Datasets:
joelniklaus
commited on
Commit
•
c990c74
1
Parent(s):
8f18f30
Update swiss judgment prediction (#5019)
Browse files* updated swiss_judgment_prediction dataset with new data
* fixed some problems
* Update datasets/swiss_judgment_prediction/README.md
Co-authored-by: Albert Villanova del Moral <8515462+albertvillanova@users.noreply.github.com>
* simplified code
* ran make style
* simplified code
* updated dummy data and dataset card and simplified code
* added dummy_data and updated dataset_infos.json
* removed unnecessary variable
Co-authored-by: Albert Villanova del Moral <8515462+albertvillanova@users.noreply.github.com>
Commit from https://github.com/huggingface/datasets/commit/9ff1278226ee2f4239e3d78104dacb9851fce7c4
- README.md +15 -7
- dataset_infos.json +1 -1
- dummy/{all_languages/1.0.0 → all+mt/2.0.0}/dummy_data.zip +2 -2
- dummy/{de/1.0.0 → all/2.0.0}/dummy_data.zip +2 -2
- dummy/{fr/1.0.0 → de/2.0.0}/dummy_data.zip +2 -2
- dummy/{it/1.0.0 → fr/2.0.0}/dummy_data.zip +2 -2
- dummy/it/2.0.0/dummy_data.zip +3 -0
- dummy/mt_de/2.0.0/dummy_data.zip +3 -0
- dummy/mt_en/2.0.0/dummy_data.zip +3 -0
- dummy/mt_fr/2.0.0/dummy_data.zip +3 -0
- dummy/mt_it/2.0.0/dummy_data.zip +3 -0
- swiss_judgment_prediction.py +49 -51
README.md
CHANGED
@@ -8,6 +8,7 @@ language:
|
|
8 |
- de
|
9 |
- fr
|
10 |
- it
|
|
|
11 |
license:
|
12 |
- cc-by-sa-4.0
|
13 |
multilinguality:
|
@@ -74,6 +75,8 @@ Switzerland has four official languages with 3 languages (German, French and Ita
|
|
74 |
|
75 |
## Dataset Structure
|
76 |
|
|
|
|
|
77 |
### Data Instances
|
78 |
|
79 |
**Multilingual use of the dataset**
|
@@ -124,7 +127,7 @@ dataset = load_dataset('swiss_judgment_prediction', 'de')
|
|
124 |
|
125 |
**Multilingual use of the dataset**
|
126 |
|
127 |
-
The following data fields are provided for documents (`train`, `
|
128 |
|
129 |
`id`: (**int**) a unique identifier of the for the document \
|
130 |
`year`: (**int**) the publication year \
|
@@ -139,7 +142,7 @@ The following data fields are provided for documents (`train`, `dev`, `test`):
|
|
139 |
|
140 |
**Monolingual use of the dataset**
|
141 |
|
142 |
-
The following data fields are provided for documents (`train`, `
|
143 |
|
144 |
`id`: (**int**) a unique identifier of the for the document \
|
145 |
`year`: (**int**) the publication year \
|
@@ -153,11 +156,16 @@ The following data fields are provided for documents (`train`, `dev`, `test`):
|
|
153 |
|
154 |
### Data Splits
|
155 |
|
156 |
-
| Language
|
157 |
-
|
158 |
-
| German
|
159 |
-
| French
|
160 |
-
Italian
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
## Dataset Creation
|
163 |
|
|
|
8 |
- de
|
9 |
- fr
|
10 |
- it
|
11 |
+
- en
|
12 |
license:
|
13 |
- cc-by-sa-4.0
|
14 |
multilinguality:
|
|
|
75 |
|
76 |
## Dataset Structure
|
77 |
|
78 |
+
In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set.
