File size: 23,433 Bytes
d93fd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import concurrent.futures as conc
import pathlib
import re
import string
import traceback
import typing
import unicodedata

import orjson
import tqdm
import typer
from bs4 import BeautifulSoup, NavigableString
from markdownify import MarkdownConverter

from mediawiki_soup import MediaWikiSoup
from wikipedia_template import citations, stubs, section_reference_list, redirects_list

app = typer.Typer()


def is_stub(soup: BeautifulSoup, meta: dict):
    """Checks if the articles is a stub

    Stub detection can be done by checking if any `mw:WikiLink` href links to a "Wikipedia:Stub".

    If it's a stub, it drops the article.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for wikilink in soup.find_all("a", attrs={"rel": "mw:WikiLink"}):
        href = wikilink.get("href")
        if href and href.lstrip("./").lower().replace("_", " ") in stubs:
            # print("Drop due to stub")
            return soup, {"_drop": True}
            # return soup, {**meta, "stub": True}
    return soup, meta


def style_merge(soup: BeautifulSoup, meta: dict):
    """Collapses <style> tags with `data-mw` attribute into the next sibling element

    Some templates have <style> tags which can be annoying to process, so we remove it at this stage.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for style in soup.find_all("style", attrs={"data-mw": True}):
        if style.next_sibling:
            # print(style.parent)
            # print("STYLE>>>>>>>",style)
            has_correct_sib = False
            for sibling in style.next_siblings:
                if sibling == "\n" or not sibling:
                    continue
                elif isinstance(sibling, NavigableString):
                    continue
                else:
                    has_correct_sib = True
                    break

            # print(">>>>>>>",list(style.next_siblings))
            if not has_correct_sib:
                print("Incorrect sibling?", meta["title"])
            else:
                sibling["data-mw"] = style["data-mw"]
        style.decompose()
    for style in soup.find_all("style"):
        style.decompose()
    # print(soup, meta)
    return soup, meta


rgx = re.compile(r"\|Lsjbot\|")


def is_lsjbot(soup: BeautifulSoup, meta: dict):
    """Detects lsjbot article.

    A SuperWiki 1.5 filter makes it's return. Refer to (https://en.wikipedia.org/wiki/Lsjbot)

    TLDR: We remove all Lsjbot generated articles because it's low quality bot generated content.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    if rgx.findall(meta.get("wikitext", "")):
        return soup, {"_drop": True}
    return soup, meta


def filter_href(soup: BeautifulSoup, meta: dict):
    """Removes all <a> where the text matches the href.

    There was an article which the link looked like this:

    <a href=\"https://example.com\">https://example.com</a>

    Which isn't exactly ideal. so we have this filter.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for href in soup.find_all("a"):
        if href.get_text(strip=True).lower() == href.get("href", "").lower():
            href.decompose()
    return soup, meta


def pull_title(soup: BeautifulSoup, meta: dict):
    """Extracts out the <title> element

    When converting to markdown (markdownify), <title> elements gets converted to text too... Which is not ideal.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    title = soup.find("title")
    if title:
        title = title.extract()
    return soup, {**meta, "title": title.get_text() if title else None}


def filter_redirect(soup: BeautifulSoup, meta: dict):
    """Removes... Redirect icons?

    Kinda unsure now that I think about it. But I'm sure it's for a good reason!

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for wikilink in soup.find_all("div", attrs={"rel": "mw:WikiLink"}):
        if wikilink is None:
            continue
        if wikilink.attrs is None:
            print("NoneWikilink?", wikilink.parent)
            continue
        datamw = wikilink.attrs.get("data-mw")
        try:
            data_mw = orjson.loads(wikilink.attrs.get("data-mw"))
        except orjson.JSONDecodeError:
            continue
        parts = data_mw.get("parts")
        parts = parts[0].get("template")["target"]["href"]
        if parts.lstrip("./").lower() in redirects_list:
            wikilink.decompose()
    return soup, meta


def filter_cite_needed(soup: BeautifulSoup, meta: dict):
    """Filters out [citation needed] tags.

    Similar to citations, we also have to test for complete removal of "[]",
    since there are some articles where it's only "citation needed" as a superscript html tag.

