lemonde_gender / scripts /figures.qmd
regicid
bla
9b3132c
---
title: "figures"
format: pdf
editor: visual
execute:
echo: false
warning: false
---
```{r}
library(ggplot2)
library(dplyr)
library(tidyr)
sysfonts::font_add_google("EB Garamond")
theme_set(theme_minimal(base_family = "EB Garamond"))
theme_update(text = element_text(size = 50))
library(showtext)
showtext_auto()
data = read.csv("../full_data.csv")
#rubriques_lemonde = c("international","culture","politique","société","économie","sport","science/technologie","inclassable")
#z = data$rubrique %in% rubriques_lemonde
#data$rubrique[!z] = "inclassable"
data$sexe_prenom = data$sexe_prenom %>% recode(Femme = "Women",Homme = "Men")
data$rubrique[data$rubrique=="Science/tech"] = "Culture"
data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Politics",société = 'Society',"science/technologie" = "Science/tech",culture="Culture",international = "International",sport="Sport",inclassable = "Unclassifiable")
```
```{r}
#| fig-cap: Masculinity rate of mentions and quotes in the whole corpus
d = data%>% group_by(year) %>% summarise(
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T),
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
nwords = sum(nwords)
#entities = sum(entities)
)
d$mentions_total = d$mentions_men + d$mentions_women
fig = ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) + #scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(.5, 1)
ggsave("../figures/fig1.png",fig,dpi=320,bg="white",width=7, height=5)
```
```{r}
#| fig-cap: Masculinity rate of mentions per news section, excluding unclassifiable
d = data %>%
filter(!rubrique %in% c("Unclassifiable")) %>%
group_by(year,rubrique) %>% summarise(
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T),
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
signatures_men = sum(sexe_prenom=="Men"),
signatures_women= sum(sexe_prenom=="Women")
)
d$mentions_total = d$mentions_men + d$mentions_women
ggplot(d %>% filter(mentions_women > 20,year > 1944),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
#geom_line(data = filter(d,!year %in% missing_years),aes(year,signatures_men/(signatures_men+signatures_women),linetype="Signatures")) +
# scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(c(.5,1)) + facet_wrap(.~rubrique,nrow = 2,ncol=3) + theme(
strip.text = element_text(size = 40, family = "EB Garamond"),
axis.text.x = element_text(size = 30)
)
ggsave("../figures/masc_mentions_sections.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
#| fig-cap: Masculinity rates of mentions and quotes, depending on the journalist gender. We ignore the points where there are less than 100 mentions or citations, and the 1987-1994 and 2003-2004, where the author metadata is mostly missing due to errors of digitization.
#| fig-width: 9.5
library(cowplot)
missing_years = c(1987:1994,2003:2004)
d = filter(data,sexe_prenom %in% c("Women","Men"))
d = d %>% group_by(year,sexe_prenom) %>% summarise(
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T)
)
d$mentions_total = d$mentions_men + d$mentions_women
d$citations_total = d$citations_men + d$citations_women
# Create the plots
a <- ggplot(d %>% filter(mentions_total > 100, !year %in% missing_years),
aes(year, mentions_men/mentions_total, shape = sexe_prenom)) +
geom_point() +
ylab("Mentions masculinity rate") +
labs(shape = "Journalist gender") +
xlab("Date") +
scale_shape_manual(values = c("Women" = 2, "Men" = 16))
b <- ggplot(d %>% filter(citations_total > 100, !year %in% missing_years),
aes(year, citations_men/citations_total, shape = sexe_prenom)) +
geom_point() +
ylab("Quotes masculinity rate") +
labs(shape = "Journalist gender") +
xlab("Date") +
scale_shape_manual(values = c("Women" = 2, "Men" = 16))
# Create the legend separately
legend <- get_legend(a)
# Combine the plots and legend
plots <- plot_grid(a + theme(legend.position = "none"),
b + theme(legend.position = "none"),
nrow=2,rel_heights = c(.5,.5))
fig <- plot_grid(plots, legend, ncol = 2, rel_widths = c(1, 0.15))
d$mmr = d$mentions_men/d$mentions_total
z = d$mentions_total < 100
d$mmr[z] = NA
d$qmr = d$citations_men/d$citations_total
z = d$citations_total < 100
d$qmr[z] = NA
dd = gather(d %>% select("year","sexe_prenom","qmr","mmr"),"key","value",-year,-sexe_prenom)
dd$key = dd$key %>% recode(mmr = "Mentions",qmr = "Quotes")
ggplot(dd %>% filter(!year %in% missing_years),
aes(year, value, shape = sexe_prenom)) +
geom_point() +
ylab("Masculinity rate") +
labs(shape = "Journalist gender") +
xlab("Date") +
scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + facet_wrap(.~key,nrow = 2)
ggsave("../figures/measures_journalist_gender.png", dpi=320, bg="white", width=7, height=5)
```
```{r}
#| fig-cap: Masculinity rates of mentions, depending on the journalist gender, by news section (omitting sports and unclassifiable articles).
