repo
stringclasses
679 values
path
stringlengths
6
122
func_name
stringlengths
2
76
original_string
stringlengths
87
70.9k
language
stringclasses
1 value
code
stringlengths
87
70.9k
code_tokens
sequencelengths
20
6.91k
docstring
stringlengths
1
21.7k
docstring_tokens
sequencelengths
1
1.6k
sha
stringclasses
679 values
url
stringlengths
92
213
partition
stringclasses
1 value
openai/baselines
baselines/deepq/deepq.py
learn
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
python
def learn(env, network, seed=None, lr=5e-4, total_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, checkpoint_path=None, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, load_path=None, **network_kwargs ): """Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = get_session() set_global_seeds(seed) q_func = build_q_func(network, **network_kwargs) # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space = env.observation_space def make_obs_ph(name): return ObservationInput(observation_space, name=name) act, train, update_target, debug = deepq.build_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=10, param_noise=param_noise ) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = total_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps), initial_p=1.0, final_p=exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: td = checkpoint_path or td model_file = os.path.join(td, "model") model_saved = False if tf.train.latest_checkpoint(td) is not None: load_variables(model_file) logger.log('Loaded model from {}'.format(model_file)) model_saved = True elif load_path is not None: load_variables(load_path) logger.log('Loaded model from {}'.format(load_path)) for t in range(total_timesteps): if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs['update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew if done: obs = env.reset() episode_rewards.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) if done and print_freq is not None and len(episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log("Saving model due to mean reward increase: {} -> {}".format( saved_mean_reward, mean_100ep_reward)) save_variables(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format(saved_mean_reward)) load_variables(model_file) return act
[ "def", "learn", "(", "env", ",", "network", ",", "seed", "=", "None", ",", "lr", "=", "5e-4", ",", "total_timesteps", "=", "100000", ",", "buffer_size", "=", "50000", ",", "exploration_fraction", "=", "0.1", ",", "exploration_final_eps", "=", "0.02", ",", "train_freq", "=", "1", ",", "batch_size", "=", "32", ",", "print_freq", "=", "100", ",", "checkpoint_freq", "=", "10000", ",", "checkpoint_path", "=", "None", ",", "learning_starts", "=", "1000", ",", "gamma", "=", "1.0", ",", "target_network_update_freq", "=", "500", ",", "prioritized_replay", "=", "False", ",", "prioritized_replay_alpha", "=", "0.6", ",", "prioritized_replay_beta0", "=", "0.4", ",", "prioritized_replay_beta_iters", "=", "None", ",", "prioritized_replay_eps", "=", "1e-6", ",", "param_noise", "=", "False", ",", "callback", "=", "None", ",", "load_path", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "# Create all the functions necessary to train the model", "sess", "=", "get_session", "(", ")", "set_global_seeds", "(", "seed", ")", "q_func", "=", "build_q_func", "(", "network", ",", "*", "*", "network_kwargs", ")", "# capture the shape outside the closure so that the env object is not serialized", "# by cloudpickle when serializing make_obs_ph", "observation_space", "=", "env", ".", "observation_space", "def", "make_obs_ph", "(", "name", ")", ":", "return", "ObservationInput", "(", "observation_space", ",", "name", "=", "name", ")", "act", ",", "train", ",", "update_target", ",", "debug", "=", "deepq", ".", "build_train", "(", "make_obs_ph", "=", "make_obs_ph", ",", "q_func", "=", "q_func", ",", "num_actions", "=", "env", ".", "action_space", ".", "n", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "learning_rate", "=", "lr", ")", ",", "gamma", "=", "gamma", ",", "grad_norm_clipping", "=", "10", ",", "param_noise", "=", "param_noise", ")", "act_params", "=", "{", "'make_obs_ph'", ":", "make_obs_ph", ",", "'q_func'", ":", "q_func", ",", "'num_actions'", ":", "env", ".", "action_space", ".", "n", ",", "}", "act", "=", "ActWrapper", "(", "act", ",", "act_params", ")", "# Create the replay buffer", "if", "prioritized_replay", ":", "replay_buffer", "=", "PrioritizedReplayBuffer", "(", "buffer_size", ",", "alpha", "=", "prioritized_replay_alpha", ")", "if", "prioritized_replay_beta_iters", "is", "None", ":", "prioritized_replay_beta_iters", "=", "total_timesteps", "beta_schedule", "=", "LinearSchedule", "(", "prioritized_replay_beta_iters", ",", "initial_p", "=", "prioritized_replay_beta0", ",", "final_p", "=", "1.0", ")", "else", ":", "replay_buffer", "=", "ReplayBuffer", "(", "buffer_size", ")", "beta_schedule", "=", "None", "# Create the schedule for exploration starting from 1.", "exploration", "=", "LinearSchedule", "(", "schedule_timesteps", "=", "int", "(", "exploration_fraction", "*", "total_timesteps", ")", ",", "initial_p", "=", "1.0", ",", "final_p", "=", "exploration_final_eps", ")", "# Initialize the parameters and copy them to the target network.", "U", ".", "initialize", "(", ")", "update_target", "(", ")", "episode_rewards", "=", "[", "0.0", "]", "saved_mean_reward", "=", "None", "obs", "=", "env", ".", "reset", "(", ")", "reset", "=", "True", "with", "tempfile", ".", "TemporaryDirectory", "(", ")", "as", "td", ":", "td", "=", "checkpoint_path", "or", "td", "model_file", "=", "os", ".", "path", ".", "join", "(", "td", ",", "\"model\"", ")", "model_saved", "=", "False", "if", "tf", ".", "train", ".", "latest_checkpoint", "(", "td", ")", "is", "not", "None", ":", "load_variables", "(", "model_file", ")", "logger", ".", "log", "(", "'Loaded model from {}'", ".", "format", "(", "model_file", ")", ")", "model_saved", "=", "True", "elif", "load_path", "is", "not", "None", ":", "load_variables", "(", "load_path", ")", "logger", ".", "log", "(", "'Loaded model from {}'", ".", "format", "(", "load_path", ")", ")", "for", "t", "in", "range", "(", "total_timesteps", ")", ":", "if", "callback", "is", "not", "None", ":", "if", "callback", "(", "locals", "(", ")", ",", "globals", "(", ")", ")", ":", "break", "# Take action and update exploration to the newest value", "kwargs", "=", "{", "}", "if", "not", "param_noise", ":", "update_eps", "=", "exploration", ".", "value", "(", "t", ")", "update_param_noise_threshold", "=", "0.", "else", ":", "update_eps", "=", "0.", "# Compute the threshold such that the KL divergence between perturbed and non-perturbed", "# policy is comparable to eps-greedy exploration with eps = exploration.value(t).", "# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017", "# for detailed explanation.", "update_param_noise_threshold", "=", "-", "np", ".", "log", "(", "1.", "-", "exploration", ".", "value", "(", "t", ")", "+", "exploration", ".", "value", "(", "t", ")", "/", "float", "(", "env", ".", "action_space", ".", "n", ")", ")", "kwargs", "[", "'reset'", "]", "=", "reset", "kwargs", "[", "'update_param_noise_threshold'", "]", "=", "update_param_noise_threshold", "kwargs", "[", "'update_param_noise_scale'", "]", "=", "True", "action", "=", "act", "(", "np", ".", "array", "(", "obs", ")", "[", "None", "]", ",", "update_eps", "=", "update_eps", ",", "*", "*", "kwargs", ")", "[", "0", "]", "env_action", "=", "action", "reset", "=", "False", "new_obs", ",", "rew", ",", "done", ",", "_", "=", "env", ".", "step", "(", "env_action", ")", "# Store transition in the replay buffer.", "replay_buffer", ".", "add", "(", "obs", ",", "action", ",", "rew", ",", "new_obs", ",", "float", "(", "done", ")", ")", "obs", "=", "new_obs", "episode_rewards", "[", "-", "1", "]", "+=", "rew", "if", "done", ":", "obs", "=", "env", ".", "reset", "(", ")", "episode_rewards", ".", "append", "(", "0.0", ")", "reset", "=", "True", "if", "t", ">", "learning_starts", "and", "t", "%", "train_freq", "==", "0", ":", "# Minimize the error in Bellman's equation on a batch sampled from replay buffer.", "if", "prioritized_replay", ":", "experience", "=", "replay_buffer", ".", "sample", "(", "batch_size", ",", "beta", "=", "beta_schedule", ".", "value", "(", "t", ")", ")", "(", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", ",", "weights", ",", "batch_idxes", ")", "=", "experience", "else", ":", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", "=", "replay_buffer", ".", "sample", "(", "batch_size", ")", "weights", ",", "batch_idxes", "=", "np", ".", "ones_like", "(", "rewards", ")", ",", "None", "td_errors", "=", "train", "(", "obses_t", ",", "actions", ",", "rewards", ",", "obses_tp1", ",", "dones", ",", "weights", ")", "if", "prioritized_replay", ":", "new_priorities", "=", "np", ".", "abs", "(", "td_errors", ")", "+", "prioritized_replay_eps", "replay_buffer", ".", "update_priorities", "(", "batch_idxes", ",", "new_priorities", ")", "if", "t", ">", "learning_starts", "and", "t", "%", "target_network_update_freq", "==", "0", ":", "# Update target network periodically.", "update_target", "(", ")", "mean_100ep_reward", "=", "round", "(", "np", ".", "mean", "(", "episode_rewards", "[", "-", "101", ":", "-", "1", "]", ")", ",", "1", ")", "num_episodes", "=", "len", "(", "episode_rewards", ")", "if", "done", "and", "print_freq", "is", "not", "None", "and", "len", "(", "episode_rewards", ")", "%", "print_freq", "==", "0", ":", "logger", ".", "record_tabular", "(", "\"steps\"", ",", "t", ")", "logger", ".", "record_tabular", "(", "\"episodes\"", ",", "num_episodes", ")", "logger", ".", "record_tabular", "(", "\"mean 100 episode reward\"", ",", "mean_100ep_reward", ")", "logger", ".", "record_tabular", "(", "\"% time spent exploring\"", ",", "int", "(", "100", "*", "exploration", ".", "value", "(", "t", ")", ")", ")", "logger", ".", "dump_tabular", "(", ")", "if", "(", "checkpoint_freq", "is", "not", "None", "and", "t", ">", "learning_starts", "and", "num_episodes", ">", "100", "and", "t", "%", "checkpoint_freq", "==", "0", ")", ":", "if", "saved_mean_reward", "is", "None", "or", "mean_100ep_reward", ">", "saved_mean_reward", ":", "if", "print_freq", "is", "not", "None", ":", "logger", ".", "log", "(", "\"Saving model due to mean reward increase: {} -> {}\"", ".", "format", "(", "saved_mean_reward", ",", "mean_100ep_reward", ")", ")", "save_variables", "(", "model_file", ")", "model_saved", "=", "True", "saved_mean_reward", "=", "mean_100ep_reward", "if", "model_saved", ":", "if", "print_freq", "is", "not", "None", ":", "logger", ".", "log", "(", "\"Restored model with mean reward: {}\"", ".", "format", "(", "saved_mean_reward", ")", ")", "load_variables", "(", "model_file", ")", "return", "act" ]
Train a deepq model. Parameters ------- env: gym.Env environment to train on network: string or a function neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that) seed: int or None prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used. lr: float learning rate for adam optimizer total_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to total_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. load_path: str path to load the model from. (default: None) **network_kwargs additional keyword arguments to pass to the network builder. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function.
[ "Train", "a", "deepq", "model", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/deepq.py#L95-L333
valid
openai/baselines
baselines/deepq/deepq.py
ActWrapper.save_act
def save_act(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
python
def save_act(self, path=None): """Save model to a pickle located at `path`""" if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, 'w') as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)
[ "def", "save_act", "(", "self", ",", "path", "=", "None", ")", ":", "if", "path", "is", "None", ":", "path", "=", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "\"model.pkl\"", ")", "with", "tempfile", ".", "TemporaryDirectory", "(", ")", "as", "td", ":", "save_variables", "(", "os", ".", "path", ".", "join", "(", "td", ",", "\"model\"", ")", ")", "arc_name", "=", "os", ".", "path", ".", "join", "(", "td", ",", "\"packed.zip\"", ")", "with", "zipfile", ".", "ZipFile", "(", "arc_name", ",", "'w'", ")", "as", "zipf", ":", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "td", ")", ":", "for", "fname", "in", "files", ":", "file_path", "=", "os", ".", "path", ".", "join", "(", "root", ",", "fname", ")", "if", "file_path", "!=", "arc_name", ":", "zipf", ".", "write", "(", "file_path", ",", "os", ".", "path", ".", "relpath", "(", "file_path", ",", "td", ")", ")", "with", "open", "(", "arc_name", ",", "\"rb\"", ")", "as", "f", ":", "model_data", "=", "f", ".", "read", "(", ")", "with", "open", "(", "path", ",", "\"wb\"", ")", "as", "f", ":", "cloudpickle", ".", "dump", "(", "(", "model_data", ",", "self", ".", "_act_params", ")", ",", "f", ")" ]
Save model to a pickle located at `path`
[ "Save", "model", "to", "a", "pickle", "located", "at", "path" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/deepq.py#L55-L72
valid
openai/baselines
baselines/common/models.py
nature_cnn
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
python
def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
[ "def", "nature_cnn", "(", "unscaled_images", ",", "*", "*", "conv_kwargs", ")", ":", "scaled_images", "=", "tf", ".", "cast", "(", "unscaled_images", ",", "tf", ".", "float32", ")", "/", "255.", "activ", "=", "tf", ".", "nn", ".", "relu", "h", "=", "activ", "(", "conv", "(", "scaled_images", ",", "'c1'", ",", "nf", "=", "32", ",", "rf", "=", "8", ",", "stride", "=", "4", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h2", "=", "activ", "(", "conv", "(", "h", ",", "'c2'", ",", "nf", "=", "64", ",", "rf", "=", "4", ",", "stride", "=", "2", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h3", "=", "activ", "(", "conv", "(", "h2", ",", "'c3'", ",", "nf", "=", "64", ",", "rf", "=", "3", ",", "stride", "=", "1", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ",", "*", "*", "conv_kwargs", ")", ")", "h3", "=", "conv_to_fc", "(", "h3", ")", "return", "activ", "(", "fc", "(", "h3", ",", "'fc1'", ",", "nh", "=", "512", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ")", ")" ]
CNN from Nature paper.
[ "CNN", "from", "Nature", "paper", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L16-L27
valid
openai/baselines
baselines/common/models.py
mlp
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn
python
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False): """ Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder """ def network_fn(X): h = tf.layers.flatten(X) for i in range(num_layers): h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2)) if layer_norm: h = tf.contrib.layers.layer_norm(h, center=True, scale=True) h = activation(h) return h return network_fn
[ "def", "mlp", "(", "num_layers", "=", "2", ",", "num_hidden", "=", "64", ",", "activation", "=", "tf", ".", "tanh", ",", "layer_norm", "=", "False", ")", ":", "def", "network_fn", "(", "X", ")", ":", "h", "=", "tf", ".", "layers", ".", "flatten", "(", "X", ")", "for", "i", "in", "range", "(", "num_layers", ")", ":", "h", "=", "fc", "(", "h", ",", "'mlp_fc{}'", ".", "format", "(", "i", ")", ",", "nh", "=", "num_hidden", ",", "init_scale", "=", "np", ".", "sqrt", "(", "2", ")", ")", "if", "layer_norm", ":", "h", "=", "tf", ".", "contrib", ".", "layers", ".", "layer_norm", "(", "h", ",", "center", "=", "True", ",", "scale", "=", "True", ")", "h", "=", "activation", "(", "h", ")", "return", "h", "return", "network_fn" ]
Stack of fully-connected layers to be used in a policy / q-function approximator Parameters: ---------- num_layers: int number of fully-connected layers (default: 2) num_hidden: int size of fully-connected layers (default: 64) activation: activation function (default: tf.tanh) Returns: ------- function that builds fully connected network with a given input tensor / placeholder
[ "Stack", "of", "fully", "-", "connected", "layers", "to", "be", "used", "in", "a", "policy", "/", "q", "-", "function", "approximator" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L31-L59
valid
openai/baselines
baselines/common/models.py
lstm
def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn
python
def lstm(nlstm=128, layer_norm=False): """ Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder """ def network_fn(X, nenv=1): nbatch = X.shape[0] nsteps = nbatch // nenv h = tf.layers.flatten(X) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) if layer_norm: h5, snew = utils.lnlstm(xs, ms, S, scope='lnlstm', nh=nlstm) else: h5, snew = utils.lstm(xs, ms, S, scope='lstm', nh=nlstm) h = seq_to_batch(h5) initial_state = np.zeros(S.shape.as_list(), dtype=float) return h, {'S':S, 'M':M, 'state':snew, 'initial_state':initial_state} return network_fn
[ "def", "lstm", "(", "nlstm", "=", "128", ",", "layer_norm", "=", "False", ")", ":", "def", "network_fn", "(", "X", ",", "nenv", "=", "1", ")", ":", "nbatch", "=", "X", ".", "shape", "[", "0", "]", "nsteps", "=", "nbatch", "//", "nenv", "h", "=", "tf", ".", "layers", ".", "flatten", "(", "X", ")", "M", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "nbatch", "]", ")", "#mask (done t-1)", "S", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "nenv", ",", "2", "*", "nlstm", "]", ")", "#states", "xs", "=", "batch_to_seq", "(", "h", ",", "nenv", ",", "nsteps", ")", "ms", "=", "batch_to_seq", "(", "M", ",", "nenv", ",", "nsteps", ")", "if", "layer_norm", ":", "h5", ",", "snew", "=", "utils", ".", "lnlstm", "(", "xs", ",", "ms", ",", "S", ",", "scope", "=", "'lnlstm'", ",", "nh", "=", "nlstm", ")", "else", ":", "h5", ",", "snew", "=", "utils", ".", "lstm", "(", "xs", ",", "ms", ",", "S", ",", "scope", "=", "'lstm'", ",", "nh", "=", "nlstm", ")", "h", "=", "seq_to_batch", "(", "h5", ")", "initial_state", "=", "np", ".", "zeros", "(", "S", ".", "shape", ".", "as_list", "(", ")", ",", "dtype", "=", "float", ")", "return", "h", ",", "{", "'S'", ":", "S", ",", "'M'", ":", "M", ",", "'state'", ":", "snew", ",", "'initial_state'", ":", "initial_state", "}", "return", "network_fn" ]
Builds LSTM (Long-Short Term Memory) network to be used in a policy. Note that the resulting function returns not only the output of the LSTM (i.e. hidden state of lstm for each step in the sequence), but also a dictionary with auxiliary tensors to be set as policy attributes. Specifically, S is a placeholder to feed current state (LSTM state has to be managed outside policy) M is a placeholder for the mask (used to mask out observations after the end of the episode, but can be used for other purposes too) initial_state is a numpy array containing initial lstm state (usually zeros) state is the output LSTM state (to be fed into S at the next call) An example of usage of lstm-based policy can be found here: common/tests/test_doc_examples.py/test_lstm_example Parameters: ---------- nlstm: int LSTM hidden state size layer_norm: bool if True, layer-normalized version of LSTM is used Returns: ------- function that builds LSTM with a given input tensor / placeholder
[ "Builds", "LSTM", "(", "Long", "-", "Short", "Term", "Memory", ")", "network", "to", "be", "used", "in", "a", "policy", ".", "Note", "that", "the", "resulting", "function", "returns", "not", "only", "the", "output", "of", "the", "LSTM", "(", "i", ".", "e", ".", "hidden", "state", "of", "lstm", "for", "each", "step", "in", "the", "sequence", ")", "but", "also", "a", "dictionary", "with", "auxiliary", "tensors", "to", "be", "set", "as", "policy", "attributes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L84-L135
valid
openai/baselines
baselines/common/models.py
conv_only
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn
python
def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs): ''' convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer ''' def network_fn(X): out = tf.cast(X, tf.float32) / 255. with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu, **conv_kwargs) return out return network_fn
[ "def", "conv_only", "(", "convs", "=", "[", "(", "32", ",", "8", ",", "4", ")", ",", "(", "64", ",", "4", ",", "2", ")", ",", "(", "64", ",", "3", ",", "1", ")", "]", ",", "*", "*", "conv_kwargs", ")", ":", "def", "network_fn", "(", "X", ")", ":", "out", "=", "tf", ".", "cast", "(", "X", ",", "tf", ".", "float32", ")", "/", "255.", "with", "tf", ".", "variable_scope", "(", "\"convnet\"", ")", ":", "for", "num_outputs", ",", "kernel_size", ",", "stride", "in", "convs", ":", "out", "=", "layers", ".", "convolution2d", "(", "out", ",", "num_outputs", "=", "num_outputs", ",", "kernel_size", "=", "kernel_size", ",", "stride", "=", "stride", ",", "activation_fn", "=", "tf", ".", "nn", ".", "relu", ",", "*", "*", "conv_kwargs", ")", "return", "out", "return", "network_fn" ]
convolutions-only net Parameters: ---------- conv: list of triples (filter_number, filter_size, stride) specifying parameters for each layer. Returns: function that takes tensorflow tensor as input and returns the output of the last convolutional layer
[ "convolutions", "-", "only", "net" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L171-L198
valid
openai/baselines
baselines/common/models.py
get_network_builder
def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
python
def get_network_builder(name): """ If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn """ if callable(name): return name elif name in mapping: return mapping[name] else: raise ValueError('Unknown network type: {}'.format(name))
[ "def", "get_network_builder", "(", "name", ")", ":", "if", "callable", "(", "name", ")", ":", "return", "name", "elif", "name", "in", "mapping", ":", "return", "mapping", "[", "name", "]", "else", ":", "raise", "ValueError", "(", "'Unknown network type: {}'", ".", "format", "(", "name", ")", ")" ]
If you want to register your own network outside models.py, you just need: Usage Example: ------------- from baselines.common.models import register @register("your_network_name") def your_network_define(**net_kwargs): ... return network_fn
[ "If", "you", "want", "to", "register", "your", "own", "network", "outside", "models", ".", "py", "you", "just", "need", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/models.py#L206-L224
valid
openai/baselines
baselines/deepq/models.py
mlp
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
python
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
[ "def", "mlp", "(", "hiddens", "=", "[", "]", ",", "layer_norm", "=", "False", ")", ":", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "_mlp", "(", "hiddens", ",", "layer_norm", "=", "layer_norm", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm.
