Add mean elevation data
Browse files- README.md +9 -0
- topography/ecmwf_grid_mean_elevations.pkl +3 -0
README.md
CHANGED
@@ -21,6 +21,7 @@ The dataset consists of 3 different types of data (as illustrated above):
|
|
21 |
- For a given SMHI station: Historical, (relatively) low-resolution ECMWF weather forecasts from the 4 nearest ECMWF grid points
|
22 |
- **Topography/elevation data ([Copernicus DEM GLO-30](https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model))**:
|
23 |
- Topography/elevation data around a given SMHI station, grid enclosed by the 4 ECMWF points
|
|
|
24 |
|
25 |
The dataset is meant to facilitate the following modeling pipeline:
|
26 |
- Weather forecasts for a set of 4 neighboring ECMWF points are combined with topography/elevation data and turned into higher resolution forecasts grid (corresponding to the resolution of the topography data)
|
@@ -122,6 +123,7 @@ Below, for a given SMHI weather observation station, we read the following data:
|
|
122 |
- topography/elevation
|
123 |
|
124 |
```python
|
|
|
125 |
import pandas as pd
|
126 |
import xarray as xr
|
127 |
|
@@ -140,16 +142,23 @@ smhi_observation_data = pd.read_csv(
|
|
140 |
f'/smhi_weather_param_{weather_parameter}_station_{smhi_weather_observation_station_id}.csv',
|
141 |
sep=';',
|
142 |
)
|
|
|
143 |
print(smhi_observation_data)
|
144 |
|
145 |
ecmwf_data = xr.open_dataset(
|
146 |
'./ecmwf_historical_weather_forecasts/ECMWF_HRES-reindexed.nc'
|
147 |
).sel(station_index=smhi_weather_observation_station_index)
|
|
|
148 |
print(ecmwf_data)
|
149 |
|
150 |
topography_data = xr.open_dataset(
|
151 |
'topography/sweden_chunks_copernicus-dem-30m'
|
152 |
f'/topography_chunk_station_index-{smhi_weather_observation_station_index}.nc'
|
153 |
)
|
|
|
154 |
print(topography_data)
|
|
|
|
|
|
|
|
|
155 |
```
|
|
|
21 |
- For a given SMHI station: Historical, (relatively) low-resolution ECMWF weather forecasts from the 4 nearest ECMWF grid points
|
22 |
- **Topography/elevation data ([Copernicus DEM GLO-30](https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model))**:
|
23 |
- Topography/elevation data around a given SMHI station, grid enclosed by the 4 ECMWF points
|
24 |
+
- Mean elevation around each of the nearest 4 ECMWF grid points for a given SMHI station (mean over +/-0.05 arc degree in each direction from the grid point center)
|
25 |
|
26 |
The dataset is meant to facilitate the following modeling pipeline:
|
27 |
- Weather forecasts for a set of 4 neighboring ECMWF points are combined with topography/elevation data and turned into higher resolution forecasts grid (corresponding to the resolution of the topography data)
|
|
|
123 |
- topography/elevation
|
124 |
|
125 |
```python
|
126 |
+
import pickle
|
127 |
import pandas as pd
|
128 |
import xarray as xr
|
129 |
|
|
|
142 |
f'/smhi_weather_param_{weather_parameter}_station_{smhi_weather_observation_station_id}.csv',
|
143 |
sep=';',
|
144 |
)
|
145 |
+
print('SMHI observation data:')
|
146 |
print(smhi_observation_data)
|
147 |
|
148 |
ecmwf_data = xr.open_dataset(
|
149 |
'./ecmwf_historical_weather_forecasts/ECMWF_HRES-reindexed.nc'
|
150 |
).sel(station_index=smhi_weather_observation_station_index)
|
151 |
+
print('ECMWF data:')
|
152 |
print(ecmwf_data)
|
153 |
|
154 |
topography_data = xr.open_dataset(
|
155 |
'topography/sweden_chunks_copernicus-dem-30m'
|
156 |
f'/topography_chunk_station_index-{smhi_weather_observation_station_index}.nc'
|
157 |
)
|
158 |
+
print('Topography chunk:')
|
159 |
print(topography_data)
|
160 |
+
|
161 |
+
mean_elevations = pickle.load(open('./topography/ecmwf_grid_mean_elevations.pkl', 'rb'))
|
162 |
+
print('Mean elevation:')
|
163 |
+
print(mean_elevations[0])
|
164 |
```
|
topography/ecmwf_grid_mean_elevations.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f03796e007f0dc029590a1a0f05b534953d9803cd2eca253e0b39392ff21f88
|
3 |
+
size 77510
|