Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
Chinese
Size:
10K - 100K
ArXiv:
License:
File size: 4,647 Bytes
2493aeb 84ac856 2493aeb 84ac856 2493aeb 84ac856 2493aeb 84ac856 2493aeb 84ac856 2493aeb 84ac856 2493aeb 84ac856 2493aeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
annotations_creators:
- machine-translated
language_creators:
- machine-translated
language:
- zh
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- squad_v2
task_categories:
- question-answering
task_ids:
- open-domain-qa
- extractive-qa
pretty_name: Chinese SQuAD 2.0
---
# Dataset Card for Chinese SQuAD 2.0
## Dataset Description
### Dataset Summary
This is a Chinese translation of the SQuAD 2.0 dataset, translated from the original English version. Like SQuAD 2.0, it contains both answerable and unanswerable questions. The dataset is designed for Chinese reading comprehension and question answering tasks.
Source: [ChineseSquad](https://github.com/junzeng-pluto/ChineseSquad)
### Dataset Structure
The dataset is stored in Parquet format and contains the following fields:
```python
{
'id': string,
'title': string,
'context': string,
'question': string,
'answers': {
'text': List[string],
'answer_start': List[int]
}
}
```
### Data Splits
| Split | Total Examples | Answerable | Unanswerable |
|------------|---------------|------------|--------------|
| train | 90,027 | 46,529 | 43,498 |
| validation | 9,936 | 3,991 | 5,945 |
### Usage
```python
from datasets import load_dataset
# Load from Hugging Face Hub
dataset = load_dataset("real-jiakai/chinese-squadv2")
# Example usage
example = dataset['train'][0]
print(f"Question: {example['question']}")
print(f"Context: {example['context']}")
print(f"Answer: {example['answers']['text']}")
```
Example output:
```python
Question: 碧昂丝在成长过程中,在哪些领域竞争?
Context: 碧昂丝·吉赛尔·诺尔斯·卡特(生于1981年9月4日)是美国歌手、作曲家、唱片制作人和女演员。她在得克萨斯州休斯顿出生长大,小时候参加过各种歌舞比赛,上世纪90年代末以R&B女团“命运之子”的主唱而声名鹊起。由她父亲马修·诺尔斯(Mathew Knowles)管理的这个集团,一直以来都是世界上最畅销的女孩集团之一。暂停期间,碧昂丝发行了首张专辑《恋爱中的危险》(2003),确立了她作为全球独唱艺术家的地位,获得了五项格莱美奖,并在广告牌上热播100首单曲《疯狂恋爱》和《小男孩》。
Answer: ['歌舞']
```
### Citation
If you use this dataset, please cite both the original SQuAD 2.0 paper and the Chinese translation:
```bibtex
@inproceedings{rajpurkar-etal-2018-know,
title = "Know What You Don{'}t Know: Unanswerable Questions for {SQ}u{AD}",
author = "Rajpurkar, Pranav and
Jia, Robin and
Liang, Percy",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2124",
doi = "10.18653/v1/P18-2124",
pages = "784--789",
eprint={1806.03822},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{rajpurkar-etal-2016-squad,
title = "{SQ}u{AD}: 100,000+ Questions for Machine Comprehension of Text",
author = "Rajpurkar, Pranav and
Zhang, Jian and
Lopyrev, Konstantin and
Liang, Percy",
editor = "Su, Jian and
Duh, Kevin and
Carreras, Xavier",
booktitle = "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D16-1264",
doi = "10.18653/v1/D16-1264",
pages = "2383--2392",
eprint={1606.05250},
archivePrefix={arXiv},
primaryClass={cs.CL},
}
@misc{ChineseSquad,
title = "ChineseSquad",
author = "junzeng-pluto",
url = "https://github.com/junzeng-pluto/ChineseSquad",
}
```
### License
This dataset is licensed under CC BY-SA 4.0, following the original SQuAD 2.0 license.
### Limitations and Bias
- Current version contains ~100k examples, which is less than the original SQuAD 2.0
- As a machine-translated dataset, some nuances from the original English text might be lost or altered
- The answer spans are machine-aligned after translation, which might introduce some noise
- The dataset inherits any biases present in the original SQuAD 2.0 dataset
- Translation quality may vary across different examples |