|
79 |
+
|
80 |
### Data Instances
|
81 |
|
82 |
**Multilingual use of the dataset**
|
|
|
127 |
|
128 |
**Multilingual use of the dataset**
|
129 |
|
130 |
+
The following data fields are provided for documents (`train`, `validation`, `test`):
|
131 |
|
132 |
`id`: (**int**) a unique identifier of the for the document \
|
133 |
`year`: (**int**) the publication year \
|
|
|
142 |
|
143 |
**Monolingual use of the dataset**
|
144 |
|
145 |
+
The following data fields are provided for documents (`train`, `validation`, `test`):
|
146 |
|
147 |
`id`: (**int**) a unique identifier of the for the document \
|
148 |
`year`: (**int**) the publication year \
|
|
|
156 |
|
157 |
### Data Splits
|
158 |
|
159 |
+
| Language | Subset | Number of Documents (Training/Validation/Test) |
|
160 |
+
|------------|------------|------------------------------------------------|
|
161 |
+
| German | **de** | 35'452 / 4'705 / 9'725 |
|
162 |
+
| French | **fr** | 21'179 / 3'095 / 6'820 |
|
163 |
+
| Italian | **it** | 3'072 / 408 / 812 |
|
164 |
+
| All | **all** | 59'709 / 8'208 / 17'357 |
|
165 |
+
| MT German | **mt_de** | 24'251 / 0 / 0 |
|
166 |
+
| MT French | **mt_fr** | 38'524 / 0 / 0 |
|
167 |
+
| MT Italian | **mt_it** | 56'631 / 0 / 0 |
|
168 |
+
| MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
|
169 |
|
170 |
## Dataset Creation
|
171 |
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"de": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 104022593, "num_examples": 35458, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 25988122, "num_examples": 9725, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 12098963, "num_examples": 4705, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 142109678, "size_in_bytes": 474545209}, "fr": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96659764, "num_examples": 21179, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 33270639, "num_examples": 6820, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 13010259, "num_examples": 3095, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 142940662, "size_in_bytes": 475376193}, "it": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10752032, "num_examples": 3072, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 2469097, "num_examples": 812, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 1042715, "num_examples": 408, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 14263844, "size_in_bytes": 346699375}, "all_languages": {"description": "Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with\nthe respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. \nWe also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, \nto promote robustness and fairness studies on the critical area of legal NLP. \n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "names_file": null, "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "all_languages", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 211434349, "num_examples": 59709, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 61727838, "num_examples": 17357, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 26151897, "num_examples": 8208, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/5529712/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/5529712/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}, "https://zenodo.org/record/5529712/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}}, "download_size": 332435531, "post_processing_size": null, "dataset_size": 299314084, "size_in_bytes": 631749615}}
|
|
|
1 |
+
{"de": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "de", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 104270719, "num_examples": 35458, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 12131878, "num_examples": 4705, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 26056177, "num_examples": 9725, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 142458774, "size_in_bytes": 1142841105}, "fr": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "fr", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96807957, "num_examples": 21179, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 13031904, "num_examples": 3095, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 33318359, "num_examples": 6820, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 143158220, "size_in_bytes": 1143540551}, "it": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "it", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10773516, "num_examples": 3072, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 1045551, "num_examples": 408, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 2474761, "num_examples": 812, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 14293828, "size_in_bytes": 1014676159}, "mt_de": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "mt_de", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 106990696, "num_examples": 24251, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 106990696, "size_in_bytes": 1107373027}, "mt_fr": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "mt_fr", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 117932134, "num_examples": 38524, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 