[ "This", "model", "takes", "as", "input", "an", "observation", "and", "returns", "values", "of", "all", "actions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/models.py#L17-L33
valid
openai/baselines
baselines/deepq/models.py
cnn_to_mlp
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
python
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
[ "def", "cnn_to_mlp", "(", "convs", ",", "hiddens", ",", "dueling", "=", "False", ",", "layer_norm", "=", "False", ")", ":", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "_cnn_to_mlp", "(", "convs", ",", "hiddens", ",", "dueling", ",", "layer_norm", "=", "layer_norm", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int, int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores layer_norm: bool if true applies layer normalization for every layer as described in https://arxiv.org/abs/1607.06450 Returns ------- q_func: function q_function for DQN algorithm.
[ "This", "model", "takes", "as", "input", "an", "observation", "and", "returns", "values", "of", "all", "actions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/models.py#L73-L96
valid
openai/baselines
baselines/common/cmd_util.py
make_vec_env
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, flatten_dict_observations=True, gamestate=None): """ Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo. """ wrapper_kwargs = wrapper_kwargs or {} mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 seed = seed + 10000 * mpi_rank if seed is not None else None logger_dir = logger.get_dir() def make_thunk(rank): return lambda: make_env( env_id=env_id, env_type=env_type, mpi_rank=mpi_rank, subrank=rank, seed=seed, reward_scale=reward_scale, gamestate=gamestate, flatten_dict_observations=flatten_dict_observations, wrapper_kwargs=wrapper_kwargs, logger_dir=logger_dir ) set_global_seeds(seed) if num_env > 1: return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)]) else: return DummyVecEnv([make_thunk(start_index)])
python
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, flatten_dict_observations=True, gamestate=None): """ Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo. """ wrapper_kwargs = wrapper_kwargs or {} mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0 seed = seed + 10000 * mpi_rank if seed is not None else None logger_dir = logger.get_dir() def make_thunk(rank): return lambda: make_env( env_id=env_id, env_type=env_type, mpi_rank=mpi_rank, subrank=rank, seed=seed, reward_scale=reward_scale, gamestate=gamestate, flatten_dict_observations=flatten_dict_observations, wrapper_kwargs=wrapper_kwargs, logger_dir=logger_dir ) set_global_seeds(seed) if num_env > 1: return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)]) else: return DummyVecEnv([make_thunk(start_index)])
[ "def", "make_vec_env", "(", "env_id", ",", "env_type", ",", "num_env", ",", "seed", ",", "wrapper_kwargs", "=", "None", ",", "start_index", "=", "0", ",", "reward_scale", "=", "1.0", ",", "flatten_dict_observations", "=", "True", ",", "gamestate", "=", "None", ")", ":", "wrapper_kwargs", "=", "wrapper_kwargs", "or", "{", "}", "mpi_rank", "=", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "if", "MPI", "else", "0", "seed", "=", "seed", "+", "10000", "*", "mpi_rank", "if", "seed", "is", "not", "None", "else", "None", "logger_dir", "=", "logger", ".", "get_dir", "(", ")", "def", "make_thunk", "(", "rank", ")", ":", "return", "lambda", ":", "make_env", "(", "env_id", "=", "env_id", ",", "env_type", "=", "env_type", ",", "mpi_rank", "=", "mpi_rank", ",", "subrank", "=", "rank", ",", "seed", "=", "seed", ",", "reward_scale", "=", "reward_scale", ",", "gamestate", "=", "gamestate", ",", "flatten_dict_observations", "=", "flatten_dict_observations", ",", "wrapper_kwargs", "=", "wrapper_kwargs", ",", "logger_dir", "=", "logger_dir", ")", "set_global_seeds", "(", "seed", ")", "if", "num_env", ">", "1", ":", "return", "SubprocVecEnv", "(", "[", "make_thunk", "(", "i", "+", "start_index", ")", "for", "i", "in", "range", "(", "num_env", ")", "]", ")", "else", ":", "return", "DummyVecEnv", "(", "[", "make_thunk", "(", "start_index", ")", "]", ")" ]
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
[ "Create", "a", "wrapped", "monitored", "SubprocVecEnv", "for", "Atari", "and", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L21-L52
valid
openai/baselines
baselines/common/cmd_util.py
make_mujoco_env
def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
python
def make_mujoco_env(env_id, seed, reward_scale=1.0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ rank = MPI.COMM_WORLD.Get_rank() myseed = seed + 1000 * rank if seed is not None else None set_global_seeds(myseed) env = gym.make(env_id) logger_path = None if logger.get_dir() is None else os.path.join(logger.get_dir(), str(rank)) env = Monitor(env, logger_path, allow_early_resets=True) env.seed(seed) if reward_scale != 1.0: from baselines.common.retro_wrappers import RewardScaler env = RewardScaler(env, reward_scale) return env
[ "def", "make_mujoco_env", "(", "env_id", ",", "seed", ",", "reward_scale", "=", "1.0", ")", ":", "rank", "=", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "myseed", "=", "seed", "+", "1000", "*", "rank", "if", "seed", "is", "not", "None", "else", "None", "set_global_seeds", "(", "myseed", ")", "env", "=", "gym", ".", "make", "(", "env_id", ")", "logger_path", "=", "None", "if", "logger", ".", "get_dir", "(", ")", "is", "None", "else", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "str", "(", "rank", ")", ")", "env", "=", "Monitor", "(", "env", ",", "logger_path", ",", "allow_early_resets", "=", "True", ")", "env", ".", "seed", "(", "seed", ")", "if", "reward_scale", "!=", "1.0", ":", "from", "baselines", ".", "common", ".", "retro_wrappers", "import", "RewardScaler", "env", "=", "RewardScaler", "(", "env", ",", "reward_scale", ")", "return", "env" ]
Create a wrapped, monitored gym.Env for MuJoCo.
[ "Create", "a", "wrapped", "monitored", "gym", ".", "Env", "for", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L88-L102
valid
openai/baselines
baselines/common/cmd_util.py
make_robotics_env
def make_robotics_env(env_id, seed, rank=0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ set_global_seeds(seed) env = gym.make(env_id) env = FlattenDictWrapper(env, ['observation', 'desired_goal']) env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)), info_keywords=('is_success',)) env.seed(seed) return env
python
def make_robotics_env(env_id, seed, rank=0): """ Create a wrapped, monitored gym.Env for MuJoCo. """ set_global_seeds(seed) env = gym.make(env_id) env = FlattenDictWrapper(env, ['observation', 'desired_goal']) env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)), info_keywords=('is_success',)) env.seed(seed) return env
[ "def", "make_robotics_env", "(", "env_id", ",", "seed", ",", "rank", "=", "0", ")", ":", "set_global_seeds", "(", "seed", ")", "env", "=", "gym", ".", "make", "(", "env_id", ")", "env", "=", "FlattenDictWrapper", "(", "env", ",", "[", "'observation'", ",", "'desired_goal'", "]", ")", "env", "=", "Monitor", "(", "env", ",", "logger", ".", "get_dir", "(", ")", "and", "os", ".", "path", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "str", "(", "rank", ")", ")", ",", "info_keywords", "=", "(", "'is_success'", ",", ")", ")", "env", ".", "seed", "(", "seed", ")", "return", "env" ]
Create a wrapped, monitored gym.Env for MuJoCo.
[ "Create", "a", "wrapped", "monitored", "gym", ".", "Env", "for", "MuJoCo", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L104-L115
valid
openai/baselines
baselines/common/cmd_util.py
common_arg_parser
def common_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str) parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2') parser.add_argument('--num_timesteps', type=float, default=1e6), parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None) parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None) parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int) parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float) parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str) parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int) parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int) parser.add_argument('--play', default=False, action='store_true') return parser
python
def common_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2') parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str) parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2') parser.add_argument('--num_timesteps', type=float, default=1e6), parser.add_argument('--network', help='network type (mlp, cnn, lstm, cnn_lstm, conv_only)', default=None) parser.add_argument('--gamestate', help='game state to load (so far only used in retro games)', default=None) parser.add_argument('--num_env', help='Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco', default=None, type=int) parser.add_argument('--reward_scale', help='Reward scale factor. Default: 1.0', default=1.0, type=float) parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str) parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int) parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int) parser.add_argument('--play', default=False, action='store_true') return parser
[ "def", "common_arg_parser", "(", ")", ":", "parser", "=", "arg_parser", "(", ")", "parser", ".", "add_argument", "(", "'--env'", ",", "help", "=", "'environment ID'", ",", "type", "=", "str", ",", "default", "=", "'Reacher-v2'", ")", "parser", ".", "add_argument", "(", "'--env_type'", ",", "help", "=", "'type of environment, used when the environment type cannot be automatically determined'", ",", "type", "=", "str", ")", "parser", ".", "add_argument", "(", "'--seed'", ",", "help", "=", "'RNG seed'", ",", "type", "=", "int", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--alg'", ",", "help", "=", "'Algorithm'", ",", "type", "=", "str", ",", "default", "=", "'ppo2'", ")", "parser", ".", "add_argument", "(", "'--num_timesteps'", ",", "type", "=", "float", ",", "default", "=", "1e6", ")", ",", "parser", ".", "add_argument", "(", "'--network'", ",", "help", "=", "'network type (mlp, cnn, lstm, cnn_lstm, conv_only)'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--gamestate'", ",", "help", "=", "'game state to load (so far only used in retro games)'", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--num_env'", ",", "help", "=", "'Number of environment copies being run in parallel. When not specified, set to number of cpus for Atari, and to 1 for Mujoco'", ",", "default", "=", "None", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--reward_scale'", ",", "help", "=", "'Reward scale factor. Default: 1.0'", ",", "default", "=", "1.0", ",", "type", "=", "float", ")", "parser", ".", "add_argument", "(", "'--save_path'", ",", "help", "=", "'Path to save trained model to'", ",", "default", "=", "None", ",", "type", "=", "str", ")", "parser", ".", "add_argument", "(", "'--save_video_interval'", ",", "help", "=", "'Save video every x steps (0 = disabled)'", ",", "default", "=", "0", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--save_video_length'", ",", "help", "=", "'Length of recorded video. Default: 200'", ",", "default", "=", "200", ",", "type", "=", "int", ")", "parser", ".", "add_argument", "(", "'--play'", ",", "default", "=", "False", ",", "action", "=", "'store_true'", ")", "return", "parser" ]
Create an argparse.ArgumentParser for run_mujoco.py.
[ "Create", "an", "argparse", ".", "ArgumentParser", "for", "run_mujoco", ".", "py", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L135-L153
valid
openai/baselines
baselines/common/cmd_util.py
robotics_arg_parser
def robotics_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0') parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) return parser
python
def robotics_arg_parser(): """ Create an argparse.ArgumentParser for run_mujoco.py. """ parser = arg_parser() parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0') parser.add_argument('--seed', help='RNG seed', type=int, default=None) parser.add_argument('--num-timesteps', type=int, default=int(1e6)) return parser
[ "def", "robotics_arg_parser", "(", ")", ":", "parser", "=", "arg_parser", "(", ")", "parser", ".", "add_argument", "(", "'--env'", ",", "help", "=", "'environment ID'", ",", "type", "=", "str", ",", "default", "=", "'FetchReach-v0'", ")", "parser", ".", "add_argument", "(", "'--seed'", ",", "help", "=", "'RNG seed'", ",", "type", "=", "int", ",", "default", "=", "None", ")", "parser", ".", "add_argument", "(", "'--num-timesteps'", ",", "type", "=", "int", ",", "default", "=", "int", "(", "1e6", ")", ")", "return", "parser" ]
Create an argparse.ArgumentParser for run_mujoco.py.
[ "Create", "an", "argparse", ".", "ArgumentParser", "for", "run_mujoco", ".", "py", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L155-L163
valid
openai/baselines
baselines/common/cmd_util.py
parse_unknown_args
def parse_unknown_args(args): """ Parse arguments not consumed by arg parser into a dicitonary """ retval = {} preceded_by_key = False for arg in args: if arg.startswith('--'): if '=' in arg: key = arg.split('=')[0][2:] value = arg.split('=')[1] retval[key] = value else: key = arg[2:] preceded_by_key = True elif preceded_by_key: retval[key] = arg preceded_by_key = False return retval
python
def parse_unknown_args(args): """ Parse arguments not consumed by arg parser into a dicitonary """ retval = {} preceded_by_key = False for arg in args: if arg.startswith('--'): if '=' in arg: key = arg.split('=')[0][2:] value = arg.split('=')[1] retval[key] = value else: key = arg[2:] preceded_by_key = True elif preceded_by_key: retval[key] = arg preceded_by_key = False return retval
[ "def", "parse_unknown_args", "(", "args", ")", ":", "retval", "=", "{", "}", "preceded_by_key", "=", "False", "for", "arg", "in", "args", ":", "if", "arg", ".", "startswith", "(", "'--'", ")", ":", "if", "'='", "in", "arg", ":", "key", "=", "arg", ".", "split", "(", "'='", ")", "[", "0", "]", "[", "2", ":", "]", "value", "=", "arg", ".", "split", "(", "'='", ")", "[", "1", "]", "retval", "[", "key", "]", "=", "value", "else", ":", "key", "=", "arg", "[", "2", ":", "]", "preceded_by_key", "=", "True", "elif", "preceded_by_key", ":", "retval", "[", "key", "]", "=", "arg", "preceded_by_key", "=", "False", "return", "retval" ]
Parse arguments not consumed by arg parser into a dicitonary
[ "Parse", "arguments", "not", "consumed", "by", "arg", "parser", "into", "a", "dicitonary" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cmd_util.py#L166-L185
valid
openai/baselines
baselines/common/vec_env/vec_env.py
clear_mpi_env_vars
def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
python
def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
[ "def", "clear_mpi_env_vars", "(", ")", ":", "removed_environment", "=", "{", "}", "for", "k", ",", "v", "in", "list", "(", "os", ".", "environ", ".", "items", "(", ")", ")", ":", "for", "prefix", "in", "[", "'OMPI_'", ",", "'PMI_'", "]", ":", "if", "k", ".", "startswith", "(", "prefix", ")", ":", "removed_environment", "[", "k", "]", "=", "v", "del", "os", ".", "environ", "[", "k", "]", "try", ":", "yield", "finally", ":", "os", ".", "environ", ".", "update", "(", "removed_environment", ")" ]
from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes.
