Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
asahi417 commited on
Commit
b793b52
·
1 Parent(s): 53fb42f
.gitattributes CHANGED
@@ -63,3 +63,8 @@ data/nell.vocab.txt filter=lfs diff=lfs merge=lfs -text
63
  data/wiki.test.jsonl filter=lfs diff=lfs merge=lfs -text
64
  data/wiki.train.jsonl filter=lfs diff=lfs merge=lfs -text
65
  data/wiki.validation.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
63
  data/wiki.test.jsonl filter=lfs diff=lfs merge=lfs -text
64
  data/wiki.train.jsonl filter=lfs diff=lfs merge=lfs -text
65
  data/wiki.validation.jsonl filter=lfs diff=lfs merge=lfs -text
66
+ data/nell.vocab.clean.txt filter=lfs diff=lfs merge=lfs -text
67
+ data/nell_filter.test.jsonl filter=lfs diff=lfs merge=lfs -text
68
+ data/nell_filter.train.jsonl filter=lfs diff=lfs merge=lfs -text
69
+ data/nell_filter.validation.jsonl filter=lfs diff=lfs merge=lfs -text
70
+ data/nell_filter.vocab.txt filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -33,7 +33,7 @@ An example of `test` of `nell` looks as follows.
33
  }
34
  ```
35
 
36
- ## Statistics
37
 
38
  - Entity Types
39
 
 
33
  }
34
  ```
35
 
36
+ ## Statistics on the NELL test split
37
 
38
  - Entity Types
39
 
data/nell.test.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:134f41e3db58601aba6d3f903c4e243b5b7e846d61eac37e36c68c130415981e
3
  size 510425
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa48d27aba4c3b82c2369313fc7a0436103fcb27115efc4159e8b50d988a6fa3
3
  size 510425
data/nell.train.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4fd1b662dba39038af6e63cf343152430290528f8a55265194316cf252646712
3
- size 1997174
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc4c73fdae5db374da7855e421176dc09462cc72366040d39ce42d7ec333460d
3
+ size 1997185
data/nell.validation.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6a51f96df896ae77a46e0684f0b10c5d0b055083daec0b19647abb688c57ca39
3
  size 222265
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c44da469d07e6c45d8bd71cf84b8abc33b0d4ecf41d395c563f055db58ed0919
3
  size 222265
data/nell.vocab.clean.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af38d1a58200cf9a3aa0c0d5e76c30202eff02c0cbd353f1c92640fd3fb0d422
3
+ size 884124
data/nell_filter.test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7080aa24a120c206d15c89bdeb659613f98943e1a777dc0470d2ba220789f537
3
+ size 328006
data/nell_filter.train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5c399247378d26aaf06b3d6bc4770eb861805527311b188aba9a9243b45b84b
3
+ size 1303312
data/nell_filter.validation.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95da57e7d4674775756c8fdd3e262c1aebb094c65e4c0596a0ae0e859bf38c43
3
+ size 190916
data/nell_filter.vocab.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52489b95fececef828e13cf875c86128ab3b8134c6bdbce7618d809ee59a75f5
3
+ size 694324
fewshot_link_prediction.py CHANGED
@@ -28,7 +28,7 @@ _CITATION = """
28
 
29
  _HOME_PAGE = "https://github.com/asahi417/relbert"
30
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
31
- _TYPES = ["nell", "wiki"]
32
  _URLS = {i: {
33
  str(datasets.Split.TRAIN): [f'{_URL}/{i}.train.jsonl'],
34
  str(datasets.Split.VALIDATION): [f'{_URL}/{i}.validation.jsonl'],
 
