File size: 2,757 Bytes
b789ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import json
import os
from itertools import combinations
from random import seed, randint, shuffle
import pandas as pd
from datasets import load_dataset
def get_stats(filename):
with open(filename) as f:
_data = [json.loads(i) for i in f.read().splitlines()]
return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data])))
def create_analogy(_data):
analogy_data = []
seed(12)
for i in _data:
source = []
target = []
for s, t in zip(i['source'], i['target']):
if s not in source and t not in target:
source.append(s)
target.append(t)
assert len(source) == len(target), f"{len(source)} != {len(target)}"
all_combinations = list(combinations(range(len(source)), 2))
for n, (q_h_id, q_t_id) in enumerate(all_combinations):
choice = [[target[x], target[y]] for m, (x, y) in enumerate(all_combinations) if m != n]
answer_id = randint(0, len(source) - 1)
choice = choice[:answer_id] + [[target[q_h_id], target[q_t_id]]] + choice[answer_id:]
assert choice[answer_id] == [target[q_h_id], target[q_t_id]]
analogy_data.append({
"stem": [source[q_h_id], source[q_t_id]],
"choice": choice,
"answer": answer_id,
"prefix": i["type"]
})
return analogy_data
data = load_dataset("relbert/scientific_and_creative_analogy", split='test')
data = create_analogy(data)
data_m = [i for i in data if i['prefix'] == 'metaphor']
data_s = [i for i in data if i['prefix'] != 'metaphor']
seed(12)
shuffle(data_m)
shuffle(data_s)
validation = data_s[:int(0.1 * len(data_s))] + data_m[:int(0.1 * len(data_m))]
test = data_s[int(0.1 * len(data_s)):] + data_m[int(0.1 * len(data_m)):]
os.makedirs("dataset/scan", exist_ok=True)
with open("dataset/scan/valid.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in validation]))
with open("dataset/scan/test.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test]))
t_size, t_num_choice, t_relation_type = get_stats("dataset/scan/test.jsonl")
v_size, v_num_choice, v_relation_type = get_stats("dataset/scan/valid.jsonl")
stat = [{
"name": "`scan`",
"Size (valid/test)": f"{v_size}/{t_size}",
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}",
"Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}",
"Original Reference": "[relbert/scientific_and_creative_analogy](https://huggingface.co/datasets/relbert/scientific_and_creative_analogy)"
}]
print(pd.DataFrame(stat).to_markdown(index=False))
|