[ "from", "mpi4py", "import", "MPI", "will", "call", "MPI_Init", "by", "default", ".", "If", "the", "child", "process", "has", "MPI", "environment", "variables", "MPI", "will", "think", "that", "the", "child", "process", "is", "an", "MPI", "process", "just", "like", "the", "parent", "and", "do", "bad", "things", "such", "as", "hang", ".", "This", "context", "manager", "is", "a", "hacky", "way", "to", "clear", "those", "environment", "variables", "temporarily", "such", "as", "when", "we", "are", "starting", "multiprocessing", "Processes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/vec_env.py#L204-L219
valid
openai/baselines
baselines/ppo2/ppo2.py
learn
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None, model_fn=None, **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) if model_fn is None: from baselines.ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) if eval_env is not None: eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam) epinfobuf = deque(maxlen=100) if eval_env is not None: eval_epinfobuf = deque(maxlen=100) # Start total timer tfirststart = time.perf_counter() nupdates = total_timesteps//nbatch for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 # Start timer tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632 if eval_env is not None: eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632 epinfobuf.extend(epinfos) if eval_env is not None: eval_epinfobuf.extend(eval_epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals = np.mean(mblossvals, axis=0) # End timer tnow = time.perf_counter() # Calculate the fps (frame per second) fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, returns) logger.logkv("serial_timesteps", update*nsteps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", update*nbatch) logger.logkv("fps", fps) logger.logkv("explained_variance", float(ev)) logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf])) logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf])) if eval_env is not None: logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) ) logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) ) logger.logkv('time_elapsed', tnow - tfirststart) for (lossval, lossname) in zip(lossvals, model.loss_names): logger.logkv(lossname, lossval) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: logger.dumpkvs() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0): checkdir = osp.join(logger.get_dir(), 'checkpoints') os.makedirs(checkdir, exist_ok=True) savepath = osp.join(checkdir, '%.5i'%update) print('Saving to', savepath) model.save(savepath) return model
python
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None, model_fn=None, **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) if model_fn is None: from baselines.ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) if eval_env is not None: eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam) epinfobuf = deque(maxlen=100) if eval_env is not None: eval_epinfobuf = deque(maxlen=100) # Start total timer tfirststart = time.perf_counter() nupdates = total_timesteps//nbatch for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 # Start timer tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632 if eval_env is not None: eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632 epinfobuf.extend(epinfos) if eval_env is not None: eval_epinfobuf.extend(eval_epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals = np.mean(mblossvals, axis=0) # End timer tnow = time.perf_counter() # Calculate the fps (frame per second) fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, returns) logger.logkv("serial_timesteps", update*nsteps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", update*nbatch) logger.logkv("fps", fps) logger.logkv("explained_variance", float(ev)) logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf])) logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf])) if eval_env is not None: logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) ) logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) ) logger.logkv('time_elapsed', tnow - tfirststart) for (lossval, lossname) in zip(lossvals, model.loss_names): logger.logkv(lossname, lossval) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: logger.dumpkvs() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0): checkdir = osp.join(logger.get_dir(), 'checkpoints') os.makedirs(checkdir, exist_ok=True) savepath = osp.join(checkdir, '%.5i'%update) print('Saving to', savepath) model.save(savepath) return model
[ "def", "learn", "(", "*", ",", "network", ",", "env", ",", "total_timesteps", ",", "eval_env", "=", "None", ",", "seed", "=", "None", ",", "nsteps", "=", "2048", ",", "ent_coef", "=", "0.0", ",", "lr", "=", "3e-4", ",", "vf_coef", "=", "0.5", ",", "max_grad_norm", "=", "0.5", ",", "gamma", "=", "0.99", ",", "lam", "=", "0.95", ",", "log_interval", "=", "10", ",", "nminibatches", "=", "4", ",", "noptepochs", "=", "4", ",", "cliprange", "=", "0.2", ",", "save_interval", "=", "0", ",", "load_path", "=", "None", ",", "model_fn", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "set_global_seeds", "(", "seed", ")", "if", "isinstance", "(", "lr", ",", "float", ")", ":", "lr", "=", "constfn", "(", "lr", ")", "else", ":", "assert", "callable", "(", "lr", ")", "if", "isinstance", "(", "cliprange", ",", "float", ")", ":", "cliprange", "=", "constfn", "(", "cliprange", ")", "else", ":", "assert", "callable", "(", "cliprange", ")", "total_timesteps", "=", "int", "(", "total_timesteps", ")", "policy", "=", "build_policy", "(", "env", ",", "network", ",", "*", "*", "network_kwargs", ")", "# Get the nb of env", "nenvs", "=", "env", ".", "num_envs", "# Get state_space and action_space", "ob_space", "=", "env", ".", "observation_space", "ac_space", "=", "env", ".", "action_space", "# Calculate the batch_size", "nbatch", "=", "nenvs", "*", "nsteps", "nbatch_train", "=", "nbatch", "//", "nminibatches", "# Instantiate the model object (that creates act_model and train_model)", "if", "model_fn", "is", "None", ":", "from", "baselines", ".", "ppo2", ".", "model", "import", "Model", "model_fn", "=", "Model", "model", "=", "model_fn", "(", "policy", "=", "policy", ",", "ob_space", "=", "ob_space", ",", "ac_space", "=", "ac_space", ",", "nbatch_act", "=", "nenvs", ",", "nbatch_train", "=", "nbatch_train", ",", "nsteps", "=", "nsteps", ",", "ent_coef", "=", "ent_coef", ",", "vf_coef", "=", "vf_coef", ",", "max_grad_norm", "=", "max_grad_norm", ")", "if", "load_path", "is", "not", "None", ":", "model", ".", "load", "(", "load_path", ")", "# Instantiate the runner object", "runner", "=", "Runner", "(", "env", "=", "env", ",", "model", "=", "model", ",", "nsteps", "=", "nsteps", ",", "gamma", "=", "gamma", ",", "lam", "=", "lam", ")", "if", "eval_env", "is", "not", "None", ":", "eval_runner", "=", "Runner", "(", "env", "=", "eval_env", ",", "model", "=", "model", ",", "nsteps", "=", "nsteps", ",", "gamma", "=", "gamma", ",", "lam", "=", "lam", ")", "epinfobuf", "=", "deque", "(", "maxlen", "=", "100", ")", "if", "eval_env", "is", "not", "None", ":", "eval_epinfobuf", "=", "deque", "(", "maxlen", "=", "100", ")", "# Start total timer", "tfirststart", "=", "time", ".", "perf_counter", "(", ")", "nupdates", "=", "total_timesteps", "//", "nbatch", "for", "update", "in", "range", "(", "1", ",", "nupdates", "+", "1", ")", ":", "assert", "nbatch", "%", "nminibatches", "==", "0", "# Start timer", "tstart", "=", "time", ".", "perf_counter", "(", ")", "frac", "=", "1.0", "-", "(", "update", "-", "1.0", ")", "/", "nupdates", "# Calculate the learning rate", "lrnow", "=", "lr", "(", "frac", ")", "# Calculate the cliprange", "cliprangenow", "=", "cliprange", "(", "frac", ")", "# Get minibatch", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ",", "states", ",", "epinfos", "=", "runner", ".", "run", "(", ")", "#pylint: disable=E0632", "if", "eval_env", "is", "not", "None", ":", "eval_obs", ",", "eval_returns", ",", "eval_masks", ",", "eval_actions", ",", "eval_values", ",", "eval_neglogpacs", ",", "eval_states", ",", "eval_epinfos", "=", "eval_runner", ".", "run", "(", ")", "#pylint: disable=E0632", "epinfobuf", ".", "extend", "(", "epinfos", ")", "if", "eval_env", "is", "not", "None", ":", "eval_epinfobuf", ".", "extend", "(", "eval_epinfos", ")", "# Here what we're going to do is for each minibatch calculate the loss and append it.", "mblossvals", "=", "[", "]", "if", "states", "is", "None", ":", "# nonrecurrent version", "# Index of each element of batch_size", "# Create the indices array", "inds", "=", "np", ".", "arange", "(", "nbatch", ")", "for", "_", "in", "range", "(", "noptepochs", ")", ":", "# Randomize the indexes", "np", ".", "random", ".", "shuffle", "(", "inds", ")", "# 0 to batch_size with batch_train_size step", "for", "start", "in", "range", "(", "0", ",", "nbatch", ",", "nbatch_train", ")", ":", "end", "=", "start", "+", "nbatch_train", "mbinds", "=", "inds", "[", "start", ":", "end", "]", "slices", "=", "(", "arr", "[", "mbinds", "]", "for", "arr", "in", "(", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ")", ")", "mblossvals", ".", "append", "(", "model", ".", "train", "(", "lrnow", ",", "cliprangenow", ",", "*", "slices", ")", ")", "else", ":", "# recurrent version", "assert", "nenvs", "%", "nminibatches", "==", "0", "envsperbatch", "=", "nenvs", "//", "nminibatches", "envinds", "=", "np", ".", "arange", "(", "nenvs", ")", "flatinds", "=", "np", ".", "arange", "(", "nenvs", "*", "nsteps", ")", ".", "reshape", "(", "nenvs", ",", "nsteps", ")", "for", "_", "in", "range", "(", "noptepochs", ")", ":", "np", ".", "random", ".", "shuffle", "(", "envinds", ")", "for", "start", "in", "range", "(", "0", ",", "nenvs", ",", "envsperbatch", ")", ":", "end", "=", "start", "+", "envsperbatch", "mbenvinds", "=", "envinds", "[", "start", ":", "end", "]", "mbflatinds", "=", "flatinds", "[", "mbenvinds", "]", ".", "ravel", "(", ")", "slices", "=", "(", "arr", "[", "mbflatinds", "]", "for", "arr", "in", "(", "obs", ",", "returns", ",", "masks", ",", "actions", ",", "values", ",", "neglogpacs", ")", ")", "mbstates", "=", "states", "[", "mbenvinds", "]", "mblossvals", ".", "append", "(", "model", ".", "train", "(", "lrnow", ",", "cliprangenow", ",", "*", "slices", ",", "mbstates", ")", ")", "# Feedforward --> get losses --> update", "lossvals", "=", "np", ".", "mean", "(", "mblossvals", ",", "axis", "=", "0", ")", "# End timer", "tnow", "=", "time", ".", "perf_counter", "(", ")", "# Calculate the fps (frame per second)", "fps", "=", "int", "(", "nbatch", "/", "(", "tnow", "-", "tstart", ")", ")", "if", "update", "%", "log_interval", "==", "0", "or", "update", "==", "1", ":", "# Calculates if value function is a good predicator of the returns (ev > 1)", "# or if it's just worse than predicting nothing (ev =< 0)", "ev", "=", "explained_variance", "(", "values", ",", "returns", ")", "logger", ".", "logkv", "(", "\"serial_timesteps\"", ",", "update", "*", "nsteps", ")", "logger", ".", "logkv", "(", "\"nupdates\"", ",", "update", ")", "logger", ".", "logkv", "(", "\"total_timesteps\"", ",", "update", "*", "nbatch", ")", "logger", ".", "logkv", "(", "\"fps\"", ",", "fps", ")", "logger", ".", "logkv", "(", "\"explained_variance\"", ",", "float", "(", "ev", ")", ")", "logger", ".", "logkv", "(", "'eprewmean'", ",", "safemean", "(", "[", "epinfo", "[", "'r'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'eplenmean'", ",", "safemean", "(", "[", "epinfo", "[", "'l'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "if", "eval_env", "is", "not", "None", ":", "logger", ".", "logkv", "(", "'eval_eprewmean'", ",", "safemean", "(", "[", "epinfo", "[", "'r'", "]", "for", "epinfo", "in", "eval_epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'eval_eplenmean'", ",", "safemean", "(", "[", "epinfo", "[", "'l'", "]", "for", "epinfo", "in", "eval_epinfobuf", "]", ")", ")", "logger", ".", "logkv", "(", "'time_elapsed'", ",", "tnow", "-", "tfirststart", ")", "for", "(", "lossval", ",", "lossname", ")", "in", "zip", "(", "lossvals", ",", "model", ".", "loss_names", ")", ":", "logger", ".", "logkv", "(", "lossname", ",", "lossval", ")", "if", "MPI", "is", "None", "or", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "==", "0", ":", "logger", ".", "dumpkvs", "(", ")", "if", "save_interval", "and", "(", "update", "%", "save_interval", "==", "0", "or", "update", "==", "1", ")", "and", "logger", ".", "get_dir", "(", ")", "and", "(", "MPI", "is", "None", "or", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "==", "0", ")", ":", "checkdir", "=", "osp", ".", "join", "(", "logger", ".", "get_dir", "(", ")", ",", "'checkpoints'", ")", "os", ".", "makedirs", "(", "checkdir", ",", "exist_ok", "=", "True", ")", "savepath", "=", "osp", ".", "join", "(", "checkdir", ",", "'%.5i'", "%", "update", ")", "print", "(", "'Saving to'", ",", "savepath", ")", "model", ".", "save", "(", "savepath", ")", "return", "model" ]
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
[ "Learn", "policy", "using", "PPO", "algorithm", "(", "https", ":", "//", "arxiv", ".", "org", "/", "abs", "/", "1707", ".", "06347", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/ppo2/ppo2.py#L21-L204
valid
openai/baselines
baselines/common/cg.py
cg
def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
python
def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10): """ Demmel p 312 """ p = b.copy() r = b.copy() x = np.zeros_like(b) rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g" titlestr = "%10s %10s %10s" if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters): if callback is not None: callback(x) if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x))) z = f_Ax(p) v = rdotr / p.dot(z) x += v*p r -= v*z newrdotr = r.dot(r) mu = newrdotr/rdotr p = r + mu*p rdotr = newrdotr if rdotr < residual_tol: break if callback is not None: callback(x) if verbose: print(fmtstr % (i+1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631 return x
[ "def", "cg", "(", "f_Ax", ",", "b", ",", "cg_iters", "=", "10", ",", "callback", "=", "None", ",", "verbose", "=", "False", ",", "residual_tol", "=", "1e-10", ")", ":", "p", "=", "b", ".", "copy", "(", ")", "r", "=", "b", ".", "copy", "(", ")", "x", "=", "np", ".", "zeros_like", "(", "b", ")", "rdotr", "=", "r", ".", "dot", "(", "r", ")", "fmtstr", "=", "\"%10i %10.3g %10.3g\"", "titlestr", "=", "\"%10s %10s %10s\"", "if", "verbose", ":", "print", "(", "titlestr", "%", "(", "\"iter\"", ",", "\"residual norm\"", ",", "\"soln norm\"", ")", ")", "for", "i", "in", "range", "(", "cg_iters", ")", ":", "if", "callback", "is", "not", "None", ":", "callback", "(", "x", ")", "if", "verbose", ":", "print", "(", "fmtstr", "%", "(", "i", ",", "rdotr", ",", "np", ".", "linalg", ".", "norm", "(", "x", ")", ")", ")", "z", "=", "f_Ax", "(", "p", ")", "v", "=", "rdotr", "/", "p", ".", "dot", "(", "z", ")", "x", "+=", "v", "*", "p", "r", "-=", "v", "*", "z", "newrdotr", "=", "r", ".", "dot", "(", "r", ")", "mu", "=", "newrdotr", "/", "rdotr", "p", "=", "r", "+", "mu", "*", "p", "rdotr", "=", "newrdotr", "if", "rdotr", "<", "residual_tol", ":", "break", "if", "callback", "is", "not", "None", ":", "callback", "(", "x", ")", "if", "verbose", ":", "print", "(", "fmtstr", "%", "(", "i", "+", "1", ",", "rdotr", ",", "np", ".", "linalg", ".", "norm", "(", "x", ")", ")", ")", "# pylint: disable=W0631", "return", "x" ]
Demmel p 312
[ "Demmel", "p", "312" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/cg.py#L2-L34
valid
openai/baselines
baselines/common/input.py
observation_placeholder
def observation_placeholder(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor ''' assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \ 'Can only deal with Discrete and Box observation spaces for now' dtype = ob_space.dtype if dtype == np.int8: dtype = np.uint8 return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name)
python
def observation_placeholder(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor ''' assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \ 'Can only deal with Discrete and Box observation spaces for now' dtype = ob_space.dtype if dtype == np.int8: dtype = np.uint8 return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name)
[ "def", "observation_placeholder", "(", "ob_space", ",", "batch_size", "=", "None", ",", "name", "=", "'Ob'", ")", ":", "assert", "isinstance", "(", "ob_space", ",", "Discrete", ")", "or", "isinstance", "(", "ob_space", ",", "Box", ")", "or", "isinstance", "(", "ob_space", ",", "MultiDiscrete", ")", ",", "'Can only deal with Discrete and Box observation spaces for now'", "dtype", "=", "ob_space", ".", "dtype", "if", "dtype", "==", "np", ".", "int8", ":", "dtype", "=", "np", ".", "uint8", "return", "tf", ".", "placeholder", "(", "shape", "=", "(", "batch_size", ",", ")", "+", "ob_space", ".", "shape", ",", "dtype", "=", "dtype", ",", "name", "=", "name", ")" ]
Create placeholder to feed observations into of the size appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space batch_size: int size of the batch to be fed into input. Can be left None in most cases. name: str name of the placeholder Returns: ------- tensorflow placeholder tensor
[ "Create", "placeholder", "to", "feed", "observations", "into", "of", "the", "size", "appropriate", "to", "the", "observation", "space" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L5-L31
valid
openai/baselines
baselines/common/input.py
observation_input
def observation_input(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type. ''' placeholder = observation_placeholder(ob_space, batch_size, name) return placeholder, encode_observation(ob_space, placeholder)
python
def observation_input(ob_space, batch_size=None, name='Ob'): ''' Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type. ''' placeholder = observation_placeholder(ob_space, batch_size, name) return placeholder, encode_observation(ob_space, placeholder)
[ "def", "observation_input", "(", "ob_space", ",", "batch_size", "=", "None", ",", "name", "=", "'Ob'", ")", ":", "placeholder", "=", "observation_placeholder", "(", "ob_space", ",", "batch_size", ",", "name", ")", "return", "placeholder", ",", "encode_observation", "(", "ob_space", ",", "placeholder", ")" ]
Create placeholder to feed observations into of the size appropriate to the observation space, and add input encoder of the appropriate type.
[ "Create", "placeholder", "to", "feed", "observations", "into", "of", "the", "size", "appropriate", "to", "the", "observation", "space", "and", "add", "input", "encoder", "of", "the", "appropriate", "type", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L34-L41
valid
openai/baselines
baselines/common/input.py
encode_observation
def encode_observation(ob_space, placeholder): ''' Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder ''' if isinstance(ob_space, Discrete): return tf.to_float(tf.one_hot(placeholder, ob_space.n)) elif isinstance(ob_space, Box): return tf.to_float(placeholder) elif isinstance(ob_space, MultiDiscrete): placeholder = tf.cast(placeholder, tf.int32) one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])] return tf.concat(one_hots, axis=-1) else: raise NotImplementedError
python
def encode_observation(ob_space, placeholder): ''' Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder ''' if isinstance(ob_space, Discrete): return tf.to_float(tf.one_hot(placeholder, ob_space.n)) elif isinstance(ob_space, Box): return tf.to_float(placeholder) elif isinstance(ob_space, MultiDiscrete): placeholder = tf.cast(placeholder, tf.int32) one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])] return tf.concat(one_hots, axis=-1) else: raise NotImplementedError
[ "def", "encode_observation", "(", "ob_space", ",", "placeholder", ")", ":", "if", "isinstance", "(", "ob_space", ",", "Discrete", ")", ":", "return", "tf", ".", "to_float", "(", "tf", ".", "one_hot", "(", "placeholder", ",", "ob_space", ".", "n", ")", ")", "elif", "isinstance", "(", "ob_space", ",", "Box", ")", ":", "return", "tf", ".", "to_float", "(", "placeholder", ")", "elif", "isinstance", "(", "ob_space", ",", "MultiDiscrete", ")", ":", "placeholder", "=", "tf", ".", "cast", "(", "placeholder", ",", "tf", ".", "int32", ")", "one_hots", "=", "[", "tf", ".", "to_float", "(", "tf", ".", "one_hot", "(", "placeholder", "[", "...", ",", "i", "]", ",", "ob_space", ".", "nvec", "[", "i", "]", ")", ")", "for", "i", "in", "range", "(", "placeholder", ".", "shape", "[", "-", "1", "]", ")", "]", "return", "tf", ".", "concat", "(", "one_hots", ",", "axis", "=", "-", "1", ")", "else", ":", "raise", "NotImplementedError" ]
Encode input in the way that is appropriate to the observation space Parameters: ---------- ob_space: gym.Space observation space placeholder: tf.placeholder observation input placeholder
[ "Encode", "input", "in", "the", "way", "that", "is", "appropriate", "to", "the", "observation", "space" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/input.py#L43-L63
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.generate_rollouts
def generate_rollouts(self): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ self.reset_all_rollouts() # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals o[:] = self.initial_o ag[:] = self.initial_ag # generate episodes obs, achieved_goals, acts, goals, successes = [], [], [], [], [] dones = [] info_values = [np.empty((self.T - 1, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy.get_actions( o, ag, self.g, compute_Q=self.compute_Q, noise_eps=self.noise_eps if not self.exploit else 0., random_eps=self.random_eps if not self.exploit else 0., use_target_net=self.use_target_net) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) # compute new states and observations obs_dict_new, _, done, info = self.venv.step(u) o_new = obs_dict_new['observation'] ag_new = obs_dict_new['achieved_goal'] success = np.array([i.get('is_success', 0.0) for i in info]) if any(done): # here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done # trick with using vecenvs is not to add the obs from the environments that are "done", because those are already observations # after a reset break for i, info_dict in enumerate(info): for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[i][key] if np.isnan(o_new).any(): self.logger.warn('NaN caught during rollout generation. Trying again...') self.reset_all_rollouts() return self.generate_rollouts() dones.append(done) obs.append(o.copy()) achieved_goals.append(ag.copy()) successes.append(success.copy()) acts.append(u.copy()) goals.append(self.g.copy()) o[...] = o_new ag[...] = ag_new obs.append(o.copy()) achieved_goals.append(ag.copy()) episode = dict(o=obs, u=acts, g=goals, ag=achieved_goals) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size return convert_episode_to_batch_major(episode)
python
def generate_rollouts(self): """Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly. """ self.reset_all_rollouts() # compute observations o = np.empty((self.rollout_batch_size, self.dims['o']), np.float32) # observations ag = np.empty((self.rollout_batch_size, self.dims['g']), np.float32) # achieved goals o[:] = self.initial_o ag[:] = self.initial_ag # generate episodes obs, achieved_goals, acts, goals, successes = [], [], [], [], [] dones = [] info_values = [np.empty((self.T - 1, self.rollout_batch_size, self.dims['info_' + key]), np.float32) for key in self.info_keys] Qs = [] for t in range(self.T): policy_output = self.policy.get_actions( o, ag, self.g, compute_Q=self.compute_Q, noise_eps=self.noise_eps if not self.exploit else 0., random_eps=self.random_eps if not self.exploit else 0., use_target_net=self.use_target_net) if self.compute_Q: u, Q = policy_output Qs.append(Q) else: u = policy_output if u.ndim == 1: # The non-batched case should still have a reasonable shape. u = u.reshape(1, -1) o_new = np.empty((self.rollout_batch_size, self.dims['o'])) ag_new = np.empty((self.rollout_batch_size, self.dims['g'])) success = np.zeros(self.rollout_batch_size) # compute new states and observations obs_dict_new, _, done, info = self.venv.step(u) o_new = obs_dict_new['observation'] ag_new = obs_dict_new['achieved_goal'] success = np.array([i.get('is_success', 0.0) for i in info]) if any(done): # here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done # trick with using vecenvs is not to add the obs from the environments that are "done", because those are already observations # after a reset break for i, info_dict in enumerate(info): for idx, key in enumerate(self.info_keys): info_values[idx][t, i] = info[i][key] if np.isnan(o_new).any(): self.logger.warn('NaN caught during rollout generation. Trying again...') self.reset_all_rollouts() return self.generate_rollouts() dones.append(done) obs.append(o.copy()) achieved_goals.append(ag.copy()) successes.append(success.copy()) acts.append(u.copy()) goals.append(self.g.copy()) o[...] = o_new ag[...] = ag_new obs.append(o.copy()) achieved_goals.append(ag.copy()) episode = dict(o=obs, u=acts, g=goals, ag=achieved_goals) for key, value in zip(self.info_keys, info_values): episode['info_{}'.format(key)] = value # stats successful = np.array(successes)[-1, :] assert successful.shape == (self.rollout_batch_size,) success_rate = np.mean(successful) self.success_history.append(success_rate) if self.compute_Q: self.Q_history.append(np.mean(Qs)) self.n_episodes += self.rollout_batch_size return convert_episode_to_batch_major(episode)
[ "def", "generate_rollouts", "(", "self", ")", ":", "self", ".", "reset_all_rollouts", "(", ")", "# compute observations", "o", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'o'", "]", ")", ",", "np", ".", "float32", ")", "# observations", "ag", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'g'", "]", ")", ",", "np", ".", "float32", ")", "# achieved goals", "o", "[", ":", "]", "=", "self", ".", "initial_o", "ag", "[", ":", "]", "=", "self", ".", "initial_ag", "# generate episodes", "obs", ",", "achieved_goals", ",", "acts", ",", "goals", ",", "successes", "=", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", "dones", "=", "[", "]", "info_values", "=", "[", "np", ".", "empty", "(", "(", "self", ".", "T", "-", "1", ",", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'info_'", "+", "key", "]", ")", ",", "np", ".", "float32", ")", "for", "key", "in", "self", ".", "info_keys", "]", "Qs", "=", "[", "]", "for", "t", "in", "range", "(", "self", ".", "T", ")", ":", "policy_output", "=", "self", ".", "policy", ".", "get_actions", "(", "o", ",", "ag", ",", "self", ".", "g", ",", "compute_Q", "=", "self", ".", "compute_Q", ",", "noise_eps", "=", "self", ".", "noise_eps", "if", "not", "self", ".", "exploit", "else", "0.", ",", "random_eps", "=", "self", ".", "random_eps", "if", "not", "self", ".", "exploit", "else", "0.", ",", "use_target_net", "=", "self", ".", "use_target_net", ")", "if", "self", ".", "compute_Q", ":", "u", ",", "Q", "=", "policy_output", "Qs", ".", "append", "(", "Q", ")", "else", ":", "u", "=", "policy_output", "if", "u", ".", "ndim", "==", "1", ":", "# The non-batched case should still have a reasonable shape.", "u", "=", "u", ".", "reshape", "(", "1", ",", "-", "1", ")", "o_new", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'o'", "]", ")", ")", "ag_new", "=", "np", ".", "empty", "(", "(", "self", ".", "rollout_batch_size", ",", "self", ".", "dims", "[", "'g'", "]", ")", ")", "success", "=", "np", ".", "zeros", "(", "self", ".", "rollout_batch_size", ")", "# compute new states and observations", "obs_dict_new", ",", "_", ",", "done", ",", "info", "=", "self", ".", "venv", ".", "step", "(", "u", ")", "o_new", "=", "obs_dict_new", "[", "'observation'", "]", "ag_new", "=", "obs_dict_new", "[", "'achieved_goal'", "]", "success", "=", "np", ".", "array", "(", "[", "i", ".", "get", "(", "'is_success'", ",", "0.0", ")", "for", "i", "in", "info", "]", ")", "if", "any", "(", "done", ")", ":", "# here we assume all environments are done is ~same number of steps, so we terminate rollouts whenever any of the envs returns done", "# trick with using vecenvs is not to add the obs from the environments that are \"done\", because those are already observations", "# after a reset", "break", "for", "i", ",", "info_dict", "in", "enumerate", "(", "info", ")", ":", "for", "idx", ",", "key", "in", "enumerate", "(", "self", ".", "info_keys", ")", ":", "info_values", "[", "idx", "]", "[", "t", ",", "i", "]", "=", "info", "[", "i", "]", "[", "key", "]", "if", "np", ".", "isnan", "(", "o_new", ")", ".", "any", "(", ")", ":", "self", ".", "logger", ".", "warn", "(", "'NaN caught during rollout generation. Trying again...'", ")", "self", ".", "reset_all_rollouts", "(", ")", "return", "self", ".", "generate_rollouts", "(", ")", "dones", ".", "append", "(", "done", ")", "obs", ".", "append", "(", "o", ".", "copy", "(", ")", ")", "achieved_goals", ".", "append", "(", "ag", ".", "copy", "(", ")", ")", "successes", ".", "append", "(", "success", ".", "copy", "(", ")", ")", "acts", ".", "append", "(", "u", ".", "copy", "(", ")", ")", "goals", ".", "append", "(", "self", ".", "g", ".", "copy", "(", ")", ")", "o", "[", "...", "]", "=", "o_new", "ag", "[", "...", "]", "=", "ag_new", "obs", ".", "append", "(", "o", ".", "copy", "(", ")", ")", "achieved_goals", ".", "append", "(", "ag", ".", "copy", "(", ")", ")", "episode", "=", "dict", "(", "o", "=", "obs", ",", "u", "=", "acts", ",", "g", "=", "goals", ",", "ag", "=", "achieved_goals", ")", "for", "key", ",", "value", "in", "zip", "(", "self", ".", "info_keys", ",", "info_values", ")", ":", "episode", "[", "'info_{}'", ".", "format", "(", "key", ")", "]", "=", "value", "# stats", "successful", "=", "np", ".", "array", "(", "successes", ")", "[", "-", "1", ",", ":", "]", "assert", "successful", ".", "shape", "==", "(", "self", ".", "rollout_batch_size", ",", ")", "success_rate", "=", "np", ".", "mean", "(", "successful", ")", "self", ".", "success_history", ".", "append", "(", "success_rate", ")", "if", "self", ".", "compute_Q", ":", "self", ".", "Q_history", ".", "append", "(", "np", ".", "mean", "(", "Qs", ")", ")", "self", ".", "n_episodes", "+=", "self", ".", "rollout_batch_size", "return", "convert_episode_to_batch_major", "(", "episode", ")" ]
Performs `rollout_batch_size` rollouts in parallel for time horizon `T` with the current policy acting on it accordingly.