28
 
29
  _HOME_PAGE = "https://github.com/asahi417/relbert"
30
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
31
+ _TYPES = ["nell", "nell_filter", "wiki"]
32
  _URLS = {i: {
33
  str(datasets.Split.TRAIN): [f'{_URL}/{i}.train.jsonl'],
34
  str(datasets.Split.VALIDATION): [f'{_URL}/{i}.validation.jsonl'],
generate_filtered_data.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+
4
+ non_entity_types = [
5
+ 'academicfield',
6
+ 'agent',
7
+ 'agriculturalproduct',
8
+ 'amphibian',
9
+ 'animal',
10
+ 'aquarium',
11
+ 'arachnid',
12
+ 'architect',
13
+ 'arthropod',
14
+ 'bakedgood',
15
+ 'bathroomitem',
16
+ 'bedroomitem',
17
+ 'beverage',
18
+ 'bird',
19
+ 'blog',
20
+ 'bodypart',
21
+ 'bone',
22
+ 'candy',
23
+ 'cave',
24
+ 'chemical',
25
+ 'clothing',
26
+ 'coffeedrink',
27
+ 'condiment',
28
+ 'crimeorcharge',
29
+ 'crustacean',
30
+ 'date',
31
+ 'dateliteral',
32
+ 'economicsector',
33
+ 'fish',
34
+ 'food',
35
+ 'fruit',
36
+ 'fungus',
37
+ 'furniture',
38
+ 'grain',
39
+ 'hallwayitem',
40
+ 'hobby',
41
+ 'insect',
42
+ 'invertebrate',
43
+ 'jobposition',
44
+ 'kitchenitem',
45
+ 'landscapefeatures',
46
+ 'legume',
47
+ 'location',
48
+ 'mammal',
49
+ 'meat',
50
+ 'mlsoftware',
51
+ 'mollusk',
52
+ 'month',
53
+ 'nut',
54
+ 'officebuildingroom',
55
+ 'physiologicalcondition',
56
+ 'plant',
57
+ 'politicsissue',
58
+ 'profession',
59
+ 'professionalorganization',
60
+ 'reptile',
61
+ 'room',
62
+ 'sport',
63
+ 'tableitem',
64
+ 'tradeunion',
65
+ 'vegetable',
66
+ 'vehicle',
67
+ 'vertebrate',
68
+ 'weapon',
69
+ 'wine'
70
+ ]
71
+
72
+ full_data = {}
73
+ for s in ["train", "validation", "test"]:
74
+ with open(f"data/nell.{s}.jsonl") as f:
75
+ data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
76
+ data = [i for i in data if i['head_type'] not in non_entity_types and i['tail_type'] not in non_entity_types]
77
+ with open(f"data/nell_filter.{s}.jsonl", "w") as f:
78
+ f.write('\n'.join([json.dumps(i) for i in data]))
79
+
80
+
81
+ with open("data/nell.vocab.txt") as f:
82
+ types = [i for i in f.read().split('\n')]
83
+
84
+ with open("data/nell.vocab.clean.txt") as f:
85
+ vocab = [i for i in f.read().split('\n')]
86
+ vocab_type = [(a, b.split(":")[1]) for a, b in zip(vocab, types) if len(a) > 0 and len(b) > 0 and len(b.split(":")) > 2]
87
+ vocab_new = [a for a, b in vocab_type if b not in non_entity_types]
88
+ with open("data/nell_filter.vocab.txt", 'w') as f:
89
+ f.write('\n'.join(vocab_new))
90
+
process.py CHANGED
@@ -18,7 +18,75 @@ data_dir_nell = "NELL"
18
  data_dir_wiki = "Wiki"
19
  os.makedirs("data", exist_ok=True)
20
 
21
- short = ['alcs', "uk", "us", "usa"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
  def clean(token):
@@ -27,9 +95,7 @@ def clean(token):
27
  token = token.replace("__", "")
28
  token = re.sub(r"00\d\Z", "", token)
29
  token = re.sub(r"\An(\d+)", r"\1", token)
30
- if _type in ['animal', 'sea_creatures', 'bodypart', "arthropod", "insect", "crustacean", "invertebrate", "arachnid",
31
- "crustacean", "agriculturalproduct", "reptile", "mammal", "amphibian", "sport", "hobby", "vegetable",
32
- "beverage", "fruit", "grain", "coffeedrink", ]:
33
  return token, _type
34
  new_token = []
35
  for _t in token.split(" "):
@@ -74,6 +140,9 @@ if __name__ == '__main__':
74
  vocab = read_vocab(f"{data_dir_nell}/ent2ids")
75
  with open("data/nell.vocab.txt", 'w') as f:
76
  f.write("\n".join(vocab))
 