library(dplyr)
d = filter(data,sexe_prenom %in% c("Women","Men"),!rubrique %in% c("Unclassifiable"))
d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T)
)
d$mentions_total = d$mentions_men + d$mentions_women
d$citations_total = d$citations_men + d$citations_women
ggplot(d %>% filter(citations_women > 10),aes(year,citations_women/citations_total,shape=sexe_prenom)) + geom_point() + geom_smooth(se=F) + ylab("Masculinity rate of quotes") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
strip.text = element_text(size = 10, family = "EB Garamond"),
axis.text.x = element_text(size = 7)) + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))
ggsave("../figures/measures_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
```
```{r}
#| fig-cap: Masculinity rates of mentions, depending on the journalist gender, by news section (omitting unclassifiable articles).
ggplot(d %>% filter(mentions_women > 100),aes(year,mentions_women/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
strip.text = element_text(size = 10, family = "EB Garamond"),
axis.text.x = element_text(size = 7)
) + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + xlab("Date")
ggsave("../figures/mentions_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
```
```{r}
#| fig-cap: Difference between mentions and citations of women, between women and men journalists. This Figure aims at capturing the to what extent women journalists mention and quote more women, over time.
d = filter(data,sexe_prenom %in% c("Women","Men"),!year %in% missing_years) %>% group_by(year,sexe_prenom) %>% summarise(
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T)
)
d$mentions_total = d$mentions_men + d$mentions_women
d$citations_total = d$citations_men + d$citations_women
d$feminity_mentions = d$mentions_women/d$mentions_total
d$feminity_citations = d$citations_women/d$citations_total
d_bis = d %>% filter(citations_total > 100) %>% select(year,sexe_prenom,feminity_mentions,feminity_citations) %>% pivot_wider(names_from = sexe_prenom, values_from = c(feminity_mentions,feminity_citations), id_cols = c( year))
ggplot(d_bis,aes(year,feminity_citations_Women-feminity_citations_Men,color="Citations")) + geom_point() + geom_smooth(se=F) + geom_point(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions")) + geom_smooth(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions"),se=F) + ylab("Gap between women and men journalists") + labs(color="Measure") + xlab("Date")
```
```{r}
d = filter(data,sexe_prenom %in% c("Women","Men"))
d = d %>% group_by(year,sexe_prenom) %>% summarise(
n = n()
)
d[d$year %in% missing_years,"n"] = NA
d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date")
ggsave("../figures/signatures.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
d = filter(data,sexe_prenom %in% c("Women","Men"), rubrique != "Unclassifiable")
d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
n = n()
)
d[d$year %in% missing_years,"n"] = NA
d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
d_bis = d_bis %>% mutate(Women = replace_na(Women, 0))
d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date") + facet_wrap(.~rubrique)
ggsave("../figures/signatures_rubriques.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
z = data %>% group_by(year) %>% summarise(nwords = sum(nwords))
ggplot(z,aes(year,nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year")
ggsave("../figures/nwords.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
z = data %>% filter(!rubrique %in% c("Unclassifiable","Science/tech")) %>% group_by(year,rubrique) %>% summarise(nwords = sum(nwords))
z = z %>% group_by(year) %>% mutate(total_nwords_per_year = sum(nwords),
