import json import os import tarfile import zipfile import gzip import requests import gdown from glob import glob def wget(url, cache_dir: str = './cache', gdrive_filename: str = None): """ wget and uncompress data_iterator """ path = _wget(url, cache_dir, gdrive_filename=gdrive_filename) if path.endswith('.tar.gz') or path.endswith('.tgz') or path.endswith('.tar'): if path.endswith('.tar'): tar = tarfile.open(path) else: tar = tarfile.open(path, "r:gz") tar.extractall(cache_dir) tar.close() os.remove(path) elif path.endswith('.zip'): with zipfile.ZipFile(path, 'r') as zip_ref: zip_ref.extractall(cache_dir) os.remove(path) elif path.endswith('.gz'): with gzip.open(path, 'rb') as f: with open(path.replace('.gz', ''), 'wb') as f_write: f_write.write(f.read()) os.remove(path) def _wget(url: str, cache_dir, gdrive_filename: str = None): """ get data from web """ os.makedirs(cache_dir, exist_ok=True) if url.startswith('https://drive.google.com'): assert gdrive_filename is not None, 'please provide fileaname for gdrive download' return gdown.download(url, f'{cache_dir}/{gdrive_filename}', quiet=False) filename = os.path.basename(url) with open(f'{cache_dir}/{filename}', "wb") as f: r = requests.get(url) f.write(r.content) return f'{cache_dir}/{filename}' def get_data(n_sample: int = 10, v_rate: float = 0.2, n_sample_max: int = 10): assert n_sample <= n_sample_max cache_dir = 'cache' os.makedirs(cache_dir, exist_ok=True) path_answer = f'{cache_dir}/Phase2Answers' path_scale = f'{cache_dir}/Phase2AnswersScaled' url = 'https://drive.google.com/u/0/uc?id=0BzcZKTSeYL8VYWtHVmxUR3FyUmc&export=download' filename = 'SemEval-2012-Platinum-Ratings.tar.gz' if not (os.path.exists(path_scale) and os.path.exists(path_answer)): wget(url, gdrive_filename=filename, cache_dir=cache_dir) files_answer = [os.path.basename(i) for i in glob(f'{path_answer}/*.txt')] files_scale = [os.path.basename(i) for i in glob(f'{path_scale}/*.txt')] assert files_answer == files_scale, f'files are not matched: {files_scale} vs {files_answer}' all_positive_v = {} all_negative_v = {} all_positive_t = {} all_negative_t = {} for i in files_scale: relation_id = i.split('-')[-1].replace('.txt', '') relation_id = f"{relation_id[:-1]}/{relation_id[-1]}" with open(f'{path_answer}/{i}', 'r') as f: lines_answer = [l.replace('"', '').split('\t') for l in f.read().split('\n') if not l.startswith('#') and len(l)] relation_type = list(set(list(zip(*lines_answer))[-1])) assert len(relation_type) == 1, relation_type with open(f'{path_scale}/{i}', 'r') as f: lines_scale = [[float(l[:5]), l[6:].replace('"', '')] for l in f.read().split('\n') if not l.startswith('#') and len(l)] lines_scale = sorted(lines_scale, key=lambda x: x[0]) _negative = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] < 0, lines_scale[:n_sample_max]))))[1]] _positive = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] > 0, lines_scale[-n_sample_max:]))))[1]] v_negative = _negative[::int(len(_negative) * (1 - v_rate))] v_positive = _positive[::int(len(_positive) * (1 - v_rate))] t_negative = [i for i in _negative if i not in v_negative] t_positive = [i for i in _positive if i not in v_positive] all_negative_v[relation_id] = v_negative all_positive_v[relation_id] = v_positive all_negative_t[relation_id] = t_negative[:n_sample] all_positive_t[relation_id] = t_positive[-n_sample:] return (all_positive_t, all_negative_t), (all_positive_v, all_negative_v) if __name__ == '__main__': (all_positive_t, all_negative_t), (all_positive_v, all_negative_v) = get_data(n_sample=10, v_rate=0.2, n_sample_max=10) os.makedirs('data', exist_ok=True) keys = all_positive_t.keys() with open("data/train.jsonl", "w") as f: for k in sorted(keys): f.write(json.dumps({"relation_type": k, "positives": all_positive_t[k], "negatives": all_negative_t[k]})) f.write("\n") keys = all_positive_v.keys() with open("data/valid.jsonl", "w") as f: for k in sorted(keys): f.write(json.dumps({"relation_type": k, "positives": all_positive_v[k], "negatives": all_negative_v[k]})) f.write("\n")