    Args:
        soup (BeautifulSoup): _description_
        meta (dict): _description_

    Returns:
        _type_: _description_
    """
    for wikilink in soup.find_all("a", attrs={"rel": "mw:WikiLink"}):
        if wikilink is None:
            continue
        if wikilink.attrs is None:
            print("NoneWikilink?", meta["title"])
            continue
        href = wikilink.get("href")
        if href:
            href = href.lstrip("./").lower().replace("_", " ")
        if href in citations:
            if "[" in wikilink.get_text():
                # print("Decompose_raw_wikilink",meta["title"])
                # the bracket is included. So we don't have to do anything.
                wikilink.decompose()
            else:
                # Track backtracking 3 times
                backtrack = 2
                parent = wikilink
                while backtrack > 0:
                    if parent and "[" in parent.get_text(strip=True):
                        # print("Decompose_parented_wikilink",meta["title"])
                        parent.decompose()
                        break
                    parent = parent.parent
                    backtrack -= 1
                if not parent.decomposed:
                    # blindly remove it.
                    wikilink.decompose()
    return soup, meta


def filter_cite(soup: BeautifulSoup, meta: dict):
    """Filters out citations.

    Citations looks trival to do but, there's is a lot of "Gotchas".
    Though in general, anything with `sup.reference` is likely a reference that can be removed.
    Additionally, we do a test for [] because they *should* be included when selecting `sup.reference`.
    ...Else, we try to remove the "[]" surrounding the `sup.reference` tag (While being very cautious in doing so.)

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for superscript in soup.select("sup.reference"):
        if "[" in superscript.get_text():
            # the bracket is included. So we don't have to do anything.
            superscript.decompose()
        else:
            if superscript is None or superscript.name is None:
                continue
            if superscript.get_text().lower().startswith("note"):
                superscript.decompose()
                print("Citation: Note X. UnsureRemoval")
            elif superscript.attrs and superscript.attrs.get("data-mw"):
                try:
                    data_mw = orjson.loads(superscript.attrs.get("data-mw"))
                except orjson.JSONDecodeError:
                    print("Citation with datamw-decode?", meta["title"], superscript)
                    superscript.decompose()
                    continue
                if not data_mw.get("parts"):
                    print(
                        "Citation with datamw-decode parts missing?",
                        meta["title"],
                        superscript,
                    )
                    superscript.decompose()
                    continue
                # print(data_mw)
                parts = data_mw.get("parts")
                parts = parts[0].get("template")["target"]["href"]
                if parts.lstrip("./").lower() == "template:rp":
                    superscript.decompose()
            else:
                # This might happen. From 90 ish % of the time, it's fine to remove it.
                # print("Citation with no bracket. BlindRemoval", meta["title"], superscript)
                superscript.decompose()
                # backtrack = 3
                # parent = superscript
                # while backtrack > 0:
                #     parent = superscript.parent
                #     if parent and "[" in parent.get_text():
                #         parent.decompose()
                #         break
                # if not parent.decomposed:
                #     # blindly remove it.
                #     superscript.decompose()
    return soup, meta


def remove_msg_boxes(soup: BeautifulSoup, meta: dict):
    """Removes amboxes/omboxes

    Previously this is known to be a "ritual" but given that almost all ambox and omboxes are notifications,
    it's quite likely a safe assumption to remove it like so.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    selects = soup.select('table[class~="ambox"], table[class~="ombox"]')
    for msg_box in selects:
        if msg_box is None:
            continue
        if msg_box.attrs is not None and msg_box.get("mw-data"):
            pass
            # ...?
        msg_box.decompose()
    return soup, meta


def remove_infobox(soup: BeautifulSoup, meta: dict):
    """Removes infoboxes.

    This is pretty self-explainatory, the table at the right hand side of some articles, listing people roles or company infomation.
    As those tables are complex, we extract them for others to examine and see how to reliable extract data.
    (It's really dense but very useful data.)

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    selects = ", ".join(
        ["table.infobox", "table.sidebar.vcard.hlist", "table.infobox.vcard"]
    )
    selects = soup.select(selects)
    extracted = []
    for msg_box in selects:
        if msg_box.get("mw-data"):
            pass
            # ...?
        extracted.append(str(msg_box.extract()))
    return soup, {**meta, "infobox": extracted}


def only_tables_list(soup: BeautifulSoup, meta: dict):
    """Filters out article where they are listicles.

    "Listicles" isn't the exact term here since it includes tables too but in general,
    this filter drops articles where the content mostly consists of tables or lists.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    tablelists_count = 0
    selects = soup.select("table, ul, ol")
    for tablelist in selects:
        if not tablelist.find_parents(tablelist.name) and not tablelist.find_parents(
            ["table", "ul", "ol"]
        ):
            tablelists_count += get_raw_text_length(
                tablelist.get_text().replace("\n", "").replace(" ", "")
            )
    all_text = get_raw_text_length(soup.get_text().replace("\n", "").replace(" ", ""))
    if all_text == 0:
        tablelist_ratio = 1
    else:
        tablelist_ratio = tablelists_count / all_text
    if tablelist_ratio > 0.5:  # Now that it actually works...
        # print("Drop due to tablelist", tablelist_ratio, tablelists_count, all_text, meta["title"])
        return soup, {
            "_drop": True,  # NOTE: Trial test.
            **meta,
            "mostly_tablelist": True,
            "tablelist_ratio": [tablelists_count, all_text, tablelist_ratio],
        }
    return soup, {
        **meta,
        "mostly_tablelist": False,
        "tablelist_ratio": [tablelists_count, all_text, tablelist_ratio],
    }


def remove_tables(soup: BeautifulSoup, meta: dict):
    """Removes tables.

