init
Browse files- .gitattributes +3 -0
- .gitignore +2 -0
- README.md +0 -0
- data/test.jsonl +3 -0
- data/train.jsonl +3 -0
- data/validation.jsonl +3 -0
- data/vocab.txt +0 -0
- link_prediction_nell_one.py +85 -0
- process.py +44 -0
.gitattributes
CHANGED
@@ -52,3 +52,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
data/test.jsonl filter=lfs diff=lfs merge=lfs -text
|
56 |
+
data/train.jsonl filter=lfs diff=lfs merge=lfs -text
|
57 |
+
data/validation.jsonl filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
NELL
|
2 |
+
nell.tar.gz
|
README.md
ADDED
File without changes
|
data/test.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a94b344bf4b4b721f9ca1b96813b497c1f87eac795e393e321d370c5cb1dd1e
|
3 |
+
size 275455
|
data/train.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59fcc5f746777fcda4058a0bf8cb6a55e03bde3b3ffdf6716a259a0fe2740374
|
3 |
+
size 1071208
|
data/validation.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dce6d2c53f2d4d9e7390033fcc787b5b405a06d13141e5affa5b3b43561657f5
|
3 |
+
size 116970
|
data/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
link_prediction_nell_one.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
_DESCRIPTION = """NELL-One, a few shots link prediction dataset. """
|
7 |
+
_NAME = "link_prediction_nell_one"
|
8 |
+
_VERSION = "0.0.0"
|
9 |
+
_CITATION = """
|
10 |
+
@inproceedings{xiong-etal-2018-one,
|
11 |
+
title = "One-Shot Relational Learning for Knowledge Graphs",
|
12 |
+
author = "Xiong, Wenhan and
|
13 |
+
Yu, Mo and
|
14 |
+
Chang, Shiyu and
|
15 |
+
Guo, Xiaoxiao and
|
16 |
+
Wang, William Yang",
|
17 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
|
18 |
+
month = oct # "-" # nov,
|
19 |
+
year = "2018",
|
20 |
+
address = "Brussels, Belgium",
|
21 |
+
publisher = "Association for Computational Linguistics",
|
22 |
+
url = "https://aclanthology.org/D18-1223",
|
23 |
+
doi = "10.18653/v1/D18-1223",
|
24 |
+
pages = "1980--1990",
|
25 |
+
abstract = "Knowledge graphs (KG) are the key components of various natural language processing applications. To further expand KGs{'} coverage, previous studies on knowledge graph completion usually require a large number of positive examples for each relation. However, we observe long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge distilled by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.",
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
_HOME_PAGE = "https://github.com/asahi417/relbert"
|
30 |
+
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
|
31 |
+
_URLS = {
|
32 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.jsonl'],
|
33 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.jsonl'],
|
34 |
+
str(datasets.Split.TEST): [f'{_URL}/test.jsonl'],
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
class LinkPredictionNellOneConfig(datasets.BuilderConfig):
|
39 |
+
"""BuilderConfig"""
|
40 |
+
|
41 |
+
def __init__(self, **kwargs):
|
42 |
+
"""BuilderConfig.
|
43 |
+
Args:
|
44 |
+
**kwargs: keyword arguments forwarded to super.
|
45 |
+
"""
|
46 |
+
super(LinkPredictionNellOneConfig, self).__init__(**kwargs)
|
47 |
+
|
48 |
+
|
49 |
+
class LinkPredictionNellOne(datasets.GeneratorBasedBuilder):
|
50 |
+
"""Dataset."""
|
51 |
+
|
52 |
+
BUILDER_CONFIGS = [
|
53 |
+
LinkPredictionNellOneConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION)
|
54 |
+
]
|
55 |
+
|
56 |
+
def _split_generators(self, dl_manager):
|
57 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
58 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
59 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION]]
|
60 |
+
|
61 |
+
def _generate_examples(self, filepaths):
|
62 |
+
_key = 0
|
63 |
+
for filepath in filepaths:
|
64 |
+
logger.info(f"generating examples from = {filepath}")
|
65 |
+
with open(filepath, encoding="utf-8") as f:
|
66 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
67 |
+
for i in _list:
|
68 |
+
data = json.loads(i)
|
69 |
+
yield _key, data
|
70 |
+
_key += 1
|
71 |
+
|
72 |
+
def _info(self):
|
73 |
+
return datasets.DatasetInfo(
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
features=datasets.Features(
|
76 |
+
{
|
77 |
+
"relation": datasets.Value("string"),
|
78 |
+
"head": datasets.Value("string"),
|
79 |
+
"tail": datasets.Value("string"),
|
80 |
+
}
|
81 |
+
),
|
82 |
+
supervised_keys=None,
|
83 |
+
homepage=_HOME_PAGE,
|
84 |
+
citation=_CITATION,
|
85 |
+
)
|
process.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
- Wiki-One https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz
|
3 |
+
- NELL-One https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz
|
4 |
+
wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz
|
5 |
+
tar -xzf nell.tar.gz
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from itertools import chain
|
10 |
+
|
11 |
+
data_dir = "NELL"
|
12 |
+
os.makedirs("data", exist_ok=True)
|
13 |
+
|
14 |
+
if not os.path.exists(data_dir):
|
15 |
+
raise ValueError("Please download the dataset first\n"
|
16 |
+
"wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz\n"
|
17 |
+
"tar -xzf nell.tar.gz")
|
18 |
+
|
19 |
+
|
20 |
+
def read_file(_file):
|
21 |
+
with open(f"{data_dir}/{_file}", 'r') as f_reader:
|
22 |
+
tmp = json.load(f_reader)
|
23 |
+
flatten = list(chain(*[[{"relation": r, "head": h, "tail": t} for (h, r, t) in v] for v in tmp.values()]))
|
24 |
+
# flatten = {}
|
25 |
+
# for k, v in tmp.items():
|
26 |
+
# flatten[k] = [{"relation": r, "head": h, "tail": t} for (h, r, t) in v]
|
27 |
+
return flatten
|
28 |
+
|
29 |
+
|
30 |
+
def read_vocab(_file):
|
31 |
+
with open(f"{data_dir}/{_file}") as f_reader:
|
32 |
+
ent2ids = json.load(f_reader)
|
33 |
+
return sorted(list(ent2ids.keys()))
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == '__main__':
|
37 |
+
vocab = read_vocab("ent2ids")
|
38 |
+
with open("data/vocab.txt", 'w') as f:
|
39 |
+
f.write("\n".join(vocab))
|
40 |
+
|
41 |
+
for i, s in zip(['dev_tasks.json', 'test_tasks.json', 'train_tasks.json'], ['validation', 'test', 'train']):
|
42 |
+
d = read_file(i)
|
43 |
+
with open(f"data/{s}.jsonl", "w") as f:
|
44 |
+
f.write("\n".join([json.dumps(_d) for _d in d]))
|