117932134, "size_in_bytes": 1118314465}, "mt_it": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "mt_it", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 201749076, "num_examples": 56631, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 201749076, "size_in_bytes": 1202131407}, "mt_en": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "mt_en", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 196352783, "num_examples": 59703, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 0, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 196352783, "size_in_bytes": 1196735114}, "all": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "all", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 211852192, "num_examples": 59709, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 26209333, "num_examples": 8208, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 61849297, "num_examples": 17357, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 299910822, "size_in_bytes": 1300293153}, "all+mt": {"description": "\nSwiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.\n", "citation": "@InProceedings{niklaus-etal-2021-swiss,\n author = {Niklaus, Joel\n and Chalkidis, Ilias\n and St\u00fcrmer, Matthias},\n title = {Swiss-Court-Predict: A Multilingual Legal Judgment Prediction Benchmark},\n booktitle = {Proceedings of the 2021 Natural Legal Language Processing Workshop},\n year = {2021},\n location = {Punta Cana, Dominican Republic},\n}", "homepage": "https://github.com/JoelNiklaus/SwissCourtRulingCorpus", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "year": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["dismissal", "approval"], "id": null, "_type": "ClassLabel"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "region": {"dtype": "string", "id": null, "_type": "Value"}, "canton": {"dtype": "string", "id": null, "_type": "Value"}, "legal area": {"dtype": "string", "id": null, "_type": "Value"}, "source_language": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swiss_judgment_prediction", "config_name": "all+mt", "version": {"version_str": "2.0.0", "description": "", "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 834876881, "num_examples": 238818, "dataset_name": "swiss_judgment_prediction"}, "validation": {"name": "validation", "num_bytes": 26209333, "num_examples": 8208, "dataset_name": "swiss_judgment_prediction"}, "test": {"name": "test", "num_bytes": 61849297, "num_examples": 17357, "dataset_name": "swiss_judgment_prediction"}}, "download_checksums": {"https://zenodo.org/record/7109926/files/train.jsonl": {"num_bytes": 234401262, "checksum": "191992c204ad10d76c2a08005f1cdd94531b531ba12f5ea889cec7cd94dbb232"}, "https://zenodo.org/record/7109926/files/train_mt.jsonl": {"num_bytes": 667946800, "checksum": "f57b8998acba9ac4b06fef7bcb03b8718da7b1d61228efb06afb8088f057d80c"}, "https://zenodo.org/record/7109926/files/val.jsonl": {"num_bytes": 29157311, "checksum": "a395f523de0e536953ac3af7960243b7be90423183097a1856275fc694b6e415"}, "https://zenodo.org/record/7109926/files/test.jsonl": {"num_bytes": 68876958, "checksum": "3e7a6542cd061579599cd93ec4c3af48171f0f8c2331c81477e77fac253247c1"}}, "download_size": 1000382331, "post_processing_size": null, "dataset_size": 922935511, "size_in_bytes": 1923317842}}
|
dummy/{all_languages/1.0.0 → all+mt/2.0.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40781150ee4cbf7b759d75e7061f1ff889c9e3e2f7f971fc0b5c8e70e00726ba
|
3 |
+
size 27112
|
dummy/{de/1.0.0 → all/2.0.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a4891a32a28da27c63678dbec7be568f7228102e3879ed3820ca1d1172de418
|
3 |
+
size 27112
|
dummy/{fr/1.0.0 → de/2.0.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07f5c330d7741fb29f4ad77d41489a6b494b540a4a5acf7473fc37c199e3aaaa
|
3 |
+
size 27112
|
dummy/{it/1.0.0 → fr/2.0.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:799d02d1d694728dd61ab86ff71eff43b3315a9052ed3251cbfd79d83767dba5
|
3 |
+
size 27112
|
dummy/it/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c17d49f768c7ed3297222632eb0a790dea79549c8a69f4479a5d130633443b6
|
3 |
+
size 27112
|
dummy/mt_de/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5e321a06ede89b1c0ce46e78fd977e82f45da245de949a3aca91471bcd4ab83
|
3 |
+
size 27112
|
dummy/mt_en/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3eb14d3ce1b7edd06f1ad6fecdcf4ce08f2b3d2b0df6e5ef680e3c8616aa4d7
|
3 |
+
size 27112
|
dummy/mt_fr/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d40c4f36ba333b14a8666f4949905eae044ab00c192dc090398fc4ac92df74f
|
3 |
+
size 27112
|
dummy/mt_it/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:803ed0d6c037054d0dcdf9dee1cc16e412ed5768a3d62bf0b2188566f0e3daf9
|
3 |
+
size 27112
|
swiss_judgment_prediction.py
CHANGED
@@ -36,58 +36,68 @@ _DESCRIPTION = """
|
|
36 |
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
|
37 |
"""
|
38 |
|
39 |
-
|
40 |
"de",
|
41 |
"fr",
|
42 |
"it",
|
43 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
_URL = "https://zenodo.org/record/
|
46 |
_URLS = {
|
47 |
"train": _URL + "train.jsonl",
|
48 |
-
"
|
49 |
"val": _URL + "val.jsonl",
|
|
|
50 |
}
|
51 |
|
52 |
|
53 |
class SwissJudgmentPredictionConfig(datasets.BuilderConfig):
|
54 |
"""BuilderConfig for SwissJudgmentPrediction."""