normalized_nwords = nwords / total_nwords_per_year) %>%
ungroup()
ggplot(z,aes(year,normalized_nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year in the corpus") + facet_wrap(.~rubrique, ncol = 3, nrow = 2)
ggsave("../figures/nwords_rubrique.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
library(glue)
library(tidyr)
mean_male = vector()
mean_female = vector()
for(i in 1945:2022){
a = read.csv(glue("~/Downloads/verbs_nonagg/quotes_verbs_{i}.csv"),sep = "\t")
mean_male = c(mean_male,mean(a[a$speaker_gender=="Male",]$n_tok))
mean_female = c(mean_female,mean(a[a$speaker_gender=="Female",]$n_tok))
}
result = data.frame(year = 1945:2022,Male = mean_male,Female = mean_female)
result_gather = gather(result,"Gender","value",-year)
ggplot(result_gather,aes(year)) +
geom_ribbon(data = result,
aes(ymin = pmin(Male, Female),
ymax = pmax(Male, Female),
fill = Male > Female,
group = cumsum(c(0, diff(Male > Female) != 0))),
alpha = .3,show.legend = FALSE) + geom_line(aes(y=value,linetype=Gender)) +
xlab("Date") + ylab("Mean quote length (words)")+
scale_fill_manual(values = c("TRUE" = "lightblue", "FALSE" = "pink"),
labels = c("TRUE" = "Male > Female", "FALSE" = "Female > Male"),
name = "Difference")
ggsave("../figures/length_quotes.png",dpi=320,bg="white",width=7, height=5)
ggplot(result, aes(year,Male/Female)) + geom_point() + geom_smooth(color="black",se=F)
```
```{r}
#Stereotypes data preparation
#files = read.csv("~/Downloads/citations_by_article.csv",
# col.names = c("filename","n_men","n_women","verbs_men",
# "verbs_men_lemmatized","verbs_women","verbs_women_lemmatized"))
#z = duplicated(files$filename)
#files = files[!z,]
#library(stringr)
#files$filename = str_c(files$filename,".txt")
#z = duplicated(data$filename)
#verbs_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
# right_join(files,by="filename")
#verbs_data = filter(verbs_data,sexe_prenom =="Men")
verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
```
```{r}
##Compute odds ratios
verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
threshold = 30
men = data %>% group_by(year) %>% mutate(
verbs_men_lemmatized = strsplit(verbs_men_lemmatized, ";")) %>%
unnest(verbs_men_lemmatized) %>%
count(verbs_men_lemmatized) %>% ungroup() %>%
complete(verbs_men_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
arrange(verbs_men_lemmatized)
z = is.na(men$verbs_men_lemmatized)
men <- men[!z,] %>%
pivot_wider(
names_from = verbs_men_lemmatized,
values_from = n,
values_fill = 0
)
men = dplyr::filter(men,year %in% 1945:2024)
men$decade = (men$year-1945) %/% 10
men = men %>% dplyr::select(-year) %>%
group_by(decade) %>% summarise(across(everything(),sum))
women = data %>% group_by(year) %>% mutate(
verbs_women_lemmatized = strsplit(verbs_women_lemmatized, ";")) %>%
unnest(verbs_women_lemmatized) %>%
count(verbs_women_lemmatized) %>% ungroup() %>%
complete(verbs_women_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
arrange(verbs_women_lemmatized)
z = is.na(men$verbs_men_lemmatized)
women <- women[z,] %>%
pivot_wider(
names_from = verbs_women_lemmatized,
values_from = n,
values_fill = 0
)
women = dplyr::filter(women,year %in% 1945:2024)
women$decade = (women$year-1945) %/% 10
women = women %>% dplyr::select(-year) %>%
group_by(decade) %>% summarise(across(everything(),sum))
total_men = rowSums(men)
total_women = rowSums(women)
odds_ratios = (men/total_men)/(women/total_women)
log_odds_ratios = odds_ratios %>% log2()
log_odds_ratios = data.frame(log_odds_ratios)
log_odds_ratios[log_odds_ratios == Inf | log_odds_ratios == -Inf] <- NA
vars = 1/men + 1/women
#log_odds_ratios[vars > .025] = NA