[ "Performs", "rollout_batch_size", "rollouts", "in", "parallel", "for", "time", "horizon", "T", "with", "the", "current", "policy", "acting", "on", "it", "accordingly", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L51-L137
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.save_policy
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
python
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
[ "def", "save_policy", "(", "self", ",", "path", ")", ":", "with", "open", "(", "path", ",", "'wb'", ")", "as", "f", ":", "pickle", ".", "dump", "(", "self", ".", "policy", ",", "f", ")" ]
Pickles the current policy for later inspection.
[ "Pickles", "the", "current", "policy", "for", "later", "inspection", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L151-L155
valid
openai/baselines
baselines/her/rollout.py
RolloutWorker.logs
def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix != '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs
python
def logs(self, prefix='worker'): """Generates a dictionary that contains all collected statistics. """ logs = [] logs += [('success_rate', np.mean(self.success_history))] if self.compute_Q: logs += [('mean_Q', np.mean(self.Q_history))] logs += [('episode', self.n_episodes)] if prefix != '' and not prefix.endswith('/'): return [(prefix + '/' + key, val) for key, val in logs] else: return logs
[ "def", "logs", "(", "self", ",", "prefix", "=", "'worker'", ")", ":", "logs", "=", "[", "]", "logs", "+=", "[", "(", "'success_rate'", ",", "np", ".", "mean", "(", "self", ".", "success_history", ")", ")", "]", "if", "self", ".", "compute_Q", ":", "logs", "+=", "[", "(", "'mean_Q'", ",", "np", ".", "mean", "(", "self", ".", "Q_history", ")", ")", "]", "logs", "+=", "[", "(", "'episode'", ",", "self", ".", "n_episodes", ")", "]", "if", "prefix", "!=", "''", "and", "not", "prefix", ".", "endswith", "(", "'/'", ")", ":", "return", "[", "(", "prefix", "+", "'/'", "+", "key", ",", "val", ")", "for", "key", ",", "val", "in", "logs", "]", "else", ":", "return", "logs" ]
Generates a dictionary that contains all collected statistics.
[ "Generates", "a", "dictionary", "that", "contains", "all", "collected", "statistics", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/rollout.py#L157-L169
valid
openai/baselines
baselines/common/plot_util.py
smooth
def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out
python
def smooth(y, radius, mode='two_sided', valid_only=False): ''' Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available ''' assert mode in ('two_sided', 'causal') if len(y) < 2*radius+1: return np.ones_like(y) * y.mean() elif mode == 'two_sided': convkernel = np.ones(2 * radius+1) out = np.convolve(y, convkernel,mode='same') / np.convolve(np.ones_like(y), convkernel, mode='same') if valid_only: out[:radius] = out[-radius:] = np.nan elif mode == 'causal': convkernel = np.ones(radius) out = np.convolve(y, convkernel,mode='full') / np.convolve(np.ones_like(y), convkernel, mode='full') out = out[:-radius+1] if valid_only: out[:radius] = np.nan return out
[ "def", "smooth", "(", "y", ",", "radius", ",", "mode", "=", "'two_sided'", ",", "valid_only", "=", "False", ")", ":", "assert", "mode", "in", "(", "'two_sided'", ",", "'causal'", ")", "if", "len", "(", "y", ")", "<", "2", "*", "radius", "+", "1", ":", "return", "np", ".", "ones_like", "(", "y", ")", "*", "y", ".", "mean", "(", ")", "elif", "mode", "==", "'two_sided'", ":", "convkernel", "=", "np", ".", "ones", "(", "2", "*", "radius", "+", "1", ")", "out", "=", "np", ".", "convolve", "(", "y", ",", "convkernel", ",", "mode", "=", "'same'", ")", "/", "np", ".", "convolve", "(", "np", ".", "ones_like", "(", "y", ")", ",", "convkernel", ",", "mode", "=", "'same'", ")", "if", "valid_only", ":", "out", "[", ":", "radius", "]", "=", "out", "[", "-", "radius", ":", "]", "=", "np", ".", "nan", "elif", "mode", "==", "'causal'", ":", "convkernel", "=", "np", ".", "ones", "(", "radius", ")", "out", "=", "np", ".", "convolve", "(", "y", ",", "convkernel", ",", "mode", "=", "'full'", ")", "/", "np", ".", "convolve", "(", "np", ".", "ones_like", "(", "y", ")", ",", "convkernel", ",", "mode", "=", "'full'", ")", "out", "=", "out", "[", ":", "-", "radius", "+", "1", "]", "if", "valid_only", ":", "out", "[", ":", "radius", "]", "=", "np", ".", "nan", "return", "out" ]
Smooth signal y, where radius is determines the size of the window mode='twosided': average over the window [max(index - radius, 0), min(index + radius, len(y)-1)] mode='causal': average over the window [max(index - radius, 0), index] valid_only: put nan in entries where the full-sized window is not available
[ "Smooth", "signal", "y", "where", "radius", "is", "determines", "the", "size", "of", "the", "window" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L11-L37
valid
openai/baselines
baselines/common/plot_util.py
one_sided_ema
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break if luoi >= len(xolds): break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys
python
def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' low = xolds[0] if low is None else low high = xolds[-1] if high is None else high assert xolds[0] <= low, 'low = {} < xolds[0] = {} - extrapolation not permitted!'.format(low, xolds[0]) assert xolds[-1] >= high, 'high = {} > xolds[-1] = {} - extrapolation not permitted!'.format(high, xolds[-1]) assert len(xolds) == len(yolds), 'length of xolds ({}) and yolds ({}) do not match!'.format(len(xolds), len(yolds)) xolds = xolds.astype('float64') yolds = yolds.astype('float64') luoi = 0 # last unused old index sum_y = 0. count_y = 0. xnews = np.linspace(low, high, n) decay_period = (high - low) / (n - 1) * decay_steps interstep_decay = np.exp(- 1. / decay_steps) sum_ys = np.zeros_like(xnews) count_ys = np.zeros_like(xnews) for i in range(n): xnew = xnews[i] sum_y *= interstep_decay count_y *= interstep_decay while True: xold = xolds[luoi] if xold <= xnew: decay = np.exp(- (xnew - xold) / decay_period) sum_y += decay * yolds[luoi] count_y += decay luoi += 1 else: break if luoi >= len(xolds): break sum_ys[i] = sum_y count_ys[i] = count_y ys = sum_ys / count_ys ys[count_ys < low_counts_threshold] = np.nan return xnews, ys, count_ys
[ "def", "one_sided_ema", "(", "xolds", ",", "yolds", ",", "low", "=", "None", ",", "high", "=", "None", ",", "n", "=", "512", ",", "decay_steps", "=", "1.", ",", "low_counts_threshold", "=", "1e-8", ")", ":", "low", "=", "xolds", "[", "0", "]", "if", "low", "is", "None", "else", "low", "high", "=", "xolds", "[", "-", "1", "]", "if", "high", "is", "None", "else", "high", "assert", "xolds", "[", "0", "]", "<=", "low", ",", "'low = {} < xolds[0] = {} - extrapolation not permitted!'", ".", "format", "(", "low", ",", "xolds", "[", "0", "]", ")", "assert", "xolds", "[", "-", "1", "]", ">=", "high", ",", "'high = {} > xolds[-1] = {} - extrapolation not permitted!'", ".", "format", "(", "high", ",", "xolds", "[", "-", "1", "]", ")", "assert", "len", "(", "xolds", ")", "==", "len", "(", "yolds", ")", ",", "'length of xolds ({}) and yolds ({}) do not match!'", ".", "format", "(", "len", "(", "xolds", ")", ",", "len", "(", "yolds", ")", ")", "xolds", "=", "xolds", ".", "astype", "(", "'float64'", ")", "yolds", "=", "yolds", ".", "astype", "(", "'float64'", ")", "luoi", "=", "0", "# last unused old index", "sum_y", "=", "0.", "count_y", "=", "0.", "xnews", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "n", ")", "decay_period", "=", "(", "high", "-", "low", ")", "/", "(", "n", "-", "1", ")", "*", "decay_steps", "interstep_decay", "=", "np", ".", "exp", "(", "-", "1.", "/", "decay_steps", ")", "sum_ys", "=", "np", ".", "zeros_like", "(", "xnews", ")", "count_ys", "=", "np", ".", "zeros_like", "(", "xnews", ")", "for", "i", "in", "range", "(", "n", ")", ":", "xnew", "=", "xnews", "[", "i", "]", "sum_y", "*=", "interstep_decay", "count_y", "*=", "interstep_decay", "while", "True", ":", "xold", "=", "xolds", "[", "luoi", "]", "if", "xold", "<=", "xnew", ":", "decay", "=", "np", ".", "exp", "(", "-", "(", "xnew", "-", "xold", ")", "/", "decay_period", ")", "sum_y", "+=", "decay", "*", "yolds", "[", "luoi", "]", "count_y", "+=", "decay", "luoi", "+=", "1", "else", ":", "break", "if", "luoi", ">=", "len", "(", "xolds", ")", ":", "break", "sum_ys", "[", "i", "]", "=", "sum_y", "count_ys", "[", "i", "]", "=", "count_y", "ys", "=", "sum_ys", "/", "count_ys", "ys", "[", "count_ys", "<", "low_counts_threshold", "]", "=", "np", ".", "nan", "return", "xnews", ",", "ys", ",", "count_ys" ]
perform one-sided (causal) EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
[ "perform", "one", "-", "sided", "(", "causal", ")", "EMA", "(", "exponential", "moving", "average", ")", "smoothing", "and", "resampling", "to", "an", "even", "grid", "with", "n", "points", ".", "Does", "not", "do", "extrapolation", "so", "we", "assume", "xolds", "[", "0", "]", "<", "=", "low", "&&", "high", "<", "=", "xolds", "[", "-", "1", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L39-L109
valid
openai/baselines
baselines/common/plot_util.py
symmetric_ema
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys
python
def symmetric_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_counts_threshold=1e-8): ''' perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid ''' xs, ys1, count_ys1 = one_sided_ema(xolds, yolds, low, high, n, decay_steps, low_counts_threshold=0) _, ys2, count_ys2 = one_sided_ema(-xolds[::-1], yolds[::-1], -high, -low, n, decay_steps, low_counts_threshold=0) ys2 = ys2[::-1] count_ys2 = count_ys2[::-1] count_ys = count_ys1 + count_ys2 ys = (ys1 * count_ys1 + ys2 * count_ys2) / count_ys ys[count_ys < low_counts_threshold] = np.nan return xs, ys, count_ys
[ "def", "symmetric_ema", "(", "xolds", ",", "yolds", ",", "low", "=", "None", ",", "high", "=", "None", ",", "n", "=", "512", ",", "decay_steps", "=", "1.", ",", "low_counts_threshold", "=", "1e-8", ")", ":", "xs", ",", "ys1", ",", "count_ys1", "=", "one_sided_ema", "(", "xolds", ",", "yolds", ",", "low", ",", "high", ",", "n", ",", "decay_steps", ",", "low_counts_threshold", "=", "0", ")", "_", ",", "ys2", ",", "count_ys2", "=", "one_sided_ema", "(", "-", "xolds", "[", ":", ":", "-", "1", "]", ",", "yolds", "[", ":", ":", "-", "1", "]", ",", "-", "high", ",", "-", "low", ",", "n", ",", "decay_steps", ",", "low_counts_threshold", "=", "0", ")", "ys2", "=", "ys2", "[", ":", ":", "-", "1", "]", "count_ys2", "=", "count_ys2", "[", ":", ":", "-", "1", "]", "count_ys", "=", "count_ys1", "+", "count_ys2", "ys", "=", "(", "ys1", "*", "count_ys1", "+", "ys2", "*", "count_ys2", ")", "/", "count_ys", "ys", "[", "count_ys", "<", "low_counts_threshold", "]", "=", "np", ".", "nan", "return", "xs", ",", "ys", ",", "count_ys" ]
perform symmetric EMA (exponential moving average) smoothing and resampling to an even grid with n points. Does not do extrapolation, so we assume xolds[0] <= low && high <= xolds[-1] Arguments: xolds: array or list - x values of data. Needs to be sorted in ascending order yolds: array of list - y values of data. Has to have the same length as xolds low: float - min value of the new x grid. By default equals to xolds[0] high: float - max value of the new x grid. By default equals to xolds[-1] n: int - number of points in new x grid decay_steps: float - EMA decay factor, expressed in new x grid steps. low_counts_threshold: float or int - y values with counts less than this value will be set to NaN Returns: tuple sum_ys, count_ys where xs - array with new x grid ys - array of EMA of y at each point of the new x grid count_ys - array of EMA of y counts at each point of the new x grid
[ "perform", "symmetric", "EMA", "(", "exponential", "moving", "average", ")", "smoothing", "and", "resampling", "to", "an", "even", "grid", "with", "n", "points", ".", "Does", "not", "do", "extrapolation", "so", "we", "assume", "xolds", "[", "0", "]", "<", "=", "low", "&&", "high", "<", "=", "xolds", "[", "-", "1", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L111-L147
valid
openai/baselines
baselines/common/plot_util.py
load_results
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults
python
def load_results(root_dir_or_dirs, enable_progress=True, enable_monitor=True, verbose=False): ''' load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file ''' import re if isinstance(root_dir_or_dirs, str): rootdirs = [osp.expanduser(root_dir_or_dirs)] else: rootdirs = [osp.expanduser(d) for d in root_dir_or_dirs] allresults = [] for rootdir in rootdirs: assert osp.exists(rootdir), "%s doesn't exist"%rootdir for dirname, dirs, files in os.walk(rootdir): if '-proc' in dirname: files[:] = [] continue monitor_re = re.compile(r'(\d+\.)?(\d+\.)?monitor\.csv') if set(['metadata.json', 'monitor.json', 'progress.json', 'progress.csv']).intersection(files) or \ any([f for f in files if monitor_re.match(f)]): # also match monitor files like 0.1.monitor.csv # used to be uncommented, which means do not go deeper than current directory if any of the data files # are found # dirs[:] = [] result = {'dirname' : dirname} if "metadata.json" in files: with open(osp.join(dirname, "metadata.json"), "r") as fh: result['metadata'] = json.load(fh) progjson = osp.join(dirname, "progress.json") progcsv = osp.join(dirname, "progress.csv") if enable_progress: if osp.exists(progjson): result['progress'] = pandas.DataFrame(read_json(progjson)) elif osp.exists(progcsv): try: result['progress'] = read_csv(progcsv) except pandas.errors.EmptyDataError: print('skipping progress file in ', dirname, 'empty data') else: if verbose: print('skipping %s: no progress file'%dirname) if enable_monitor: try: result['monitor'] = pandas.DataFrame(monitor.load_results(dirname)) except monitor.LoadMonitorResultsError: print('skipping %s: no monitor files'%dirname) except Exception as e: print('exception loading monitor file in %s: %s'%(dirname, e)) if result.get('monitor') is not None or result.get('progress') is not None: allresults.append(Result(**result)) if verbose: print('successfully loaded %s'%dirname) if verbose: print('loaded %i results'%len(allresults)) return allresults
[ "def", "load_results", "(", "root_dir_or_dirs", ",", "enable_progress", "=", "True", ",", "enable_monitor", "=", "True", ",", "verbose", "=", "False", ")", ":", "import", "re", "if", "isinstance", "(", "root_dir_or_dirs", ",", "str", ")", ":", "rootdirs", "=", "[", "osp", ".", "expanduser", "(", "root_dir_or_dirs", ")", "]", "else", ":", "rootdirs", "=", "[", "osp", ".", "expanduser", "(", "d", ")", "for", "d", "in", "root_dir_or_dirs", "]", "allresults", "=", "[", "]", "for", "rootdir", "in", "rootdirs", ":", "assert", "osp", ".", "exists", "(", "rootdir", ")", ",", "\"%s doesn't exist\"", "%", "rootdir", "for", "dirname", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "rootdir", ")", ":", "if", "'-proc'", "in", "dirname", ":", "files", "[", ":", "]", "=", "[", "]", "continue", "monitor_re", "=", "re", ".", "compile", "(", "r'(\\d+\\.)?(\\d+\\.)?monitor\\.csv'", ")", "if", "set", "(", "[", "'metadata.json'", ",", "'monitor.json'", ",", "'progress.json'", ",", "'progress.csv'", "]", ")", ".", "intersection", "(", "files", ")", "or", "any", "(", "[", "f", "for", "f", "in", "files", "if", "monitor_re", ".", "match", "(", "f", ")", "]", ")", ":", "# also match monitor files like 0.1.monitor.csv", "# used to be uncommented, which means do not go deeper than current directory if any of the data files", "# are found", "# dirs[:] = []", "result", "=", "{", "'dirname'", ":", "dirname", "}", "if", "\"metadata.json\"", "in", "files", ":", "with", "open", "(", "osp", ".", "join", "(", "dirname", ",", "\"metadata.json\"", ")", ",", "\"r\"", ")", "as", "fh", ":", "result", "[", "'metadata'", "]", "=", "json", ".", "load", "(", "fh", ")", "progjson", "=", "osp", ".", "join", "(", "dirname", ",", "\"progress.json\"", ")", "progcsv", "=", "osp", ".", "join", "(", "dirname", ",", "\"progress.csv\"", ")", "if", "enable_progress", ":", "if", "osp", ".", "exists", "(", "progjson", ")", ":", "result", "[", "'progress'", "]", "=", "pandas", ".", "DataFrame", "(", "read_json", "(", "progjson", ")", ")", "elif", "osp", ".", "exists", "(", "progcsv", ")", ":", "try", ":", "result", "[", "'progress'", "]", "=", "read_csv", "(", "progcsv", ")", "except", "pandas", ".", "errors", ".", "EmptyDataError", ":", "print", "(", "'skipping progress file in '", ",", "dirname", ",", "'empty data'", ")", "else", ":", "if", "verbose", ":", "print", "(", "'skipping %s: no progress file'", "%", "dirname", ")", "if", "enable_monitor", ":", "try", ":", "result", "[", "'monitor'", "]", "=", "pandas", ".", "DataFrame", "(", "monitor", ".", "load_results", "(", "dirname", ")", ")", "except", "monitor", ".", "LoadMonitorResultsError", ":", "print", "(", "'skipping %s: no monitor files'", "%", "dirname", ")", "except", "Exception", "as", "e", ":", "print", "(", "'exception loading monitor file in %s: %s'", "%", "(", "dirname", ",", "e", ")", ")", "if", "result", ".", "get", "(", "'monitor'", ")", "is", "not", "None", "or", "result", ".", "get", "(", "'progress'", ")", "is", "not", "None", ":", "allresults", ".", "append", "(", "Result", "(", "*", "*", "result", ")", ")", "if", "verbose", ":", "print", "(", "'successfully loaded %s'", "%", "dirname", ")", "if", "verbose", ":", "print", "(", "'loaded %i results'", "%", "len", "(", "allresults", ")", ")", "return", "allresults" ]