 
 
77
 
78
  vocab = read_vocab(f"{data_dir_wiki}/ent2ids")
79
  with open("data/wiki.vocab.txt", 'w') as f:
 
18
  data_dir_wiki = "Wiki"
19
  os.makedirs("data", exist_ok=True)
20
 
21
+ short = ['alcs', "uk", "us", "usa", "npr", "nbc", "bbc", "cnn", "abc", "cbs", "nfl", "mlb", "nba", "nhl", "pga", "ncaa",
22
+ "wjhu", "pbs", "un"]
23
+ non_entity_types = [
24
+ 'academicfield',
25
+ 'agent',
26
+ 'agriculturalproduct',
27
+ 'amphibian',
28
+ 'animal',
29
+ 'aquarium',
30
+ 'arachnid',
31
+ 'architect',
32
+ 'arthropod',
33
+ 'bakedgood',
34
+ 'bathroomitem',
35
+ 'bedroomitem',
36
+ 'beverage',
37
+ 'bird',
38
+ 'blog',
39
+ 'bodypart',
40
+ 'bone',
41
+ 'candy',
42
+ 'cave',
43
+ 'chemical',
44
+ 'clothing',
45
+ 'coffeedrink',
46
+ 'condiment',
47
+ 'crimeorcharge',
48
+ 'crustacean',
49
+ 'date',
50
+ 'dateliteral',
51
+ 'economicsector',
52
+ 'fish',
53
+ 'food',
54
+ 'fruit',
55
+ 'fungus',
56
+ 'furniture',
57
+ 'grain',
58
+ 'hallwayitem',
59
+ 'hobby',
60
+ 'insect',
61
+ 'invertebrate',
62
+ 'jobposition',
63
+ 'kitchenitem',
64
+ 'landscapefeatures',
65
+ 'legume',
66
+ 'location',
67
+ 'mammal',
68
+ 'meat',
69
+ 'mlsoftware',
70
+ 'mollusk',
71
+ 'month',
72
+ 'nut',
73
+ 'officebuildingroom',
74
+ 'physiologicalcondition',
75
+ 'plant',
76
+ 'politicsissue',
77
+ 'profession',
78
+ 'professionalorganization',
79
+ 'reptile',
80
+ 'room',
81
+ 'sport',
82
+ 'tableitem',
83
+ 'tradeunion',
84
+ 'vegetable',
85
+ 'vehicle',
86
+ 'vertebrate',
87
+ 'weapon',
88
+ 'wine'
89
+ ]
90
 
91
 
92
  def clean(token):
 
95
  token = token.replace("__", "")
96
  token = re.sub(r"00\d\Z", "", token)
97
  token = re.sub(r"\An(\d+)", r"\1", token)
98
+ if _type in non_entity_types:
 
 
99
  return token, _type
100
  new_token = []
101
  for _t in token.split(" "):
 
140
  vocab = read_vocab(f"{data_dir_nell}/ent2ids")
141
  with open("data/nell.vocab.txt", 'w') as f:
142
  f.write("\n".join(vocab))
143
+ vocab_clean = [clean(i)[0] if len(i.split(":")) > 2 else i for i in vocab]
144
+ with open("data/nell.vocab.clean.txt", 'w') as f:
145
+ f.write("\n".join(vocab_clean))
146
 
147
  vocab = read_vocab(f"{data_dir_wiki}/ent2ids")
148
  with open("data/wiki.vocab.txt", 'w') as f: