Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,308 Bytes
20ed7b1
24ca5f7
20ed7b1
 
 
 
516fc89
24ca5f7
20ed7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f0c317
20ed7b1
24ca5f7
 
20ed7b1
 
 
 
 
11f0c50
20ed7b1
24ca5f7
 
20ed7b1
 
 
24ca5f7
20ed7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322d5f7
20ed7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3803550
 
 
 
11f0c50
 
3803550
 
11f0c50
20ed7b1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import json
from itertools import chain
import datasets

logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[Analogy Question](https://aclanthology.org/2021.acl-long.280/)"""
_NAME = "analogy_questions"
_VERSION = "1.0.1"
_CITATION = """
@inproceedings{ushio-etal-2021-bert,
    title = "{BERT} is to {NLP} what {A}lex{N}et is to {CV}: Can Pre-Trained Language Models Identify Analogies?",
    author = "Ushio, Asahi  and
      Espinosa Anke, Luis  and
      Schockaert, Steven  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.280",
    doi = "10.18653/v1/2021.acl-long.280",
    pages = "3609--3624",
    abstract = "Analogies play a central role in human commonsense reasoning. The ability to recognize analogies such as {``}eye is to seeing what ear is to hearing{''}, sometimes referred to as analogical proportions, shape how we structure knowledge and understand language. Surprisingly, however, the task of identifying such analogies has not yet received much attention in the language model era. In this paper, we analyze the capabilities of transformer-based language models on this unsupervised task, using benchmarks obtained from educational settings, as well as more commonly used datasets. We find that off-the-shelf language models can identify analogies to a certain extent, but struggle with abstract and complex relations, and results are highly sensitive to model architecture and hyperparameters. Overall the best results were obtained with GPT-2 and RoBERTa, while configurations using BERT were not able to outperform word embedding models. Our results raise important questions for future work about how, and to what extent, pre-trained language models capture knowledge about abstract semantic relations.",
}
"""
_HOME_PAGE = "https://github.com/asahi417/relbert"
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/raw/main/dataset'
_URLS = {
    str(datasets.Split.TEST): {
            'bats': [f'{_URL}/bats/test.jsonl'],
            'google': [f'{_URL}/google/test.jsonl'],
            'sat': [f'{_URL}/sat/test.jsonl'],
            'sat_full': [f'{_URL}/sat/test.jsonl', f'{_URL}/sat/valid.jsonl'],
            'u2': [f'{_URL}/u2/test.jsonl'],
            'u4': [f'{_URL}/u4/test.jsonl'],
            "semeval2012_relational_similarity": []
        },
    str(datasets.Split.VALIDATION): {
            'bats': [f'{_URL}/bats/valid.jsonl'],
            'google': [f'{_URL}/google/valid.jsonl'],
            'sat': [f'{_URL}/sat/valid.jsonl'],
            'sat_full': [],
            'u2': [f'{_URL}/u2/valid.jsonl'],
            'u4': [f'{_URL}/u4/valid.jsonl'],
            "semeval2012_relational_similarity": [f'{_URL}/u4/valid.jsonl']
        }
}

_DATASET = sorted(list(set(list(chain(*[list(i.keys()) for i in _URLS.values()])))))


class AnalogyQuestionConfig(datasets.BuilderConfig):
    """BuilderConfig"""

    def __init__(self, **kwargs):
        """BuilderConfig.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(AnalogyQuestionConfig, self).__init__(**kwargs)


class AnalogyQuestion(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [AnalogyQuestionConfig(name=i, version=datasets.Version(_VERSION), description=f"Dataset {i}") for i in sorted(_DATASET)]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "stem": datasets.Sequence(datasets.Value("string")),
                    "answer": datasets.Value("int32"),
                    "choice": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "prefix": datasets.Value("string")
                }
            ),
            supervised_keys=None,
            homepage=_HOME_PAGE
        )

    def _split_generators(self, dl_manager):
        if self.config.name == 'sat_full':
            downloaded_file = dl_manager.download_and_extract({
                str(datasets.Split.TEST): _URLS[str(datasets.Split.TEST)][self.config.name]
            })
            return [datasets.SplitGenerator(name=str(datasets.Split.TEST),
                                            gen_kwargs={"filepaths": downloaded_file[str(datasets.Split.TEST)]})]
        else:
            downloaded_file = dl_manager.download_and_extract({k: v[self.config.name] for k, v in _URLS.items()})
            return [datasets.SplitGenerator(name=k, gen_kwargs={"filepaths": downloaded_file[k]}) for k in _URLS.keys()]

    def _generate_examples(self, filepaths):
        _key = 0
        for filepath in filepaths:
            logger.info("generating examples from = %s", filepath)
            with open(filepath, encoding="utf-8") as f:
                _list = [i for i in f.read().split('\n') if len(i) > 0]
                for i in _list:
                    data = json.loads(i)
                    yield _key, data
                    _key += 1