load summaries of runs from a list of directories (including subdirectories) Arguments: enable_progress: bool - if True, will attempt to load data from progress.csv files (data saved by logger). Default: True enable_monitor: bool - if True, will attempt to load data from monitor.csv files (data saved by Monitor environment wrapper). Default: True verbose: bool - if True, will print out list of directories from which the data is loaded. Default: False Returns: List of Result objects with the following fields: - dirname - path to the directory data was loaded from - metadata - run metadata (such as command-line arguments and anything else in metadata.json file - monitor - if enable_monitor is True, this field contains pandas dataframe with loaded monitor.csv file (or aggregate of all *.monitor.csv files in the directory) - progress - if enable_progress is True, this field contains pandas dataframe with loaded progress.csv file
[ "load", "summaries", "of", "runs", "from", "a", "list", "of", "directories", "(", "including", "subdirectories", ")", "Arguments", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L152-L220
valid
openai/baselines
baselines/common/plot_util.py
plot_results
def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0 ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" nrows = len(sk2r) ncols = 1 figsize = figsize or (6, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) ax = axarr[isplit][0] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[isplit][0].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) return f, axarr
python
def plot_results( allresults, *, xy_fn=default_xy_fn, split_fn=default_split_fn, group_fn=default_split_fn, average_group=False, shaded_std=True, shaded_err=True, figsize=None, legend_outside=False, resample=0, smooth_step=1.0 ): ''' Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions. ''' if split_fn is None: split_fn = lambda _ : '' if group_fn is None: group_fn = lambda _ : '' sk2r = defaultdict(list) # splitkey2results for result in allresults: splitkey = split_fn(result) sk2r[splitkey].append(result) assert len(sk2r) > 0 assert isinstance(resample, int), "0: don't resample. <integer>: that many samples" nrows = len(sk2r) ncols = 1 figsize = figsize or (6, 6 * nrows) f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize) groups = list(set(group_fn(result) for result in allresults)) default_samples = 512 if average_group: resample = resample or default_samples for (isplit, sk) in enumerate(sorted(sk2r.keys())): g2l = {} g2c = defaultdict(int) sresults = sk2r[sk] gresults = defaultdict(list) ax = axarr[isplit][0] for result in sresults: group = group_fn(result) g2c[group] += 1 x, y = xy_fn(result) if x is None: x = np.arange(len(y)) x, y = map(np.asarray, (x, y)) if average_group: gresults[group].append((x,y)) else: if resample: x, y, counts = symmetric_ema(x, y, x[0], x[-1], resample, decay_steps=smooth_step) l, = ax.plot(x, y, color=COLORS[groups.index(group) % len(COLORS)]) g2l[group] = l if average_group: for group in sorted(groups): xys = gresults[group] if not any(xys): continue color = COLORS[groups.index(group) % len(COLORS)] origxs = [xy[0] for xy in xys] minxlen = min(map(len, origxs)) def allequal(qs): return all((q==qs[0]).all() for q in qs[1:]) if resample: low = max(x[0] for x in origxs) high = min(x[-1] for x in origxs) usex = np.linspace(low, high, resample) ys = [] for (x, y) in xys: ys.append(symmetric_ema(x, y, low, high, resample, decay_steps=smooth_step)[1]) else: assert allequal([x[:minxlen] for x in origxs]),\ 'If you want to average unevenly sampled data, set resample=<number of samples you want>' usex = origxs[0] ys = [xy[1][:minxlen] for xy in xys] ymean = np.mean(ys, axis=0) ystd = np.std(ys, axis=0) ystderr = ystd / np.sqrt(len(ys)) l, = axarr[isplit][0].plot(usex, ymean, color=color) g2l[group] = l if shaded_err: ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4) if shaded_std: ax.fill_between(usex, ymean - ystd, ymean + ystd, color=color, alpha=.2) # https://matplotlib.org/users/legend_guide.html plt.tight_layout() if any(g2l.keys()): ax.legend( g2l.values(), ['%s (%i)'%(g, g2c[g]) for g in g2l] if average_group else g2l.keys(), loc=2 if legend_outside else None, bbox_to_anchor=(1,1) if legend_outside else None) ax.set_title(sk) return f, axarr
[ "def", "plot_results", "(", "allresults", ",", "*", ",", "xy_fn", "=", "default_xy_fn", ",", "split_fn", "=", "default_split_fn", ",", "group_fn", "=", "default_split_fn", ",", "average_group", "=", "False", ",", "shaded_std", "=", "True", ",", "shaded_err", "=", "True", ",", "figsize", "=", "None", ",", "legend_outside", "=", "False", ",", "resample", "=", "0", ",", "smooth_step", "=", "1.0", ")", ":", "if", "split_fn", "is", "None", ":", "split_fn", "=", "lambda", "_", ":", "''", "if", "group_fn", "is", "None", ":", "group_fn", "=", "lambda", "_", ":", "''", "sk2r", "=", "defaultdict", "(", "list", ")", "# splitkey2results", "for", "result", "in", "allresults", ":", "splitkey", "=", "split_fn", "(", "result", ")", "sk2r", "[", "splitkey", "]", ".", "append", "(", "result", ")", "assert", "len", "(", "sk2r", ")", ">", "0", "assert", "isinstance", "(", "resample", ",", "int", ")", ",", "\"0: don't resample. <integer>: that many samples\"", "nrows", "=", "len", "(", "sk2r", ")", "ncols", "=", "1", "figsize", "=", "figsize", "or", "(", "6", ",", "6", "*", "nrows", ")", "f", ",", "axarr", "=", "plt", ".", "subplots", "(", "nrows", ",", "ncols", ",", "sharex", "=", "False", ",", "squeeze", "=", "False", ",", "figsize", "=", "figsize", ")", "groups", "=", "list", "(", "set", "(", "group_fn", "(", "result", ")", "for", "result", "in", "allresults", ")", ")", "default_samples", "=", "512", "if", "average_group", ":", "resample", "=", "resample", "or", "default_samples", "for", "(", "isplit", ",", "sk", ")", "in", "enumerate", "(", "sorted", "(", "sk2r", ".", "keys", "(", ")", ")", ")", ":", "g2l", "=", "{", "}", "g2c", "=", "defaultdict", "(", "int", ")", "sresults", "=", "sk2r", "[", "sk", "]", "gresults", "=", "defaultdict", "(", "list", ")", "ax", "=", "axarr", "[", "isplit", "]", "[", "0", "]", "for", "result", "in", "sresults", ":", "group", "=", "group_fn", "(", "result", ")", "g2c", "[", "group", "]", "+=", "1", "x", ",", "y", "=", "xy_fn", "(", "result", ")", "if", "x", "is", "None", ":", "x", "=", "np", ".", "arange", "(", "len", "(", "y", ")", ")", "x", ",", "y", "=", "map", "(", "np", ".", "asarray", ",", "(", "x", ",", "y", ")", ")", "if", "average_group", ":", "gresults", "[", "group", "]", ".", "append", "(", "(", "x", ",", "y", ")", ")", "else", ":", "if", "resample", ":", "x", ",", "y", ",", "counts", "=", "symmetric_ema", "(", "x", ",", "y", ",", "x", "[", "0", "]", ",", "x", "[", "-", "1", "]", ",", "resample", ",", "decay_steps", "=", "smooth_step", ")", "l", ",", "=", "ax", ".", "plot", "(", "x", ",", "y", ",", "color", "=", "COLORS", "[", "groups", ".", "index", "(", "group", ")", "%", "len", "(", "COLORS", ")", "]", ")", "g2l", "[", "group", "]", "=", "l", "if", "average_group", ":", "for", "group", "in", "sorted", "(", "groups", ")", ":", "xys", "=", "gresults", "[", "group", "]", "if", "not", "any", "(", "xys", ")", ":", "continue", "color", "=", "COLORS", "[", "groups", ".", "index", "(", "group", ")", "%", "len", "(", "COLORS", ")", "]", "origxs", "=", "[", "xy", "[", "0", "]", "for", "xy", "in", "xys", "]", "minxlen", "=", "min", "(", "map", "(", "len", ",", "origxs", ")", ")", "def", "allequal", "(", "qs", ")", ":", "return", "all", "(", "(", "q", "==", "qs", "[", "0", "]", ")", ".", "all", "(", ")", "for", "q", "in", "qs", "[", "1", ":", "]", ")", "if", "resample", ":", "low", "=", "max", "(", "x", "[", "0", "]", "for", "x", "in", "origxs", ")", "high", "=", "min", "(", "x", "[", "-", "1", "]", "for", "x", "in", "origxs", ")", "usex", "=", "np", ".", "linspace", "(", "low", ",", "high", ",", "resample", ")", "ys", "=", "[", "]", "for", "(", "x", ",", "y", ")", "in", "xys", ":", "ys", ".", "append", "(", "symmetric_ema", "(", "x", ",", "y", ",", "low", ",", "high", ",", "resample", ",", "decay_steps", "=", "smooth_step", ")", "[", "1", "]", ")", "else", ":", "assert", "allequal", "(", "[", "x", "[", ":", "minxlen", "]", "for", "x", "in", "origxs", "]", ")", ",", "'If you want to average unevenly sampled data, set resample=<number of samples you want>'", "usex", "=", "origxs", "[", "0", "]", "ys", "=", "[", "xy", "[", "1", "]", "[", ":", "minxlen", "]", "for", "xy", "in", "xys", "]", "ymean", "=", "np", ".", "mean", "(", "ys", ",", "axis", "=", "0", ")", "ystd", "=", "np", ".", "std", "(", "ys", ",", "axis", "=", "0", ")", "ystderr", "=", "ystd", "/", "np", ".", "sqrt", "(", "len", "(", "ys", ")", ")", "l", ",", "=", "axarr", "[", "isplit", "]", "[", "0", "]", ".", "plot", "(", "usex", ",", "ymean", ",", "color", "=", "color", ")", "g2l", "[", "group", "]", "=", "l", "if", "shaded_err", ":", "ax", ".", "fill_between", "(", "usex", ",", "ymean", "-", "ystderr", ",", "ymean", "+", "ystderr", ",", "color", "=", "color", ",", "alpha", "=", ".4", ")", "if", "shaded_std", ":", "ax", ".", "fill_between", "(", "usex", ",", "ymean", "-", "ystd", ",", "ymean", "+", "ystd", ",", "color", "=", "color", ",", "alpha", "=", ".2", ")", "# https://matplotlib.org/users/legend_guide.html", "plt", ".", "tight_layout", "(", ")", "if", "any", "(", "g2l", ".", "keys", "(", ")", ")", ":", "ax", ".", "legend", "(", "g2l", ".", "values", "(", ")", ",", "[", "'%s (%i)'", "%", "(", "g", ",", "g2c", "[", "g", "]", ")", "for", "g", "in", "g2l", "]", "if", "average_group", "else", "g2l", ".", "keys", "(", ")", ",", "loc", "=", "2", "if", "legend_outside", "else", "None", ",", "bbox_to_anchor", "=", "(", "1", ",", "1", ")", "if", "legend_outside", "else", "None", ")", "ax", ".", "set_title", "(", "sk", ")", "return", "f", ",", "axarr" ]
Plot multiple Results objects xy_fn: function Result -> x,y - function that converts results objects into tuple of x and y values. By default, x is cumsum of episode lengths, and y is episode rewards split_fn: function Result -> hashable - function that converts results objects into keys to split curves into sub-panels by. That is, the results r for which split_fn(r) is different will be put on different sub-panels. By default, the portion of r.dirname between last / and -<digits> is returned. The sub-panels are stacked vertically in the figure. group_fn: function Result -> hashable - function that converts results objects into keys to group curves by. That is, the results r for which group_fn(r) is the same will be put into the same group. Curves in the same group have the same color (if average_group is False), or averaged over (if average_group is True). The default value is the same as default value for split_fn average_group: bool - if True, will average the curves in the same group and plot the mean. Enables resampling (if resample = 0, will use 512 steps) shaded_std: bool - if True (default), the shaded region corresponding to standard deviation of the group of curves will be shown (only applicable if average_group = True) shaded_err: bool - if True (default), the shaded region corresponding to error in mean estimate of the group of curves (that is, standard deviation divided by square root of number of curves) will be shown (only applicable if average_group = True) figsize: tuple or None - size of the resulting figure (including sub-panels). By default, width is 6 and height is 6 times number of sub-panels. legend_outside: bool - if True, will place the legend outside of the sub-panels. resample: int - if not zero, size of the uniform grid in x direction to resample onto. Resampling is performed via symmetric EMA smoothing (see the docstring for symmetric_ema). Default is zero (no resampling). Note that if average_group is True, resampling is necessary; in that case, default value is 512. smooth_step: float - when resampling (i.e. when resample > 0 or average_group is True), use this EMA decay parameter (in units of the new grid step). See docstrings for decay_steps in symmetric_ema or one_sided_ema functions.
[ "Plot", "multiple", "Results", "objects" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/plot_util.py#L240-L375
valid
openai/baselines
baselines/common/mpi_adam_optimizer.py
check_synced
def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:])
python
def check_synced(localval, comm=None): """ It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers) """ comm = comm or MPI.COMM_WORLD vals = comm.gather(localval) if comm.rank == 0: assert all(val==vals[0] for val in vals[1:])
[ "def", "check_synced", "(", "localval", ",", "comm", "=", "None", ")", ":", "comm", "=", "comm", "or", "MPI", ".", "COMM_WORLD", "vals", "=", "comm", ".", "gather", "(", "localval", ")", "if", "comm", ".", "rank", "==", "0", ":", "assert", "all", "(", "val", "==", "vals", "[", "0", "]", "for", "val", "in", "vals", "[", "1", ":", "]", ")" ]
It's common to forget to initialize your variables to the same values, or (less commonly) if you update them in some other way than adam, to get them out of sync. This function checks that variables on all MPI workers are the same, and raises an AssertionError otherwise Arguments: comm: MPI communicator localval: list of local variables (list of variables on current worker to be compared with the other workers)
[ "It", "s", "common", "to", "forget", "to", "initialize", "your", "variables", "to", "the", "same", "values", "or", "(", "less", "commonly", ")", "if", "you", "update", "them", "in", "some", "other", "way", "than", "adam", "to", "get", "them", "out", "of", "sync", ".", "This", "function", "checks", "that", "variables", "on", "all", "MPI", "workers", "are", "the", "same", "and", "raises", "an", "AssertionError", "otherwise" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_adam_optimizer.py#L40-L54
valid
openai/baselines
baselines/common/vec_env/util.py
copy_obs_dict
def copy_obs_dict(obs): """ Deep-copy an observation dict. """ return {k: np.copy(v) for k, v in obs.items()}
python
def copy_obs_dict(obs): """ Deep-copy an observation dict. """ return {k: np.copy(v) for k, v in obs.items()}
[ "def", "copy_obs_dict", "(", "obs", ")", ":", "return", "{", "k", ":", "np", ".", "copy", "(", "v", ")", "for", "k", ",", "v", "in", "obs", ".", "items", "(", ")", "}" ]
Deep-copy an observation dict.
[ "Deep", "-", "copy", "an", "observation", "dict", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/util.py#L11-L15
valid
openai/baselines
baselines/common/vec_env/util.py
obs_space_info
def obs_space_info(obs_space): """ Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes. """ if isinstance(obs_space, gym.spaces.Dict): assert isinstance(obs_space.spaces, OrderedDict) subspaces = obs_space.spaces else: subspaces = {None: obs_space} keys = [] shapes = {} dtypes = {} for key, box in subspaces.items(): keys.append(key) shapes[key] = box.shape dtypes[key] = box.dtype return keys, shapes, dtypes
python
def obs_space_info(obs_space): """ Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes. """ if isinstance(obs_space, gym.spaces.Dict): assert isinstance(obs_space.spaces, OrderedDict) subspaces = obs_space.spaces else: subspaces = {None: obs_space} keys = [] shapes = {} dtypes = {} for key, box in subspaces.items(): keys.append(key) shapes[key] = box.shape dtypes[key] = box.dtype return keys, shapes, dtypes
[ "def", "obs_space_info", "(", "obs_space", ")", ":", "if", "isinstance", "(", "obs_space", ",", "gym", ".", "spaces", ".", "Dict", ")", ":", "assert", "isinstance", "(", "obs_space", ".", "spaces", ",", "OrderedDict", ")", "subspaces", "=", "obs_space", ".", "spaces", "else", ":", "subspaces", "=", "{", "None", ":", "obs_space", "}", "keys", "=", "[", "]", "shapes", "=", "{", "}", "dtypes", "=", "{", "}", "for", "key", ",", "box", "in", "subspaces", ".", "items", "(", ")", ":", "keys", ".", "append", "(", "key", ")", "shapes", "[", "key", "]", "=", "box", ".", "shape", "dtypes", "[", "key", "]", "=", "box", ".", "dtype", "return", "keys", ",", "shapes", ",", "dtypes" ]
Get dict-structured information about a gym.Space. Returns: A tuple (keys, shapes, dtypes): keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping keys to dtypes.