|
55 |
|
56 |
-
def __init__(self, language: str,
|
57 |
"""BuilderConfig for SwissJudgmentPrediction.
|
58 |
|
59 |
Args:
|
60 |
-
language: One of de,fr,it, or
|
61 |
**kwargs: keyword arguments forwarded to super.
|
62 |
"""
|
63 |
super(SwissJudgmentPredictionConfig, self).__init__(**kwargs)
|
64 |
self.language = language
|
65 |
-
if language != "all_languages":
|
66 |
-
self.languages = [language]
|
67 |
-
else:
|
68 |
-
self.languages = languages if languages is not None else _LANGUAGES
|
69 |
|
70 |
|
71 |
class SwissJudgmentPrediction(datasets.GeneratorBasedBuilder):
|
72 |
"""SwissJudgmentPrediction: A Multilingual Legal Judgment PredictionBenchmark"""
|
73 |
|
74 |
-
VERSION = datasets.Version("
|
75 |
BUILDER_CONFIG_CLASS = SwissJudgmentPredictionConfig
|
76 |
BUILDER_CONFIGS = [
|
77 |
SwissJudgmentPredictionConfig(
|
78 |
name=lang,
|
79 |
language=lang,
|
80 |
-
version=datasets.Version("
|
81 |
description=f"Plain text import of SwissJudgmentPrediction for the {lang} language",
|
82 |
)
|
83 |
for lang in _LANGUAGES
|
84 |
] + [
|
85 |
SwissJudgmentPredictionConfig(
|
86 |
-
name="
|
87 |
-
language="
|
88 |
-
version=datasets.Version("
|
89 |
description="Plain text import of SwissJudgmentPrediction for all languages",
|
90 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
]
|
92 |
|
93 |
def _info(self):
|
@@ -101,6 +111,7 @@ class SwissJudgmentPrediction(datasets.GeneratorBasedBuilder):
|
|
101 |
"region": datasets.Value("string"),
|
102 |
"canton": datasets.Value("string"),
|
103 |
"legal area": datasets.Value("string"),
|
|
|
104 |
}
|
105 |
)
|
106 |
return datasets.DatasetInfo(
|
@@ -114,61 +125,48 @@ class SwissJudgmentPrediction(datasets.GeneratorBasedBuilder):
|
|
114 |
def _split_generators(self, dl_manager):
|
115 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
116 |
# download and extract URLs
|
117 |
-
urls_to_dl = _URLS
|
118 |
try:
|
119 |
-
dl_dir = dl_manager.
|
120 |
except Exception:
|
121 |
logger.warning(
|
122 |
-
"This dataset is downloaded through Zenodo which is flaky.
|
|
|
123 |
)
|
124 |
raise
|
125 |
return [
|
126 |
datasets.SplitGenerator(
|
127 |
name=datasets.Split.TRAIN,
|
128 |
# These kwargs will be passed to _generate_examples
|
129 |
-
gen_kwargs={"filepath": dl_dir["train"], "
|
130 |
),
|
131 |
datasets.SplitGenerator(
|
132 |
-
name=datasets.Split.