log_odds_ratios[men+women < threshold] = NA
vars[men+women < threshold] = NA
#vars[vars > .01] = NA
```
```{r}
##Plot degree of stereotype
v = is.na(log_odds_ratios[1,])
#stereotypes = apply(log_odds_ratios[,!v], 1, function(x) 1/sum(!is.na(x))*sum(x^2, na.rm = TRUE))
stereotypes = apply(log_odds_ratios[,!v], 1, function(x) sd(x,na.rm = TRUE))
years <- 1940 + (1:8) * 10
stereotypes_df <- data.frame(
Year = years,
stereotypes = stereotypes
)
plot1 = ggplot(stereotypes_df, aes(x = Year, y = stereotypes)) +
geom_line() + ylab("Standard deviation among verbs") +
scale_x_continuous(breaks = years) + xlab("Date")
z = log_odds_ratios
z[men + women < 100] = NA
v = is.na(z[1,])
z = z[,!v]
z$decade = 1940 + (1:8)*10
z = gather(z,"key","value",-decade)
total = colSums(men[,!as.vector(v)] + women[,!as.vector(v)],na.rm=T) %>% data.frame()
total$key = row.names(total)
z = left_join(z,total,by="key")
z = filter(z,!key %in% excl)
colnames(z)[4] = "s"
plot2 = ggplot(z,aes(decade,value,group=key)) +
geom_line(aes(alpha =log(s)),linewidth=.4) +
scale_alpha_continuous(guide = "none") + scale_x_continuous(breaks = years) +
ylab("Verbs log odd-ratio") + xlab("")
plot_grid(plot2,plot1,nrow=2,labels = c("A","B"),align="v",label_size = 50,label_x = .1)
ggsave("../figures/spaghetti.png",dpi=320,bg="white",width=9, height=7)
#ggsave("../figures/stereoptype_over_time.png",dpi=320,bg="white",width=7, height=5)
```
```{r}
stereotypes_verbs = colMeans(log_odds_ratios/(stereotypes/mean(stereotypes)),na.rm=T)
stereotypes_verbs[colSums(men) + colSums(women) < 100] = NA
stereotypes_verbs = stereotypes_verbs %>% data.frame()
colnames(stereotypes_verbs) = "Masculinity"
stereotypes_verbs$var = colMeans(vars,na.rm=T)/colSums(!is.na(vars))
stereotypes_verbs$Verb = colnames(men)
stereotypes_verbs = stereotypes_verbs %>% filter(!is.na(Masculinity)) %>%
arrange(Masculinity)
excl = c("naître","falloir","aimer","consacrer","savoir","demeurer","sembler","rester","mettre","devenir","devoir","diriger","créer","convier","connaître","attendre","aller",'organiser')
stereotypes_verbs = filter(stereotypes_verbs,!Verb %in% excl)
n = 20
gaps <- data.frame(
Masculinity = rep(0, 3), # No bar for the gap
var = rep(0, 3), # No error bar for the gap
Verb = c("...", "...", "...") # Multiple placeholders,
)
verbs_plot_with_gap = rbind(head(stereotypes_verbs,15),gaps,tail(stereotypes_verbs,15))
verbs_plot_with_gap$Verb_english = dplyr::recode(verbs_plot_with_gap$Verb,murmurer="Whisper",raconter="Recount",sourire="Smile",hurler="Scream",traduire="Translate",souvenir="Remember",soupirer="Sigh",témoigner='Testify',lire='Read',avouer='Avow','(s)enthousiasmer'='Enthuse',relater='Relate',réaliser="Realize",enchaîner="Continue",finir="End",estimer='Estimate',avertir='Warn',reprocher="Reproach",accuser="Accuse",calculer ="Calculate",arguer="Argue",indiquer="Indicate",menacer="Threaten",ajouter='Add',inviter="Invite",mentionner='Mention',tonner="Thunder",déclarer="Declare",promettre="Promise",prédire="Predict",'(se)désoler'='Lament',glisser='Slip', railler="Mock",exprimer="Express")
verbs_plot_with_gap$Verb = dplyr::recode(verbs_plot_with_gap$Verb,souvenir="(se)souvenir")
breaks <- c(log2(0.25), log2(0.5), 0, log2(2), log2(4), log2(8))
labels <- c("0.25x", "0.5x", "Same", "2x", "4x", "8x")
ggplot(verbs_plot_with_gap, aes(x = -Masculinity, y = reorder(Verb, -Masculinity))) +
geom_bar(stat = "identity", fill = "black",
alpha = 0.4, width = 0.3) +
geom_errorbar(aes(
xmin = -Masculinity - sqrt(var),
xmax = -Masculinity + sqrt(var)
), width = 0.2) +
geom_vline(xintercept = 0, linetype = "dashed", color = "gray50") +
ylab("Verb") +
theme(