[ "Get", "dict", "-", "structured", "information", "about", "a", "gym", ".", "Space", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/util.py#L28-L50
valid
openai/baselines
baselines/acer/acer.py
q_retrace
def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma): """ Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values """ rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs] rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs] ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs] q_is = batch_to_seq(q_i, nenvs, nsteps, True) vs = batch_to_seq(v, nenvs, nsteps + 1, True) v_final = vs[-1] qret = v_final qrets = [] for i in range(nsteps - 1, -1, -1): check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6) qret = rs[i] + gamma * qret * (1.0 - ds[i]) qrets.append(qret) qret = (rho_bar[i] * (qret - q_is[i])) + vs[i] qrets = qrets[::-1] qret = seq_to_batch(qrets, flat=True) return qret
python
def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma): """ Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values """ rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs] rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs] ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs] q_is = batch_to_seq(q_i, nenvs, nsteps, True) vs = batch_to_seq(v, nenvs, nsteps + 1, True) v_final = vs[-1] qret = v_final qrets = [] for i in range(nsteps - 1, -1, -1): check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6) qret = rs[i] + gamma * qret * (1.0 - ds[i]) qrets.append(qret) qret = (rho_bar[i] * (qret - q_is[i])) + vs[i] qrets = qrets[::-1] qret = seq_to_batch(qrets, flat=True) return qret
[ "def", "q_retrace", "(", "R", ",", "D", ",", "q_i", ",", "v", ",", "rho_i", ",", "nenvs", ",", "nsteps", ",", "gamma", ")", ":", "rho_bar", "=", "batch_to_seq", "(", "tf", ".", "minimum", "(", "1.0", ",", "rho_i", ")", ",", "nenvs", ",", "nsteps", ",", "True", ")", "# list of len steps, shape [nenvs]", "rs", "=", "batch_to_seq", "(", "R", ",", "nenvs", ",", "nsteps", ",", "True", ")", "# list of len steps, shape [nenvs]", "ds", "=", "batch_to_seq", "(", "D", ",", "nenvs", ",", "nsteps", ",", "True", ")", "# list of len steps, shape [nenvs]", "q_is", "=", "batch_to_seq", "(", "q_i", ",", "nenvs", ",", "nsteps", ",", "True", ")", "vs", "=", "batch_to_seq", "(", "v", ",", "nenvs", ",", "nsteps", "+", "1", ",", "True", ")", "v_final", "=", "vs", "[", "-", "1", "]", "qret", "=", "v_final", "qrets", "=", "[", "]", "for", "i", "in", "range", "(", "nsteps", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "check_shape", "(", "[", "qret", ",", "ds", "[", "i", "]", ",", "rs", "[", "i", "]", ",", "rho_bar", "[", "i", "]", ",", "q_is", "[", "i", "]", ",", "vs", "[", "i", "]", "]", ",", "[", "[", "nenvs", "]", "]", "*", "6", ")", "qret", "=", "rs", "[", "i", "]", "+", "gamma", "*", "qret", "*", "(", "1.0", "-", "ds", "[", "i", "]", ")", "qrets", ".", "append", "(", "qret", ")", "qret", "=", "(", "rho_bar", "[", "i", "]", "*", "(", "qret", "-", "q_is", "[", "i", "]", ")", ")", "+", "vs", "[", "i", "]", "qrets", "=", "qrets", "[", ":", ":", "-", "1", "]", "qret", "=", "seq_to_batch", "(", "qrets", ",", "flat", "=", "True", ")", "return", "qret" ]
Calculates q_retrace targets :param R: Rewards :param D: Dones :param q_i: Q values for actions taken :param v: V values :param rho_i: Importance weight for each action :return: Q_retrace values
[ "Calculates", "q_retrace", "targets" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/acer/acer.py#L25-L51
valid
openai/baselines
baselines/acer/acer.py
learn
def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01, max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99, log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0, trust_region=True, alpha=0.99, delta=1, load_path=None, **network_kwargs): ''' Main entrypoint for ACER (Actor-Critic with Experience Replay) algorithm (https://arxiv.org/pdf/1611.01224.pdf) Train an agent with given network architecture on a given environment using ACER. Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) (default: 20) nstack: int, size of the frame stack, i.e. number of the frames passed to the step model. Frames are stacked along channel dimension (last image dimension) (default: 4) total_timesteps: int, number of timesteps (i.e. number of actions taken in the environment) (default: 80M) q_coef: float, value function loss coefficient in the optimization objective (analog of vf_coef for other actor-critic methods) ent_coef: float, policy entropy coefficient in the optimization objective (default: 0.01) max_grad_norm: float, gradient norm clipping coefficient. If set to None, no clipping. (default: 10), lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output rprop_epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) rprop_alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting factor (default: 0.99) log_interval: int, number of updates between logging events (default: 100) buffer_size: int, size of the replay buffer (default: 50k) replay_ratio: int, now many (on average) batches of data to sample from the replay buffer take after batch from the environment (default: 4) replay_start: int, the sampling from the replay buffer does not start until replay buffer has at least that many samples (default: 10k) c: float, importance weight clipping factor (default: 10) trust_region bool, whether or not algorithms estimates the gradient KL divergence between the old and updated policy and uses it to determine step size (default: True) delta: float, max KL divergence between the old policy and updated policy (default: 1) alpha: float, momentum factor in the Polyak (exponential moving average) averaging of the model parameters (default: 0.99) load_path: str, path to load the model from (default: None) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' print("Running Acer Simple") print(locals()) set_global_seeds(seed) if not isinstance(env, VecFrameStack): env = VecFrameStack(env, 1) policy = build_policy(env, network, estimate_q=True, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space nstack = env.nstack model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma, max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, c=c, trust_region=trust_region, alpha=alpha, delta=delta) runner = Runner(env=env, model=model, nsteps=nsteps) if replay_ratio > 0: buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size) else: buffer = None nbatch = nenvs*nsteps acer = Acer(runner, model, buffer, log_interval) acer.tstart = time.time() for acer.steps in range(0, total_timesteps, nbatch): #nbatch samples, 1 on_policy call and multiple off-policy calls acer.call(on_policy=True) if replay_ratio > 0 and buffer.has_atleast(replay_start): n = np.random.poisson(replay_ratio) for _ in range(n): acer.call(on_policy=False) # no simulation steps in this return model
python
def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01, max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99, log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0, trust_region=True, alpha=0.99, delta=1, load_path=None, **network_kwargs): ''' Main entrypoint for ACER (Actor-Critic with Experience Replay) algorithm (https://arxiv.org/pdf/1611.01224.pdf) Train an agent with given network architecture on a given environment using ACER. Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) (default: 20) nstack: int, size of the frame stack, i.e. number of the frames passed to the step model. Frames are stacked along channel dimension (last image dimension) (default: 4) total_timesteps: int, number of timesteps (i.e. number of actions taken in the environment) (default: 80M) q_coef: float, value function loss coefficient in the optimization objective (analog of vf_coef for other actor-critic methods) ent_coef: float, policy entropy coefficient in the optimization objective (default: 0.01) max_grad_norm: float, gradient norm clipping coefficient. If set to None, no clipping. (default: 10), lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output rprop_epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) rprop_alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting factor (default: 0.99) log_interval: int, number of updates between logging events (default: 100) buffer_size: int, size of the replay buffer (default: 50k) replay_ratio: int, now many (on average) batches of data to sample from the replay buffer take after batch from the environment (default: 4) replay_start: int, the sampling from the replay buffer does not start until replay buffer has at least that many samples (default: 10k) c: float, importance weight clipping factor (default: 10) trust_region bool, whether or not algorithms estimates the gradient KL divergence between the old and updated policy and uses it to determine step size (default: True) delta: float, max KL divergence between the old policy and updated policy (default: 1) alpha: float, momentum factor in the Polyak (exponential moving average) averaging of the model parameters (default: 0.99) load_path: str, path to load the model from (default: None) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' print("Running Acer Simple") print(locals()) set_global_seeds(seed) if not isinstance(env, VecFrameStack): env = VecFrameStack(env, 1) policy = build_policy(env, network, estimate_q=True, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space nstack = env.nstack model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma, max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, c=c, trust_region=trust_region, alpha=alpha, delta=delta) runner = Runner(env=env, model=model, nsteps=nsteps) if replay_ratio > 0: buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size) else: buffer = None nbatch = nenvs*nsteps acer = Acer(runner, model, buffer, log_interval) acer.tstart = time.time() for acer.steps in range(0, total_timesteps, nbatch): #nbatch samples, 1 on_policy call and multiple off-policy calls acer.call(on_policy=True) if replay_ratio > 0 and buffer.has_atleast(replay_start): n = np.random.poisson(replay_ratio) for _ in range(n): acer.call(on_policy=False) # no simulation steps in this return model
[ "def", "learn", "(", "network", ",", "env", ",", "seed", "=", "None", ",", "nsteps", "=", "20", ",", "total_timesteps", "=", "int", "(", "80e6", ")", ",", "q_coef", "=", "0.5", ",", "ent_coef", "=", "0.01", ",", "max_grad_norm", "=", "10", ",", "lr", "=", "7e-4", ",", "lrschedule", "=", "'linear'", ",", "rprop_epsilon", "=", "1e-5", ",", "rprop_alpha", "=", "0.99", ",", "gamma", "=", "0.99", ",", "log_interval", "=", "100", ",", "buffer_size", "=", "50000", ",", "replay_ratio", "=", "4", ",", "replay_start", "=", "10000", ",", "c", "=", "10.0", ",", "trust_region", "=", "True", ",", "alpha", "=", "0.99", ",", "delta", "=", "1", ",", "load_path", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "print", "(", "\"Running Acer Simple\"", ")", "print", "(", "locals", "(", ")", ")", "set_global_seeds", "(", "seed", ")", "if", "not", "isinstance", "(", "env", ",", "VecFrameStack", ")", ":", "env", "=", "VecFrameStack", "(", "env", ",", "1", ")", "policy", "=", "build_policy", "(", "env", ",", "network", ",", "estimate_q", "=", "True", ",", "*", "*", "network_kwargs", ")", "nenvs", "=", "env", ".", "num_envs", "ob_space", "=", "env", ".", "observation_space", "ac_space", "=", "env", ".", "action_space", "nstack", "=", "env", ".", "nstack", "model", "=", "Model", "(", "policy", "=", "policy", ",", "ob_space", "=", "ob_space", ",", "ac_space", "=", "ac_space", ",", "nenvs", "=", "nenvs", ",", "nsteps", "=", "nsteps", ",", "ent_coef", "=", "ent_coef", ",", "q_coef", "=", "q_coef", ",", "gamma", "=", "gamma", ",", "max_grad_norm", "=", "max_grad_norm", ",", "lr", "=", "lr", ",", "rprop_alpha", "=", "rprop_alpha", ",", "rprop_epsilon", "=", "rprop_epsilon", ",", "total_timesteps", "=", "total_timesteps", ",", "lrschedule", "=", "lrschedule", ",", "c", "=", "c", ",", "trust_region", "=", "trust_region", ",", "alpha", "=", "alpha", ",", "delta", "=", "delta", ")", "runner", "=", "Runner", "(", "env", "=", "env", ",", "model", "=", "model", ",", "nsteps", "=", "nsteps", ")", "if", "replay_ratio", ">", "0", ":", "buffer", "=", "Buffer", "(", "env", "=", "env", ",", "nsteps", "=", "nsteps", ",", "size", "=", "buffer_size", ")", "else", ":", "buffer", "=", "None", "nbatch", "=", "nenvs", "*", "nsteps", "acer", "=", "Acer", "(", "runner", ",", "model", ",", "buffer", ",", "log_interval", ")", "acer", ".", "tstart", "=", "time", ".", "time", "(", ")", "for", "acer", ".", "steps", "in", "range", "(", "0", ",", "total_timesteps", ",", "nbatch", ")", ":", "#nbatch samples, 1 on_policy call and multiple off-policy calls", "acer", ".", "call", "(", "on_policy", "=", "True", ")", "if", "replay_ratio", ">", "0", "and", "buffer", ".", "has_atleast", "(", "replay_start", ")", ":", "n", "=", "np", ".", "random", ".", "poisson", "(", "replay_ratio", ")", "for", "_", "in", "range", "(", "n", ")", ":", "acer", ".", "call", "(", "on_policy", "=", "False", ")", "# no simulation steps in this", "return", "model" ]
Main entrypoint for ACER (Actor-Critic with Experience Replay) algorithm (https://arxiv.org/pdf/1611.01224.pdf) Train an agent with given network architecture on a given environment using ACER. Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) (default: 20) nstack: int, size of the frame stack, i.e. number of the frames passed to the step model. Frames are stacked along channel dimension (last image dimension) (default: 4) total_timesteps: int, number of timesteps (i.e. number of actions taken in the environment) (default: 80M) q_coef: float, value function loss coefficient in the optimization objective (analog of vf_coef for other actor-critic methods) ent_coef: float, policy entropy coefficient in the optimization objective (default: 0.01) max_grad_norm: float, gradient norm clipping coefficient. If set to None, no clipping. (default: 10), lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output rprop_epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) rprop_alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting factor (default: 0.99) log_interval: int, number of updates between logging events (default: 100) buffer_size: int, size of the replay buffer (default: 50k) replay_ratio: int, now many (on average) batches of data to sample from the replay buffer take after batch from the environment (default: 4) replay_start: int, the sampling from the replay buffer does not start until replay buffer has at least that many samples (default: 10k) c: float, importance weight clipping factor (default: 10) trust_region bool, whether or not algorithms estimates the gradient KL divergence between the old and updated policy and uses it to determine step size (default: True) delta: float, max KL divergence between the old policy and updated policy (default: 1) alpha: float, momentum factor in the Polyak (exponential moving average) averaging of the model parameters (default: 0.99) load_path: str, path to load the model from (default: None) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
[ "Main", "entrypoint", "for", "ACER", "(", "Actor", "-", "Critic", "with", "Experience", "Replay", ")", "algorithm", "(", "https", ":", "//", "arxiv", ".", "org", "/", "pdf", "/", "1611", ".", "01224", ".", "pdf", ")", "Train", "an", "agent", "with", "given", "network", "architecture", "on", "a", "given", "environment", "using", "ACER", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/acer/acer.py#L274-L377
valid
openai/baselines
baselines/acktr/kfac.py
KfacOptimizer.apply_stats
def apply_stats(self, statsUpdates): """ compute stats and update/apply the new stats to the running average """ def updateAccumStats(): if self._full_stats_init: return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op) else: return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)) def updateRunningAvgStats(statsUpdates, fac_iter=1): # return tf.cond(tf.greater_equal(self.factor_step, # tf.convert_to_tensor(fac_iter)), lambda: # tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op) return tf.group(*self._apply_stats(statsUpdates)) if self._async_stats: # asynchronous stats update update_stats = self._apply_stats(statsUpdates) queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[ item.get_shape() for item in update_stats]) enqueue_op = queue.enqueue(update_stats) def dequeue_stats_op(): return queue.dequeue() self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op]) update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor( 0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ])) else: # synchronous stats update update_stats_op = tf.cond(tf.greater_equal( self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats) self._update_stats_op = update_stats_op return update_stats_op
python
def apply_stats(self, statsUpdates): """ compute stats and update/apply the new stats to the running average """ def updateAccumStats(): if self._full_stats_init: return tf.cond(tf.greater(self.sgd_step, self._cold_iter), lambda: tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)), tf.no_op) else: return tf.group(*self._apply_stats(statsUpdates, accumulate=True, accumulateCoeff=1. / self._stats_accum_iter)) def updateRunningAvgStats(statsUpdates, fac_iter=1): # return tf.cond(tf.greater_equal(self.factor_step, # tf.convert_to_tensor(fac_iter)), lambda: # tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op) return tf.group(*self._apply_stats(statsUpdates)) if self._async_stats: # asynchronous stats update update_stats = self._apply_stats(statsUpdates) queue = tf.FIFOQueue(1, [item.dtype for item in update_stats], shapes=[ item.get_shape() for item in update_stats]) enqueue_op = queue.enqueue(update_stats) def dequeue_stats_op(): return queue.dequeue() self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op]) update_stats_op = tf.cond(tf.equal(queue.size(), tf.convert_to_tensor( 0)), tf.no_op, lambda: tf.group(*[dequeue_stats_op(), ])) else: # synchronous stats update update_stats_op = tf.cond(tf.greater_equal( self.stats_step, self._stats_accum_iter), lambda: updateRunningAvgStats(statsUpdates), updateAccumStats) self._update_stats_op = update_stats_op return update_stats_op
[ "def", "apply_stats", "(", "self", ",", "statsUpdates", ")", ":", "def", "updateAccumStats", "(", ")", ":", "if", "self", ".", "_full_stats_init", ":", "return", "tf", ".", "cond", "(", "tf", ".", "greater", "(", "self", ".", "sgd_step", ",", "self", ".", "_cold_iter", ")", ",", "lambda", ":", "tf", ".", "group", "(", "*", "self", ".", "_apply_stats", "(", "statsUpdates", ",", "accumulate", "=", "True", ",", "accumulateCoeff", "=", "1.", "/", "self", ".", "_stats_accum_iter", ")", ")", ",", "tf", ".", "no_op", ")", "else", ":", "return", "tf", ".", "group", "(", "*", "self", ".", "_apply_stats", "(", "statsUpdates", ",", "accumulate", "=", "True", ",", "accumulateCoeff", "=", "1.", "/", "self", ".", "_stats_accum_iter", ")", ")", "def", "updateRunningAvgStats", "(", "statsUpdates", ",", "fac_iter", "=", "1", ")", ":", "# return tf.cond(tf.greater_equal(self.factor_step,", "# tf.convert_to_tensor(fac_iter)), lambda:", "# tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op)", "return", "tf", ".", "group", "(", "*", "self", ".", "_apply_stats", "(", "statsUpdates", ")", ")", "if", "self", ".", "_async_stats", ":", "# asynchronous stats update", "update_stats", "=", "self", ".", "_apply_stats", "(", "statsUpdates", ")", "queue", "=", "tf", ".", "FIFOQueue", "(", "1", ",", "[", "item", ".", "dtype", "for", "item", "in", "update_stats", "]", ",", "shapes", "=", "[", "item", ".", "get_shape", "(", ")", "for", "item", "in", "update_stats", "]", ")", "enqueue_op", "=", "queue", ".", "enqueue", "(", "update_stats", ")", "def", "dequeue_stats_op", "(", ")", ":", "return", "queue", ".", "dequeue", "(", ")", "self", ".", "qr_stats", "=", "tf", ".", "train", ".", "QueueRunner", "(", "queue", ",", "[", "enqueue_op", "]", ")", "update_stats_op", "=", "tf", ".", "cond", "(", "tf", ".", "equal", "(", "queue", ".", "size", "(", ")", ",", "tf", ".", "convert_to_tensor", "(", "0", ")", ")", ",", "tf", ".", "no_op", ",", "lambda", ":", "tf", ".", "group", "(", "*", "[", "dequeue_stats_op", "(", ")", ",", "]", ")", ")", "else", ":", "# synchronous stats update", "update_stats_op", "=", "tf", ".", "cond", "(", "tf", ".", "greater_equal", "(", "self", ".", "stats_step", ",", "self", ".", "_stats_accum_iter", ")", ",", "lambda", ":", "updateRunningAvgStats", "(", "statsUpdates", ")", ",", "updateAccumStats", ")", "self", ".", "_update_stats_op", "=", "update_stats_op", "return", "update_stats_op" ]
compute stats and update/apply the new stats to the running average
[ "compute", "stats", "and", "update", "/", "apply", "the", "new", "stats", "to", "the", "running", "average" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/acktr/kfac.py#L440-L474
valid
openai/baselines
baselines/common/tile_images.py
tile_images
def tile_images(img_nhwc): """ Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q. input: img_nhwc, list or array of images, ndim=4 once turned into array n = batch index, h = height, w = width, c = channel returns: bigim_HWc, ndarray with ndim=3 """ img_nhwc = np.asarray(img_nhwc) N, h, w, c = img_nhwc.shape H = int(np.ceil(np.sqrt(N))) W = int(np.ceil(float(N)/H)) img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)]) img_HWhwc = img_nhwc.reshape(H, W, h, w, c) img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4) img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c) return img_Hh_Ww_c
python
def tile_images(img_nhwc): """ Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q. input: img_nhwc, list or array of images, ndim=4 once turned into array n = batch index, h = height, w = width, c = channel returns: bigim_HWc, ndarray with ndim=3 """ img_nhwc = np.asarray(img_nhwc) N, h, w, c = img_nhwc.shape H = int(np.ceil(np.sqrt(N))) W = int(np.ceil(float(N)/H)) img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)]) img_HWhwc = img_nhwc.reshape(H, W, h, w, c) img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4) img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c) return img_Hh_Ww_c