|
133 |
# These kwargs will be passed to _generate_examples
|
134 |
-
gen_kwargs={"filepath": dl_dir["
|
135 |
),
|
136 |
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.
|
138 |
# These kwargs will be passed to _generate_examples
|
139 |
-
gen_kwargs={"filepath": dl_dir["
|
140 |
),
|
141 |
]
|
142 |
|
143 |
-
def _generate_examples(self, filepath,
|
144 |
"""This function returns the examples in the raw (text) form."""
|
145 |
-
|
146 |
-
if self.config.language == "all_languages":
|
147 |
-
with open(filepath, encoding="utf-8") as f:
|
148 |
-
for id_, row in enumerate(f):
|
149 |
-
data = json.loads(row)
|
150 |
-
yield id_, {
|
151 |
-
"id": data["id"],
|
152 |
-
"year": data["year"],
|
153 |
-
"text": data["text"],
|
154 |
-
"label": data["label"],
|
155 |
-
"language": data["language"],
|
156 |
-
"region": data["region"],
|
157 |
-
"canton": data["canton"],
|
158 |
-
"legal area": data["legal area"],
|
159 |
-
}
|
160 |
-
else:
|
161 |
with open(filepath, encoding="utf-8") as f:
|
162 |
for id_, row in enumerate(f):
|
163 |
data = json.loads(row)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
36 |
Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
|
37 |
"""
|
38 |
|
39 |
+
_ORIGINAL_LANGUAGES = [
|
40 |
"de",
|
41 |
"fr",
|
42 |
"it",
|
43 |
]
|
44 |
+
_MT_LANGUAGES = [
|
45 |
+
"mt_de",
|
46 |
+
"mt_fr",
|
47 |
+
"mt_it",
|
48 |
+
"mt_en",
|
49 |
+
]
|
50 |
+
_LANGUAGES = _ORIGINAL_LANGUAGES + _MT_LANGUAGES
|
51 |
|
52 |
+
_URL = "https://zenodo.org/record/7109926/files/"
|
53 |
_URLS = {
|
54 |
"train": _URL + "train.jsonl",
|
55 |
+
"train_mt": _URL + "train_mt.jsonl",
|
56 |
"val": _URL + "val.jsonl",
|
57 |
+
"test": _URL + "test.jsonl",
|
58 |
}
|
59 |
|
60 |
|
61 |
class SwissJudgmentPredictionConfig(datasets.BuilderConfig):
|
62 |
"""BuilderConfig for SwissJudgmentPrediction."""
|
63 |
|
64 |
+
def __init__(self, language: str, **kwargs):
|
65 |
"""BuilderConfig for SwissJudgmentPrediction.
|
66 |
|
67 |
Args:
|
68 |
+
language: One of de, fr, it, or all, or all+mt
|
69 |
**kwargs: keyword arguments forwarded to super.
|
70 |
"""
|
71 |
super(SwissJudgmentPredictionConfig, self).__init__(**kwargs)
|
72 |
self.language = language
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
class SwissJudgmentPrediction(datasets.GeneratorBasedBuilder):
|
76 |
"""SwissJudgmentPrediction: A Multilingual Legal Judgment PredictionBenchmark"""
|
77 |
|
78 |
+
VERSION = datasets.Version("2.0.0", "")
|
79 |
BUILDER_CONFIG_CLASS = SwissJudgmentPredictionConfig
|
80 |
BUILDER_CONFIGS = [
|
81 |
SwissJudgmentPredictionConfig(
|
82 |
name=lang,
|
83 |
language=lang,
|
84 |
+
version=datasets.Version("2.0.0", ""),
|
85 |
description=f"Plain text import of SwissJudgmentPrediction for the {lang} language",
|
86 |
)
|
87 |
for lang in _LANGUAGES
|
88 |
] + [
|
89 |
SwissJudgmentPredictionConfig(
|
90 |
+
name="all",
|
91 |
+
language="all",
|
92 |
+
version=datasets.Version("2.0.0", ""),
|
93 |
description="Plain text import of SwissJudgmentPrediction for all languages",
|
94 |
+
),
|
95 |
+
SwissJudgmentPredictionConfig(
|
96 |
+
name="all+mt",
|
97 |
+
language="all+mt",
|
98 |
+
version=datasets.Version("2.0.0", ""),
|
99 |
+
description="Plain text import of SwissJudgmentPrediction for all languages with machine translation",
|
100 |
+
),
|
101 |
]
|
102 |
|
103 |
def _info(self):
|
|
|
111 |
"region": datasets.Value("string"),
|
112 |
"canton": datasets.Value("string"),
|
113 |
"legal area": datasets.Value("string"),
|
114 |
+
"source_language": datasets.Value("string"),
|
115 |
}
|
116 |
)
|
117 |
return datasets.DatasetInfo(
|
|
|
125 |
def _split_generators(self, dl_manager):
|
126 |
# dl_manager is a datasets.download.DownloadManager that can be used to
|
127 |
# download and extract URLs
|
|
|
128 |
try:
|
129 |
+
dl_dir = dl_manager.download(_URLS)
|
130 |
except Exception:
|
131 |
logger.warning(
|
132 |
+
"This dataset is downloaded through Zenodo which is flaky. "
|
133 |
+
"If this download failed try a few times before reporting an issue"
|
134 |
)
|
135 |
raise
|
136 |
return [
|
137 |
datasets.SplitGenerator(
|
138 |
name=datasets.Split.TRAIN,
|
139 |
# These kwargs will be passed to _generate_examples
|
140 |
+
gen_kwargs={"filepath": dl_dir["train"], "mt_filepath": dl_dir["train_mt"]},
|
141 |
),
|
142 |
datasets.SplitGenerator(
|
143 |
+
name=datasets.Split.VALIDATION,
|
144 |
# These kwargs will be passed to _generate_examples
|
145 |
+
gen_kwargs={"filepath": dl_dir["val"], "mt_filepath": None},
|
146 |
),
|
147 |
datasets.SplitGenerator(
|
148 |
+
name=datasets.Split.TEST,
|
149 |
# These kwargs will be passed to _generate_examples
|
150 |
+
gen_kwargs={"filepath": dl_dir["test"], "mt_filepath": None},
|
151 |
),
|
152 |
]
|
153 |
|
154 |
+
def _generate_examples(self, filepath, mt_filepath):
|
155 |
"""This function returns the examples in the raw (text) form."""
|
156 |
+
if self.config.language in ["all", "all+mt"] + _ORIGINAL_LANGUAGES:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
with open(filepath, encoding="utf-8") as f:
|
158 |
for id_, row in enumerate(f):
|
159 |
data = json.loads(row)
|
160 |
+
_ = data.setdefault("source_language", "n/a")
|
161 |
+
if self.config.language in ["all", "all+mt"] or data["language"] == self.config.language:
|
162 |
+
yield id_, data
|
163 |
+
if self.config.language in ["all+mt"] + _MT_LANGUAGES:
|
164 |
+
if mt_filepath: # yield data from mt_filepath
|
165 |
+
with open(mt_filepath, encoding="utf-8") as f:
|
166 |
+
for id_, row in enumerate(f):
|
167 |
+
data = json.loads(row)
|
168 |
+
_ = data.setdefault("source_language", "n/a")
|
169 |
+
if (
|
170 |
+
self.config.language == "all+mt" or data["language"] in self.config.language
|
171 |
+
): # "de" in "mt_de"
|
172 |
+
yield f"mt_{id_}", data
|