993 |
+
return a[0]
|
2994 |
+
head = 0
|
2995 |
+
mx = -1
|
2996 |
+
while head < n:
|
2997 |
+
tail = head
|
2998 |
+
while tail < n:
|
2999 |
+
if s[tail] != s[head]:
|
3000 |
+
head = tail
|
3001 |
+
break
|
3002 |
+
sub = s[head:tail + 1]
|
3003 |
+
mx = max(mx, a[len(sub) - 1] +
|
3004 |
+
max_score(s[:head] + s[tail + 1:], a))
|
3005 |
+
tail += 1
|
3006 |
+
if tail == n:
|
3007 |
+
break
|
3008 |
+
dp[s] = mx
|
3009 |
+
return mx
|
3010 |
+
|
3011 |
+
|
3012 |
+
if __name__ == "__main__":
|
3013 |
+
s = "abb"
|
3014 |
+
a = [1, 3, 1]
|
3015 |
+
print(max_score(s, a))
|
3016 |
+
|
3017 |
+
def min_cost(costs, N):
|
3018 |
+
"""
|
3019 |
+
Minimize cost of painting N houses such that adjacent houses have different colors
|
3020 |
+
"""
|
3021 |
+
if (N == 0):
|
3022 |
+
return 0
|
3023 |
+
dp = [[0 for i in range(3)]for j in range(3)]
|
3024 |
+
dp[0][0] = costs[0][0]
|
3025 |
+
dp[0][1] = costs[0][1]
|
3026 |
+
dp[0][2] = costs[0][2]
|
3027 |
+
for i in range(1, N, 1):
|
3028 |
+
dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0]
|
3029 |
+
dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1]
|
3030 |
+
dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2]
|
3031 |
+
print(min(dp[N - 1][0], min(dp[N - 1][1], dp[N - 1][2])))
|
3032 |
+
|
3033 |
+
|
3034 |
+
if __name__ == '__main__':
|
3035 |
+
costs = [[14, 2, 11], [11, 14, 5], [14, 3, 10]]
|
3036 |
+
N = len(costs)
|
3037 |
+
min_cost(costs, N)
|
3038 |
+
|
3039 |
+
def maximum_sum(A, B, length, X, Y):
|
3040 |
+
"""
|
3041 |
+
Maximum sum by picking elements from two arrays in order
|
3042 |
+
"""
|
3043 |
+
l = length
|
3044 |
+
l1 = min(length, X)
|
3045 |
+
l2 = min(length, Y)
|
3046 |
+
dp = [[0 for i in range(l2 + 1)]for i in range(l1 + 1)]
|
3047 |
+
dp[0][0] = 0
|
3048 |
+
max_sum = -10 * 9
|
3049 |
+
for i in range(1, l1 + 1):
|
3050 |
+
dp[i][0] = dp[i - 1][0] + A[i - 1]
|
3051 |
+
max_sum = max(max_sum, dp[i][0])
|
3052 |
+
for i in range(1, l2 + 1):
|
3053 |
+
dp[0][i] = dp[0][i - 1] + B[i - 1]
|
3054 |
+
max_sum = max(max_sum, dp[0][i])
|
3055 |
+
for i in range(1, l1 + 1):
|
3056 |
+
for j in range(1, l2 + 1):
|
3057 |
+
if (i + j <= l):
|
3058 |
+
dp[i][j] = max(dp[i - 1][j] + A[i + j - 1],
|
3059 |
+
dp[i][j - 1] + B[i + j - 1])
|
3060 |
+
max_sum = max(dp[i][j], max_sum)
|
3061 |
+
return max_sum
|
3062 |
+
|
3063 |
+
|
3064 |
+
if __name__ == '__main__':
|
3065 |
+
A = [1, 2, 3, 4, 5]
|
3066 |
+
B = [5, 4, 3, 2, 1]
|
3067 |
+
X = 3
|
3068 |
+
Y = 2
|
3069 |
+
N = len(A)
|
3070 |
+
print(maximum_sum(A, B, N, X, Y))
|
3071 |
+
|
3072 |
+
def reduce_zero(N):
|
3073 |
+
"""
|
3074 |
+
Min number of operations to reduce N to 0 by subtracting any digits from N
|
3075 |
+
"""
|
3076 |
+
dp = [1e9 for i in range(N + 1)]
|
3077 |
+
dp[0] = 0
|
3078 |
+
for i in range(N + 1):
|
3079 |
+
for c in str(i):
|
3080 |
+
dp[i] = min(dp[i], dp[i - (ord(c) - 48)] + 1)
|
3081 |
+
return dp[N]
|
3082 |
+
|
3083 |
+
|
3084 |
+
N = 25
|
3085 |
+
print(reduce_zero(N))
|
3086 |
+
|
python_code_instructions_filtered_57.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_58.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_59.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_6.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_60.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_61.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_62.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_63.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_64.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_65.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_66.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_67.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_68.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_69.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_7.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_70.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_71.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_72.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_73.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_74.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_75.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_76.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_77.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_78.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_79.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_8.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_80.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
python_code_instructions_filtered_81.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|