[ "def", "tile_images", "(", "img_nhwc", ")", ":", "img_nhwc", "=", "np", ".", "asarray", "(", "img_nhwc", ")", "N", ",", "h", ",", "w", ",", "c", "=", "img_nhwc", ".", "shape", "H", "=", "int", "(", "np", ".", "ceil", "(", "np", ".", "sqrt", "(", "N", ")", ")", ")", "W", "=", "int", "(", "np", ".", "ceil", "(", "float", "(", "N", ")", "/", "H", ")", ")", "img_nhwc", "=", "np", ".", "array", "(", "list", "(", "img_nhwc", ")", "+", "[", "img_nhwc", "[", "0", "]", "*", "0", "for", "_", "in", "range", "(", "N", ",", "H", "*", "W", ")", "]", ")", "img_HWhwc", "=", "img_nhwc", ".", "reshape", "(", "H", ",", "W", ",", "h", ",", "w", ",", "c", ")", "img_HhWwc", "=", "img_HWhwc", ".", "transpose", "(", "0", ",", "2", ",", "1", ",", "3", ",", "4", ")", "img_Hh_Ww_c", "=", "img_HhWwc", ".", "reshape", "(", "H", "*", "h", ",", "W", "*", "w", ",", "c", ")", "return", "img_Hh_Ww_c" ]
Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q. input: img_nhwc, list or array of images, ndim=4 once turned into array n = batch index, h = height, w = width, c = channel returns: bigim_HWc, ndarray with ndim=3
[ "Tile", "N", "images", "into", "one", "big", "PxQ", "image", "(", "P", "Q", ")", "are", "chosen", "to", "be", "as", "close", "as", "possible", "and", "if", "N", "is", "square", "then", "P", "=", "Q", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tile_images.py#L3-L22
valid
openai/baselines
baselines/common/segment_tree.py
SumSegmentTree.sum
def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end)
python
def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end)
[ "def", "sum", "(", "self", ",", "start", "=", "0", ",", "end", "=", "None", ")", ":", "return", "super", "(", "SumSegmentTree", ",", "self", ")", ".", "reduce", "(", "start", ",", "end", ")" ]
Returns arr[start] + ... + arr[end]
[ "Returns", "arr", "[", "start", "]", "+", "...", "+", "arr", "[", "end", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/segment_tree.py#L101-L103
valid
openai/baselines
baselines/common/segment_tree.py
SumSegmentTree.find_prefixsum_idx
def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity
python
def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity
[ "def", "find_prefixsum_idx", "(", "self", ",", "prefixsum", ")", ":", "assert", "0", "<=", "prefixsum", "<=", "self", ".", "sum", "(", ")", "+", "1e-5", "idx", "=", "1", "while", "idx", "<", "self", ".", "_capacity", ":", "# while non-leaf", "if", "self", ".", "_value", "[", "2", "*", "idx", "]", ">", "prefixsum", ":", "idx", "=", "2", "*", "idx", "else", ":", "prefixsum", "-=", "self", ".", "_value", "[", "2", "*", "idx", "]", "idx", "=", "2", "*", "idx", "+", "1", "return", "idx", "-", "self", ".", "_capacity" ]
Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint
[ "Find", "the", "highest", "index", "i", "in", "the", "array", "such", "that", "sum", "(", "arr", "[", "0", "]", "+", "arr", "[", "1", "]", "+", "...", "+", "arr", "[", "i", "-", "i", "]", ")", "<", "=", "prefixsum" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/segment_tree.py#L105-L131
valid
openai/baselines
baselines/common/segment_tree.py
MinSegmentTree.min
def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
python
def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
[ "def", "min", "(", "self", ",", "start", "=", "0", ",", "end", "=", "None", ")", ":", "return", "super", "(", "MinSegmentTree", ",", "self", ")", ".", "reduce", "(", "start", ",", "end", ")" ]
Returns min(arr[start], ..., arr[end])
[ "Returns", "min", "(", "arr", "[", "start", "]", "...", "arr", "[", "end", "]", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/segment_tree.py#L142-L145
valid
openai/baselines
baselines/common/schedules.py
PiecewiseSchedule.value
def value(self, t): """See Schedule.value""" for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]): if l_t <= t and t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self._interpolation(l, r, alpha) # t does not belong to any of the pieces, so doom. assert self._outside_value is not None return self._outside_value
python
def value(self, t): """See Schedule.value""" for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]): if l_t <= t and t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self._interpolation(l, r, alpha) # t does not belong to any of the pieces, so doom. assert self._outside_value is not None return self._outside_value
[ "def", "value", "(", "self", ",", "t", ")", ":", "for", "(", "l_t", ",", "l", ")", ",", "(", "r_t", ",", "r", ")", "in", "zip", "(", "self", ".", "_endpoints", "[", ":", "-", "1", "]", ",", "self", ".", "_endpoints", "[", "1", ":", "]", ")", ":", "if", "l_t", "<=", "t", "and", "t", "<", "r_t", ":", "alpha", "=", "float", "(", "t", "-", "l_t", ")", "/", "(", "r_t", "-", "l_t", ")", "return", "self", ".", "_interpolation", "(", "l", ",", "r", ",", "alpha", ")", "# t does not belong to any of the pieces, so doom.", "assert", "self", ".", "_outside_value", "is", "not", "None", "return", "self", ".", "_outside_value" ]
See Schedule.value
[ "See", "Schedule", ".", "value" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/schedules.py#L64-L73
valid
openai/baselines
baselines/common/vec_env/shmem_vec_env.py
_subproc_worker
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys): """ Control a single environment instance using IPC and shared memory. """ def _write_obs(maybe_dict_obs): flatdict = obs_to_dict(maybe_dict_obs) for k in keys: dst = obs_bufs[k].get_obj() dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212 np.copyto(dst_np, flatdict[k]) env = env_fn_wrapper.x() parent_pipe.close() try: while True: cmd, data = pipe.recv() if cmd == 'reset': pipe.send(_write_obs(env.reset())) elif cmd == 'step': obs, reward, done, info = env.step(data) if done: obs = env.reset() pipe.send((_write_obs(obs), reward, done, info)) elif cmd == 'render': pipe.send(env.render(mode='rgb_array')) elif cmd == 'close': pipe.send(None) break else: raise RuntimeError('Got unrecognized cmd %s' % cmd) except KeyboardInterrupt: print('ShmemVecEnv worker: got KeyboardInterrupt') finally: env.close()
python
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys): """ Control a single environment instance using IPC and shared memory. """ def _write_obs(maybe_dict_obs): flatdict = obs_to_dict(maybe_dict_obs) for k in keys: dst = obs_bufs[k].get_obj() dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212 np.copyto(dst_np, flatdict[k]) env = env_fn_wrapper.x() parent_pipe.close() try: while True: cmd, data = pipe.recv() if cmd == 'reset': pipe.send(_write_obs(env.reset())) elif cmd == 'step': obs, reward, done, info = env.step(data) if done: obs = env.reset() pipe.send((_write_obs(obs), reward, done, info)) elif cmd == 'render': pipe.send(env.render(mode='rgb_array')) elif cmd == 'close': pipe.send(None) break else: raise RuntimeError('Got unrecognized cmd %s' % cmd) except KeyboardInterrupt: print('ShmemVecEnv worker: got KeyboardInterrupt') finally: env.close()
[ "def", "_subproc_worker", "(", "pipe", ",", "parent_pipe", ",", "env_fn_wrapper", ",", "obs_bufs", ",", "obs_shapes", ",", "obs_dtypes", ",", "keys", ")", ":", "def", "_write_obs", "(", "maybe_dict_obs", ")", ":", "flatdict", "=", "obs_to_dict", "(", "maybe_dict_obs", ")", "for", "k", "in", "keys", ":", "dst", "=", "obs_bufs", "[", "k", "]", ".", "get_obj", "(", ")", "dst_np", "=", "np", ".", "frombuffer", "(", "dst", ",", "dtype", "=", "obs_dtypes", "[", "k", "]", ")", ".", "reshape", "(", "obs_shapes", "[", "k", "]", ")", "# pylint: disable=W0212", "np", ".", "copyto", "(", "dst_np", ",", "flatdict", "[", "k", "]", ")", "env", "=", "env_fn_wrapper", ".", "x", "(", ")", "parent_pipe", ".", "close", "(", ")", "try", ":", "while", "True", ":", "cmd", ",", "data", "=", "pipe", ".", "recv", "(", ")", "if", "cmd", "==", "'reset'", ":", "pipe", ".", "send", "(", "_write_obs", "(", "env", ".", "reset", "(", ")", ")", ")", "elif", "cmd", "==", "'step'", ":", "obs", ",", "reward", ",", "done", ",", "info", "=", "env", ".", "step", "(", "data", ")", "if", "done", ":", "obs", "=", "env", ".", "reset", "(", ")", "pipe", ".", "send", "(", "(", "_write_obs", "(", "obs", ")", ",", "reward", ",", "done", ",", "info", ")", ")", "elif", "cmd", "==", "'render'", ":", "pipe", ".", "send", "(", "env", ".", "render", "(", "mode", "=", "'rgb_array'", ")", ")", "elif", "cmd", "==", "'close'", ":", "pipe", ".", "send", "(", "None", ")", "break", "else", ":", "raise", "RuntimeError", "(", "'Got unrecognized cmd %s'", "%", "cmd", ")", "except", "KeyboardInterrupt", ":", "print", "(", "'ShmemVecEnv worker: got KeyboardInterrupt'", ")", "finally", ":", "env", ".", "close", "(", ")" ]
Control a single environment instance using IPC and shared memory.
[ "Control", "a", "single", "environment", "instance", "using", "IPC", "and", "shared", "memory", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/vec_env/shmem_vec_env.py#L105-L139
valid
openai/baselines
baselines/a2c/a2c.py
learn
def learn( network, env, seed=None, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, load_path=None, **network_kwargs): ''' Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm. Parameters: ----------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py) seed: seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible) nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int, total number of timesteps to train on (default: 80M) vf_coef: float, coefficient in front of value function loss in the total loss function (default: 0.5) ent_coef: float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01) max_gradient_norm: float, gradient is clipped to have global L2 norm no more than this value (default: 0.5) lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting parameter (default: 0.99) log_interval: int, specifies how frequently the logs are printed out (default: 100) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) # Get the nb of env nenvs = env.num_envs policy = build_policy(env, network, **network_kwargs) # Instantiate the model object (that creates step_model and train_model) model = Model(policy=policy, env=env, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env, model, nsteps=nsteps, gamma=gamma) epinfobuf = deque(maxlen=100) # Calculate the batch_size nbatch = nenvs*nsteps # Start total timer tstart = time.time() for update in range(1, total_timesteps//nbatch+1): # Get mini batch of experiences obs, states, rewards, masks, actions, values, epinfos = runner.run() epinfobuf.extend(epinfos) policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart # Calculate the fps (frame per second) fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf])) logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf])) logger.dump_tabular() return model
python
def learn( network, env, seed=None, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, load_path=None, **network_kwargs): ''' Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm. Parameters: ----------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py) seed: seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible) nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int, total number of timesteps to train on (default: 80M) vf_coef: float, coefficient in front of value function loss in the total loss function (default: 0.5) ent_coef: float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01) max_gradient_norm: float, gradient is clipped to have global L2 norm no more than this value (default: 0.5) lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting parameter (default: 0.99) log_interval: int, specifies how frequently the logs are printed out (default: 100) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) # Get the nb of env nenvs = env.num_envs policy = build_policy(env, network, **network_kwargs) # Instantiate the model object (that creates step_model and train_model) model = Model(policy=policy, env=env, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env, model, nsteps=nsteps, gamma=gamma) epinfobuf = deque(maxlen=100) # Calculate the batch_size nbatch = nenvs*nsteps # Start total timer tstart = time.time() for update in range(1, total_timesteps//nbatch+1): # Get mini batch of experiences obs, states, rewards, masks, actions, values, epinfos = runner.run() epinfobuf.extend(epinfos) policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart # Calculate the fps (frame per second) fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf])) logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf])) logger.dump_tabular() return model
[ "def", "learn", "(", "network", ",", "env", ",", "seed", "=", "None", ",", "nsteps", "=", "5", ",", "total_timesteps", "=", "int", "(", "80e6", ")", ",", "vf_coef", "=", "0.5", ",", "ent_coef", "=", "0.01", ",", "max_grad_norm", "=", "0.5", ",", "lr", "=", "7e-4", ",", "lrschedule", "=", "'linear'", ",", "epsilon", "=", "1e-5", ",", "alpha", "=", "0.99", ",", "gamma", "=", "0.99", ",", "log_interval", "=", "100", ",", "load_path", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "set_global_seeds", "(", "seed", ")", "# Get the nb of env", "nenvs", "=", "env", ".", "num_envs", "policy", "=", "build_policy", "(", "env", ",", "network", ",", "*", "*", "network_kwargs", ")", "# Instantiate the model object (that creates step_model and train_model)", "model", "=", "Model", "(", "policy", "=", "policy", ",", "env", "=", "env", ",", "nsteps", "=", "nsteps", ",", "ent_coef", "=", "ent_coef", ",", "vf_coef", "=", "vf_coef", ",", "max_grad_norm", "=", "max_grad_norm", ",", "lr", "=", "lr", ",", "alpha", "=", "alpha", ",", "epsilon", "=", "epsilon", ",", "total_timesteps", "=", "total_timesteps", ",", "lrschedule", "=", "lrschedule", ")", "if", "load_path", "is", "not", "None", ":", "model", ".", "load", "(", "load_path", ")", "# Instantiate the runner object", "runner", "=", "Runner", "(", "env", ",", "model", ",", "nsteps", "=", "nsteps", ",", "gamma", "=", "gamma", ")", "epinfobuf", "=", "deque", "(", "maxlen", "=", "100", ")", "# Calculate the batch_size", "nbatch", "=", "nenvs", "*", "nsteps", "# Start total timer", "tstart", "=", "time", ".", "time", "(", ")", "for", "update", "in", "range", "(", "1", ",", "total_timesteps", "//", "nbatch", "+", "1", ")", ":", "# Get mini batch of experiences", "obs", ",", "states", ",", "rewards", ",", "masks", ",", "actions", ",", "values", ",", "epinfos", "=", "runner", ".", "run", "(", ")", "epinfobuf", ".", "extend", "(", "epinfos", ")", "policy_loss", ",", "value_loss", ",", "policy_entropy", "=", "model", ".", "train", "(", "obs", ",", "states", ",", "rewards", ",", "masks", ",", "actions", ",", "values", ")", "nseconds", "=", "time", ".", "time", "(", ")", "-", "tstart", "# Calculate the fps (frame per second)", "fps", "=", "int", "(", "(", "update", "*", "nbatch", ")", "/", "nseconds", ")", "if", "update", "%", "log_interval", "==", "0", "or", "update", "==", "1", ":", "# Calculates if value function is a good predicator of the returns (ev > 1)", "# or if it's just worse than predicting nothing (ev =< 0)", "ev", "=", "explained_variance", "(", "values", ",", "rewards", ")", "logger", ".", "record_tabular", "(", "\"nupdates\"", ",", "update", ")", "logger", ".", "record_tabular", "(", "\"total_timesteps\"", ",", "update", "*", "nbatch", ")", "logger", ".", "record_tabular", "(", "\"fps\"", ",", "fps", ")", "logger", ".", "record_tabular", "(", "\"policy_entropy\"", ",", "float", "(", "policy_entropy", ")", ")", "logger", ".", "record_tabular", "(", "\"value_loss\"", ",", "float", "(", "value_loss", ")", ")", "logger", ".", "record_tabular", "(", "\"explained_variance\"", ",", "float", "(", "ev", ")", ")", "logger", ".", "record_tabular", "(", "\"eprewmean\"", ",", "safemean", "(", "[", "epinfo", "[", "'r'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "logger", ".", "record_tabular", "(", "\"eplenmean\"", ",", "safemean", "(", "[", "epinfo", "[", "'l'", "]", "for", "epinfo", "in", "epinfobuf", "]", ")", ")", "logger", ".", "dump_tabular", "(", ")", "return", "model" ]
Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm. Parameters: ----------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py) seed: seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible) nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int, total number of timesteps to train on (default: 80M) vf_coef: float, coefficient in front of value function loss in the total loss function (default: 0.5) ent_coef: float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01) max_gradient_norm: float, gradient is clipped to have global L2 norm no more than this value (default: 0.5) lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting parameter (default: 0.99) log_interval: int, specifies how frequently the logs are printed out (default: 100) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
[ "Main", "entrypoint", "for", "A2C", "algorithm", ".", "Train", "a", "policy", "with", "given", "network", "architecture", "on", "a", "given", "environment", "using", "a2c", "algorithm", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/a2c/a2c.py#L119-L231
valid
openai/baselines
baselines/ppo2/runner.py
sf01
def sf01(arr): """ swap and then flatten axes 0 and 1 """ s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
python
def sf01(arr): """ swap and then flatten axes 0 and 1 """ s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
[ "def", "sf01", "(", "arr", ")", ":", "s", "=", "arr", ".", "shape", "return", "arr", ".", "swapaxes", "(", "0", ",", "1", ")", ".", "reshape", "(", "s", "[", "0", "]", "*", "s", "[", "1", "]", ",", "*", "s", "[", "2", ":", "]", ")" ]
swap and then flatten axes 0 and 1
[ "swap", "and", "then", "flatten", "axes", "0", "and", "1" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/ppo2/runner.py#L69-L74
valid
openai/baselines
baselines/common/policies.py
PolicyWithValue.step
def step(self, observation, **extra_feed): """ Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple """ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state, self.neglogp], observation, **extra_feed) if state.size == 0: state = None return a, v, state, neglogp
python
def step(self, observation, **extra_feed): """ Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple """ a, v, state, neglogp = self._evaluate([self.action, self.vf, self.state, self.neglogp], observation, **extra_feed) if state.size == 0: state = None return a, v, state, neglogp
[ "def", "step", "(", "self", ",", "observation", ",", "*", "*", "extra_feed", ")", ":", "a", ",", "v", ",", "state", ",", "neglogp", "=", "self", ".", "_evaluate", "(", "[", "self", ".", "action", ",", "self", ".", "vf", ",", "self", ".", "state", ",", "self", ".", "neglogp", "]", ",", "observation", ",", "*", "*", "extra_feed", ")", "if", "state", ".", "size", "==", "0", ":", "state", "=", "None", "return", "a", ",", "v", ",", "state", ",", "neglogp" ]
Compute next action(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- (action, value estimate, next state, negative log likelihood of the action under current policy parameters) tuple
[ "Compute", "next", "action", "(", "s", ")", "given", "the", "observation", "(", "s", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/policies.py#L77-L96
valid
openai/baselines
baselines/common/policies.py
PolicyWithValue.value
def value(self, ob, *args, **kwargs): """ Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate """ return self._evaluate(self.vf, ob, *args, **kwargs)
python
def value(self, ob, *args, **kwargs): """ Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate """ return self._evaluate(self.vf, ob, *args, **kwargs)
[ "def", "value", "(", "self", ",", "ob", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_evaluate", "(", "self", ".", "vf", ",", "ob", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Compute value estimate(s) given the observation(s) Parameters: ---------- observation observation data (either single or a batch) **extra_feed additional data such as state or mask (names of the arguments should match the ones in constructor, see __init__) Returns: ------- value estimate
[ "Compute", "value", "estimate", "(", "s", ")", "given", "the", "observation", "(", "s", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/policies.py#L98-L113
valid
openai/baselines
baselines/common/misc_util.py
pretty_eta
def pretty_eta(seconds_left): """Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA. """ minutes_left = seconds_left // 60 seconds_left %= 60 hours_left = minutes_left // 60 minutes_left %= 60 days_left = hours_left // 24 hours_left %= 24 def helper(cnt, name): return "{} {}{}".format(str(cnt), name, ('s' if cnt > 1 else '')) if days_left > 0: msg = helper(days_left, 'day') if hours_left > 0: msg += ' and ' + helper(hours_left, 'hour') return msg if hours_left > 0: msg = helper(hours_left, 'hour') if minutes_left > 0: msg += ' and ' + helper(minutes_left, 'minute') return msg if minutes_left > 0: return helper(minutes_left, 'minute') return 'less than a minute'
python
def pretty_eta(seconds_left): """Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA. """ minutes_left = seconds_left // 60 seconds_left %= 60 hours_left = minutes_left // 60 minutes_left %= 60 days_left = hours_left // 24 hours_left %= 24 def helper(cnt, name): return "{} {}{}".format(str(cnt), name, ('s' if cnt > 1 else '')) if days_left > 0: msg = helper(days_left, 'day') if hours_left > 0: msg += ' and ' + helper(hours_left, 'hour') return msg if hours_left > 0: msg = helper(hours_left, 'hour') if minutes_left > 0: msg += ' and ' + helper(minutes_left, 'minute') return msg if minutes_left > 0: return helper(minutes_left, 'minute') return 'less than a minute'
[ "def", "pretty_eta", "(", "seconds_left", ")", ":", "minutes_left", "=", "seconds_left", "//", "60", "seconds_left", "%=", "60", "hours_left", "=", "minutes_left", "//", "60", "minutes_left", "%=", "60", "days_left", "=", "hours_left", "//", "24", "hours_left", "%=", "24", "def", "helper", "(", "cnt", ",", "name", ")", ":", "return", "\"{} {}{}\"", ".", "format", "(", "str", "(", "cnt", ")", ",", "name", ",", "(", "'s'", "if", "cnt", ">", "1", "else", "''", ")", ")", "if", "days_left", ">", "0", ":", "msg", "=", "helper", "(", "days_left", ",", "'day'", ")", "if", "hours_left", ">", "0", ":", "msg", "+=", "' and '", "+", "helper", "(", "hours_left", ",", "'hour'", ")", "return", "msg", "if", "hours_left", ">", "0", ":", "msg", "=", "helper", "(", "hours_left", ",", "'hour'", ")", "if", "minutes_left", ">", "0", ":", "msg", "+=", "' and '", "+", "helper", "(", "minutes_left", ",", "'minute'", ")", "return", "msg", "if", "minutes_left", ">", "0", ":", "return", "helper", "(", "minutes_left", ",", "'minute'", ")", "return", "'less than a minute'" ]
Print the number of seconds in human readable format. Examples: 2 days 2 hours and 37 minutes less than a minute Paramters --------- seconds_left: int Number of seconds to be converted to the ETA Returns ------- eta: str String representing the pretty ETA.