panel.grid.major.y = element_blank(),
panel.grid.minor.x = element_blank(),
) +
scale_x_continuous(
breaks = breaks,
labels = labels,limits=c(NA,2.4)
) + xlab("Relative appearance for women vs men") + geom_text(aes(x=2.2,y = reorder(Verb, -Masculinity),label=tolower(Verb_english)),hjust=0,family = 'EB Garamond',size=14,alpha=.7)
ggsave("../figures/most_gendered_verbs.png",dpi=320,bg="white",width=9, height=5)
```
```{r}
##Segregation mentions
dd = data%>% filter(mentions_women > .995,rubrique!= "Uncl assifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(##Measuring sex-ratio experienced by women
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women-1,na.rm=T),
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women-.995,na.rm=T),
nwords = sum(nwords)
#entities = sum(entities)
)
d = data %>% filter(year > 1945,rubrique!= "Unclassifiable") %>% group_by(year,rubrique) %>% summarise(##General sex ratio
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women,na.rm=T),
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women,na.rm=T),
nwords = sum(nwords)
#entities = sum(entities)
)
dd$women_ratio = dd$mentions_women/(dd$mentions_men+dd$mentions_women)
d$women_ratio = d$mentions_women/(d$mentions_men+d$mentions_women)
dd = dd %>% merge(d,by = c("year","rubrique"))
dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
ggplot(filter(dd,mentions_women.y > 100),aes(year,exposure_index)) + geom_line() +
facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women mentions") + scale_y_continuous(trans="log2")
ggsave("../figures/segregation_mentions.png",dpi=320,bg="white",width=9, height=5)
```
```{r}
dd = data%>% filter(citations_women > .995,rubrique!= "Unclassifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(
citations_men = sum(citations_men,na.rm=T),
citations_women = sum(citations_women-1,na.rm=T),
mentions_men = sum(mentions_men,na.rm=T),
mentions_women = sum(mentions_women-.995,na.rm=T),
nwords = sum(nwords)
#entities = sum(entities)
)
dd$women_ratio = dd$citations_women/(dd$citations_men+dd$citations_women)
d$women_ratio = d$citations_women/(d$citations_men+d$citations_women)
dd = dd %>% merge(d,by = c("year","rubrique"))
dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
ggplot(filter(dd,citations_women.y > 100),aes(year,exposure_index)) + geom_line() + ylim(c(.8,NA)) +
facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women citations") + scale_y_continuous(trans="log2")
ggsave("../figures/segregation_citations.png",dpi=320,bg="white",width=9, height=5)
```
```{r}
#quotes length data preparation
files = read.csv("~/Downloads/citations_length_by_article.csv",
col.names = c("filename","n_men","n_women","length_men",
"length_women"))
z = duplicated(files$filename)
files = files[!z,]
library(stringr)
files$filename = str_c(files$filename,".txt")
z = duplicated(data$filename)
length_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
right_join(files,by="filename")
z = length_data %>% group_by(year) %>% mutate(
length_men = strsplit(length_men, ";") %>% lapply(as.integer),
length_women = strsplit(length_women, ";") %>% lapply(as.integer))
z_men = z %>% unnest(length_men)%>% group_by(year) %>%
summarise(mean_quote_length=mean(length_men))
z_women = z %>% unnest(length_women) %>% group_by(year) %>%
summarise(mean_quote_length=mean(length_women))
z_men$ratio_length = z_men$mean_quote_length/z_women$mean_quote_length
ggplot(z_men %>% filter(year > 1944),aes(year,ratio_length)) + geom_point() + geom_smooth(color='black',se=F) + xlab("Date") + ylab("Male-to-female quote length ratio")
ggsave("../figures/length.png",dpi=320,bg="white",width=9, height=5)
```