    Filter mainly removes tables where the the <td> elements is more than the text string of the table.

    In 1.5 or the older superWIKI, it's known as "Excessive TD elements" or something similar.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    tables = []
    for table in soup.select("table"):
        tds = len(table.find_all("td"))
        texsize = len(table.get_text().replace(" ", ""))
        if tds >= texsize and texsize < 50:
            # print(table.get_text().replace(" ", ""))
            tables.append(str(table.extract()))
    return soup, {**meta, "td_tables": tables}


def wikipedia_figures(soup: BeautifulSoup, meta: dict):
    """Removes figure html elements.

    Self-explanatory. Remove <figure> html elements.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for figure_element in soup.select('figure[type~="mw:File"]'):
        if figure_element:
            figure_element.decompose()


def wikipedia_latex(soup: BeautifulSoup, meta: dict):
    """Cleans up wikipedia latex.

    Cleans wikipedia latex stuff. Mainly stripping out multiple math representations.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    for math_element in soup.select("span.mwe-math-element"):
        img = math_element.find("img")
        if not img:
            math = math_element.find("math")
            if math:
                math_text = math.get_text()
            else:
                math_element.decompose()
        else:
            math_text = img.get("alt", "")
        math_element.string = math_text
    return soup, meta


def section_converter(soup: BeautifulSoup, converter: MarkdownConverter):
    """Removes Sections

    Contrary to it's name, it removes sections that matches a list found in wikipedia_template.py

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    sections = []
    for section in soup.find_all("section"):
        if section.find_parents("section"):
            section_title = section.find(["h1", "h2", "h3", "h4"])
            if section_title:
                section_title = section_title.get_text().lower()
                if section_title in section_reference_list:
                    section.extract()
                    # print("Section skip:", section_title)
            continue
        section_title = section.find(["h1", "h2", "h3", "h4"])
        if section_title:
            section_title = section_title.get_text().lower()
            if section_title in section_reference_list:
                section.extract()
                # print("Section skip:", section_title)
                continue
        text_section = converter.convert_soup(section)
        text_section = text_section.rstrip()
        if text_section:
            sections.append(text_section)
    # print(sections)
    if sections:
        return "\n\n".join(sections)
    return ""


def final_pass(soup: BeautifulSoup, meta: dict):
    """Final cleanup pass

    Remove data-mw and class elements since those seem to get included inside the markdown which is not what we want.

    Args:
        soup (BeautifulSoup): The BeautifulSoup4 article
        meta (dict): Metadata

    Returns:
        BeautifulSoup4, dict: Standard filter chain response (Soup, Metadata)
    """
    tables = []
    for elem in soup.find_all(attrs={"class": True}):
        elem["class"] = ""
    for elem in soup.find_all(attrs={"data-mw": True}):
        elem["data-mw"] = ""
    return soup, {**meta}


# unicodedata.east_asian_width()

spaces = {
    "\n": "",
    " ": "",
    "\xa0": "",
    "#": "",
    "[": "",
    "]": "",
    "\u2002": "",
    "\u2003": "",
    **{i: "" for i in string.punctuation},
    **{i: "" for i in string.whitespace},
}


def get_raw_text_length(text: str):
    """Counts text but with smarts

    Double counts CJK characters, normalizes text, remove punctuations and whitespaces.

    Args:
        text (str): Text string

    Returns:
        int: Text length
    """
    unicodedata.normalize("NFKC", text)
    markdown = text.translate(spaces)
    text_length = 0
    for char in markdown:
        text_length += 2 if unicodedata.east_asian_width(char) in ["W", "F", "A"] else 1
    return text_length


def get_text_length(markdown: str, meta: dict):
    """Counts text but with smarts

    Same as get_raw_text_length but in a filter chain format.

    Args:
        markdown (str): The markdown article
        meta (dict): Metadata

    Returns:
        str, dict: Standard filter chain response (markdown, Metadata)
    """
    text_length_final = get_raw_text_length(markdown)
    return markdown, {**meta, "text_length": text_length_final}


def sanitize_punctuations(markdown: str, meta: dict):
    """Cleans punctuations

    Converts unusual punctuations into standard ones,
    remove excessive new lines, fix some weird punctuations.

    This mostly affects latin based languagues. full width characters are not touched.

    Args:
        markdown (str): The markdown article
        meta (dict): Metadata

    Returns:
        str, dict: Standard filter chain response (markdown, Metadata)
    """
    markdown = (
        markdown.replace(" . ", ". ")
        .replace("“", '"')
        .replace("”", '"')
        .replace("\n\n\n\n", "\n\n")
        .replace("\n\n\n", "\n\n")
        .replace(' " ', ' "')
        .replace(", , ", ", ")
        .replace(".,", ".")
    )
    return markdown, meta


def markdown_size_filter(markdown: str, meta: dict):
    """Removes articles where the text length (from get_text_length) is less than 1000.

    Args:
        markdown (str): The markdown article
        meta (dict): Metadata

    Returns:
        str, dict: Standard filter chain response (markdown, Metadata)
    """
    if meta["text_length"] < 1000:
        # print(meta["text_length"],"Too small for", meta["title"])
        return markdown, {**meta, "_drop": True}
    if "wikitext" in meta:
        del meta["wikitext"]
    return markdown, meta


@app.command()
def process_root(folder: pathlib.Path, output_folder: pathlib.Path):
    futures = []
    with conc.ProcessPoolExecutor(max_workers=180) as executor:
        for root_folder in folder.iterdir():
            if root_folder.is_dir():
                processed_root = (output_folder / root_folder.name).resolve()
                print("Processing Root", root_folder, processed_root)
                if not processed_root.exists() or not root_folder.is_dir():
                    processed_root.mkdir(exist_ok=True, parents=True)
                # process_folder(root_folder, output_folder / root_folder.name)
                for root_file in root_folder.glob("*.ndjson"):
                    futures.append(
                        executor.submit(
                            process_file,
                            root_file,
                            processed_root / root_file.name,
                            progress=False,
                        )
                    )
        for future in conc.as_completed(futures):
            try:
                future.result()
            except Exception as e:
                traceback.print_exception(e)
                pass


@app.command()
def process_folder(folder: pathlib.Path, output_folder: pathlib.Path):
    if output_folder is not None and not output_folder.is_dir():
        output_folder.mkdir(exist_ok=True, parents=True)
    with conc.ProcessPoolExecutor(max_workers=180) as executor:
        futures = []
        for file in folder.glob("*.ndjson"):
            futures.append(
                executor.submit(
                    process_file, file, output_folder / file.name, progress=False
                )
            )
        for future in conc.as_completed(futures):
            future.result()


@app.command()
def process_file(
    file: pathlib.Path,
    output_file: typing.Optional[pathlib.Path] = None,
    progress: bool = True,
):
    soup_instance = MediaWikiSoup()

    filter_chain = [
        pull_title,
        is_stub,  # Mark Stubs
        is_lsjbot,  # Drop Lsjbot articles (Swedish, Cebuano, Waray)
        style_merge,
        filter_href,
        filter_cite_needed,
        filter_cite,
        filter_redirect,
        only_tables_list,
        remove_msg_boxes,
        remove_infobox,
        remove_tables,
        wikipedia_latex,
        final_pass,
    ]

    markdown_chain = [sanitize_punctuations, get_text_length, markdown_size_filter]

    for chain in filter_chain:
        soup_instance.add_soup_filter(chain)
    for chain in markdown_chain:
        soup_instance.add_markdown_filter(chain)
    fout = None
    if output_file:
        fout = open(output_file, "wb")
    pbar = None
    if progress:
        pbar = tqdm.tqdm()
    with open(file, "rb") as f:
        for line in f:
            try:
                wiki_data = orjson.loads(line)
            except orjson.JSONDecodeError:
                pass
            if not wiki_data["article_body"].get("wikitext"):
                continue
            meta = {"wikitext": wiki_data["article_body"]["wikitext"]}
            response = soup_instance.soup_filter(
                wiki_data["article_body"]["html"], meta=meta
            )
            # print(response)
            if not response:
                continue
            markdown = section_converter(response[0], soup_instance.converter)
            response = soup_instance.markdown_filter(markdown, response[1])
            # print(response)
            if response and fout:
                fout.write(orjson.dumps({"text": response[0], "meta": response[1]}))
                fout.write(b"\n")
                fout.flush()
                if pbar is not None:
                    pbar.update(1)
    if fout:
        fout.close()
    if pbar is not None:
        pbar.close()


if __name__ == "__main__":
    app()