[ "Print", "the", "number", "of", "seconds", "in", "human", "readable", "format", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L65-L104
valid
openai/baselines
baselines/common/misc_util.py
boolean_flag
def boolean_flag(parser, name, default=False, help=None): """Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag """ dest = name.replace('-', '_') parser.add_argument("--" + name, action="store_true", default=default, dest=dest, help=help) parser.add_argument("--no-" + name, action="store_false", dest=dest)
python
def boolean_flag(parser, name, default=False, help=None): """Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag """ dest = name.replace('-', '_') parser.add_argument("--" + name, action="store_true", default=default, dest=dest, help=help) parser.add_argument("--no-" + name, action="store_false", dest=dest)
[ "def", "boolean_flag", "(", "parser", ",", "name", ",", "default", "=", "False", ",", "help", "=", "None", ")", ":", "dest", "=", "name", ".", "replace", "(", "'-'", ",", "'_'", ")", "parser", ".", "add_argument", "(", "\"--\"", "+", "name", ",", "action", "=", "\"store_true\"", ",", "default", "=", "default", ",", "dest", "=", "dest", ",", "help", "=", "help", ")", "parser", ".", "add_argument", "(", "\"--no-\"", "+", "name", ",", "action", "=", "\"store_false\"", ",", "dest", "=", "dest", ")" ]
Add a boolean flag to argparse parser. Parameters ---------- parser: argparse.Parser parser to add the flag to name: str --<name> will enable the flag, while --no-<name> will disable it default: bool or None default value of the flag help: str help string for the flag
[ "Add", "a", "boolean", "flag", "to", "argparse", "parser", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L140-L156
valid
openai/baselines
baselines/common/misc_util.py
get_wrapper_by_name
def get_wrapper_by_name(env, classname): """Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname """ currentenv = env while True: if classname == currentenv.class_name(): return currentenv elif isinstance(currentenv, gym.Wrapper): currentenv = currentenv.env else: raise ValueError("Couldn't find wrapper named %s" % classname)
python
def get_wrapper_by_name(env, classname): """Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname """ currentenv = env while True: if classname == currentenv.class_name(): return currentenv elif isinstance(currentenv, gym.Wrapper): currentenv = currentenv.env else: raise ValueError("Couldn't find wrapper named %s" % classname)
[ "def", "get_wrapper_by_name", "(", "env", ",", "classname", ")", ":", "currentenv", "=", "env", "while", "True", ":", "if", "classname", "==", "currentenv", ".", "class_name", "(", ")", ":", "return", "currentenv", "elif", "isinstance", "(", "currentenv", ",", "gym", ".", "Wrapper", ")", ":", "currentenv", "=", "currentenv", ".", "env", "else", ":", "raise", "ValueError", "(", "\"Couldn't find wrapper named %s\"", "%", "classname", ")" ]
Given an a gym environment possibly wrapped multiple times, returns a wrapper of class named classname or raises ValueError if no such wrapper was applied Parameters ---------- env: gym.Env of gym.Wrapper gym environment classname: str name of the wrapper Returns ------- wrapper: gym.Wrapper wrapper named classname
[ "Given", "an", "a", "gym", "environment", "possibly", "wrapped", "multiple", "times", "returns", "a", "wrapper", "of", "class", "named", "classname", "or", "raises", "ValueError", "if", "no", "such", "wrapper", "was", "applied" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L159-L182
valid
openai/baselines
baselines/common/misc_util.py
relatively_safe_pickle_dump
def relatively_safe_pickle_dump(obj, path, compression=False): """This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed """ temp_storage = path + ".relatively_safe" if compression: # Using gzip here would be simpler, but the size is limited to 2GB with tempfile.NamedTemporaryFile() as uncompressed_file: pickle.dump(obj, uncompressed_file) uncompressed_file.file.flush() with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip: myzip.write(uncompressed_file.name, "data") else: with open(temp_storage, "wb") as f: pickle.dump(obj, f) os.rename(temp_storage, path)
python
def relatively_safe_pickle_dump(obj, path, compression=False): """This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed """ temp_storage = path + ".relatively_safe" if compression: # Using gzip here would be simpler, but the size is limited to 2GB with tempfile.NamedTemporaryFile() as uncompressed_file: pickle.dump(obj, uncompressed_file) uncompressed_file.file.flush() with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip: myzip.write(uncompressed_file.name, "data") else: with open(temp_storage, "wb") as f: pickle.dump(obj, f) os.rename(temp_storage, path)
[ "def", "relatively_safe_pickle_dump", "(", "obj", ",", "path", ",", "compression", "=", "False", ")", ":", "temp_storage", "=", "path", "+", "\".relatively_safe\"", "if", "compression", ":", "# Using gzip here would be simpler, but the size is limited to 2GB", "with", "tempfile", ".", "NamedTemporaryFile", "(", ")", "as", "uncompressed_file", ":", "pickle", ".", "dump", "(", "obj", ",", "uncompressed_file", ")", "uncompressed_file", ".", "file", ".", "flush", "(", ")", "with", "zipfile", ".", "ZipFile", "(", "temp_storage", ",", "\"w\"", ",", "compression", "=", "zipfile", ".", "ZIP_DEFLATED", ")", "as", "myzip", ":", "myzip", ".", "write", "(", "uncompressed_file", ".", "name", ",", "\"data\"", ")", "else", ":", "with", "open", "(", "temp_storage", ",", "\"wb\"", ")", "as", "f", ":", "pickle", ".", "dump", "(", "obj", ",", "f", ")", "os", ".", "rename", "(", "temp_storage", ",", "path", ")" ]
This is just like regular pickle dump, except from the fact that failure cases are different: - It's never possible that we end up with a pickle in corrupted state. - If a there was a different file at the path, that file will remain unchanged in the even of failure (provided that filesystem rename is atomic). - it is sometimes possible that we end up with useless temp file which needs to be deleted manually (it will be removed automatically on the next function call) The indended use case is periodic checkpoints of experiment state, such that we never corrupt previous checkpoints if the current one fails. Parameters ---------- obj: object object to pickle path: str path to the output file compression: bool if true pickle will be compressed
[ "This", "is", "just", "like", "regular", "pickle", "dump", "except", "from", "the", "fact", "that", "failure", "cases", "are", "different", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L185-L218
valid
openai/baselines
baselines/common/misc_util.py
pickle_load
def pickle_load(path, compression=False): """Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object """ if compression: with zipfile.ZipFile(path, "r", compression=zipfile.ZIP_DEFLATED) as myzip: with myzip.open("data") as f: return pickle.load(f) else: with open(path, "rb") as f: return pickle.load(f)
python
def pickle_load(path, compression=False): """Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object """ if compression: with zipfile.ZipFile(path, "r", compression=zipfile.ZIP_DEFLATED) as myzip: with myzip.open("data") as f: return pickle.load(f) else: with open(path, "rb") as f: return pickle.load(f)
[ "def", "pickle_load", "(", "path", ",", "compression", "=", "False", ")", ":", "if", "compression", ":", "with", "zipfile", ".", "ZipFile", "(", "path", ",", "\"r\"", ",", "compression", "=", "zipfile", ".", "ZIP_DEFLATED", ")", "as", "myzip", ":", "with", "myzip", ".", "open", "(", "\"data\"", ")", "as", "f", ":", "return", "pickle", ".", "load", "(", "f", ")", "else", ":", "with", "open", "(", "path", ",", "\"rb\"", ")", "as", "f", ":", "return", "pickle", ".", "load", "(", "f", ")" ]
Unpickle a possible compressed pickle. Parameters ---------- path: str path to the output file compression: bool if true assumes that pickle was compressed when created and attempts decompression. Returns ------- obj: object the unpickled object
[ "Unpickle", "a", "possible", "compressed", "pickle", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L221-L243
valid
openai/baselines
baselines/common/misc_util.py
RunningAvg.update
def update(self, new_val): """Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity. """ if self._value is None: self._value = new_val else: self._value = self._gamma * self._value + (1.0 - self._gamma) * new_val
python
def update(self, new_val): """Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity. """ if self._value is None: self._value = new_val else: self._value = self._gamma * self._value + (1.0 - self._gamma) * new_val
[ "def", "update", "(", "self", ",", "new_val", ")", ":", "if", "self", ".", "_value", "is", "None", ":", "self", ".", "_value", "=", "new_val", "else", ":", "self", ".", "_value", "=", "self", ".", "_gamma", "*", "self", ".", "_value", "+", "(", "1.0", "-", "self", ".", "_gamma", ")", "*", "new_val" ]
Update the estimate. Parameters ---------- new_val: float new observated value of estimated quantity.
[ "Update", "the", "estimate", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/misc_util.py#L123-L134
valid
openai/baselines
baselines/her/util.py
store_args
def store_args(method): """Stores provided method args as instance attributes. """ argspec = inspect.getfullargspec(method) defaults = {} if argspec.defaults is not None: defaults = dict( zip(argspec.args[-len(argspec.defaults):], argspec.defaults)) if argspec.kwonlydefaults is not None: defaults.update(argspec.kwonlydefaults) arg_names = argspec.args[1:] @functools.wraps(method) def wrapper(*positional_args, **keyword_args): self = positional_args[0] # Get default arg values args = defaults.copy() # Add provided arg values for name, value in zip(arg_names, positional_args[1:]): args[name] = value args.update(keyword_args) self.__dict__.update(args) return method(*positional_args, **keyword_args) return wrapper
python
def store_args(method): """Stores provided method args as instance attributes. """ argspec = inspect.getfullargspec(method) defaults = {} if argspec.defaults is not None: defaults = dict( zip(argspec.args[-len(argspec.defaults):], argspec.defaults)) if argspec.kwonlydefaults is not None: defaults.update(argspec.kwonlydefaults) arg_names = argspec.args[1:] @functools.wraps(method) def wrapper(*positional_args, **keyword_args): self = positional_args[0] # Get default arg values args = defaults.copy() # Add provided arg values for name, value in zip(arg_names, positional_args[1:]): args[name] = value args.update(keyword_args) self.__dict__.update(args) return method(*positional_args, **keyword_args) return wrapper
[ "def", "store_args", "(", "method", ")", ":", "argspec", "=", "inspect", ".", "getfullargspec", "(", "method", ")", "defaults", "=", "{", "}", "if", "argspec", ".", "defaults", "is", "not", "None", ":", "defaults", "=", "dict", "(", "zip", "(", "argspec", ".", "args", "[", "-", "len", "(", "argspec", ".", "defaults", ")", ":", "]", ",", "argspec", ".", "defaults", ")", ")", "if", "argspec", ".", "kwonlydefaults", "is", "not", "None", ":", "defaults", ".", "update", "(", "argspec", ".", "kwonlydefaults", ")", "arg_names", "=", "argspec", ".", "args", "[", "1", ":", "]", "@", "functools", ".", "wraps", "(", "method", ")", "def", "wrapper", "(", "*", "positional_args", ",", "*", "*", "keyword_args", ")", ":", "self", "=", "positional_args", "[", "0", "]", "# Get default arg values", "args", "=", "defaults", ".", "copy", "(", ")", "# Add provided arg values", "for", "name", ",", "value", "in", "zip", "(", "arg_names", ",", "positional_args", "[", "1", ":", "]", ")", ":", "args", "[", "name", "]", "=", "value", "args", ".", "update", "(", "keyword_args", ")", "self", ".", "__dict__", ".", "update", "(", "args", ")", "return", "method", "(", "*", "positional_args", ",", "*", "*", "keyword_args", ")", "return", "wrapper" ]
Stores provided method args as instance attributes.
[ "Stores", "provided", "method", "args", "as", "instance", "attributes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L14-L38
valid
openai/baselines
baselines/her/util.py
import_function
def import_function(spec): """Import a function identified by a string like "pkg.module:fn_name". """ mod_name, fn_name = spec.split(':') module = importlib.import_module(mod_name) fn = getattr(module, fn_name) return fn
python
def import_function(spec): """Import a function identified by a string like "pkg.module:fn_name". """ mod_name, fn_name = spec.split(':') module = importlib.import_module(mod_name) fn = getattr(module, fn_name) return fn
[ "def", "import_function", "(", "spec", ")", ":", "mod_name", ",", "fn_name", "=", "spec", ".", "split", "(", "':'", ")", "module", "=", "importlib", ".", "import_module", "(", "mod_name", ")", "fn", "=", "getattr", "(", "module", ",", "fn_name", ")", "return", "fn" ]
Import a function identified by a string like "pkg.module:fn_name".
[ "Import", "a", "function", "identified", "by", "a", "string", "like", "pkg", ".", "module", ":", "fn_name", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L41-L47
valid
openai/baselines
baselines/her/util.py
flatten_grads
def flatten_grads(var_list, grads): """Flattens a variables and their gradients. """ return tf.concat([tf.reshape(grad, [U.numel(v)]) for (v, grad) in zip(var_list, grads)], 0)
python
def flatten_grads(var_list, grads): """Flattens a variables and their gradients. """ return tf.concat([tf.reshape(grad, [U.numel(v)]) for (v, grad) in zip(var_list, grads)], 0)
[ "def", "flatten_grads", "(", "var_list", ",", "grads", ")", ":", "return", "tf", ".", "concat", "(", "[", "tf", ".", "reshape", "(", "grad", ",", "[", "U", ".", "numel", "(", "v", ")", "]", ")", "for", "(", "v", ",", "grad", ")", "in", "zip", "(", "var_list", ",", "grads", ")", "]", ",", "0", ")" ]
Flattens a variables and their gradients.
[ "Flattens", "a", "variables", "and", "their", "gradients", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L50-L54
valid
openai/baselines
baselines/her/util.py
nn
def nn(input, layers_sizes, reuse=None, flatten=False, name=""): """Creates a simple neural network """ for i, size in enumerate(layers_sizes): activation = tf.nn.relu if i < len(layers_sizes) - 1 else None input = tf.layers.dense(inputs=input, units=size, kernel_initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse, name=name + '_' + str(i)) if activation: input = activation(input) if flatten: assert layers_sizes[-1] == 1 input = tf.reshape(input, [-1]) return input
python
def nn(input, layers_sizes, reuse=None, flatten=False, name=""): """Creates a simple neural network """ for i, size in enumerate(layers_sizes): activation = tf.nn.relu if i < len(layers_sizes) - 1 else None input = tf.layers.dense(inputs=input, units=size, kernel_initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse, name=name + '_' + str(i)) if activation: input = activation(input) if flatten: assert layers_sizes[-1] == 1 input = tf.reshape(input, [-1]) return input
[ "def", "nn", "(", "input", ",", "layers_sizes", ",", "reuse", "=", "None", ",", "flatten", "=", "False", ",", "name", "=", "\"\"", ")", ":", "for", "i", ",", "size", "in", "enumerate", "(", "layers_sizes", ")", ":", "activation", "=", "tf", ".", "nn", ".", "relu", "if", "i", "<", "len", "(", "layers_sizes", ")", "-", "1", "else", "None", "input", "=", "tf", ".", "layers", ".", "dense", "(", "inputs", "=", "input", ",", "units", "=", "size", ",", "kernel_initializer", "=", "tf", ".", "contrib", ".", "layers", ".", "xavier_initializer", "(", ")", ",", "reuse", "=", "reuse", ",", "name", "=", "name", "+", "'_'", "+", "str", "(", "i", ")", ")", "if", "activation", ":", "input", "=", "activation", "(", "input", ")", "if", "flatten", ":", "assert", "layers_sizes", "[", "-", "1", "]", "==", "1", "input", "=", "tf", ".", "reshape", "(", "input", ",", "[", "-", "1", "]", ")", "return", "input" ]
Creates a simple neural network
[ "Creates", "a", "simple", "neural", "network" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L57-L72
valid
openai/baselines
baselines/her/util.py
mpi_fork
def mpi_fork(n, extra_mpi_args=[]): """Re-launches the current script with workers Returns "parent" for original parent, "child" for MPI children """ if n <= 1: return "child" if os.getenv("IN_MPI") is None: env = os.environ.copy() env.update( MKL_NUM_THREADS="1", OMP_NUM_THREADS="1", IN_MPI="1" ) # "-bind-to core" is crucial for good performance args = ["mpirun", "-np", str(n)] + \ extra_mpi_args + \ [sys.executable] args += sys.argv subprocess.check_call(args, env=env) return "parent" else: install_mpi_excepthook() return "child"
python
def mpi_fork(n, extra_mpi_args=[]): """Re-launches the current script with workers Returns "parent" for original parent, "child" for MPI children """ if n <= 1: return "child" if os.getenv("IN_MPI") is None: env = os.environ.copy() env.update( MKL_NUM_THREADS="1", OMP_NUM_THREADS="1", IN_MPI="1" ) # "-bind-to core" is crucial for good performance args = ["mpirun", "-np", str(n)] + \ extra_mpi_args + \ [sys.executable] args += sys.argv subprocess.check_call(args, env=env) return "parent" else: install_mpi_excepthook() return "child"
[ "def", "mpi_fork", "(", "n", ",", "extra_mpi_args", "=", "[", "]", ")", ":", "if", "n", "<=", "1", ":", "return", "\"child\"", "if", "os", ".", "getenv", "(", "\"IN_MPI\"", ")", "is", "None", ":", "env", "=", "os", ".", "environ", ".", "copy", "(", ")", "env", ".", "update", "(", "MKL_NUM_THREADS", "=", "\"1\"", ",", "OMP_NUM_THREADS", "=", "\"1\"", ",", "IN_MPI", "=", "\"1\"", ")", "# \"-bind-to core\" is crucial for good performance", "args", "=", "[", "\"mpirun\"", ",", "\"-np\"", ",", "str", "(", "n", ")", "]", "+", "extra_mpi_args", "+", "[", "sys", ".", "executable", "]", "args", "+=", "sys", ".", "argv", "subprocess", ".", "check_call", "(", "args", ",", "env", "=", "env", ")", "return", "\"parent\"", "else", ":", "install_mpi_excepthook", "(", ")", "return", "\"child\"" ]
Re-launches the current script with workers Returns "parent" for original parent, "child" for MPI children
[ "Re", "-", "launches", "the", "current", "script", "with", "workers", "Returns", "parent", "for", "original", "parent", "child", "for", "MPI", "children" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L88-L111
valid
openai/baselines
baselines/her/util.py
convert_episode_to_batch_major
def convert_episode_to_batch_major(episode): """Converts an episode to have the batch dimension in the major (first) dimension. """ episode_batch = {} for key in episode.keys(): val = np.array(episode[key]).copy() # make inputs batch-major instead of time-major episode_batch[key] = val.swapaxes(0, 1) return episode_batch
python
def convert_episode_to_batch_major(episode): """Converts an episode to have the batch dimension in the major (first) dimension. """ episode_batch = {} for key in episode.keys(): val = np.array(episode[key]).copy() # make inputs batch-major instead of time-major episode_batch[key] = val.swapaxes(0, 1) return episode_batch
[ "def", "convert_episode_to_batch_major", "(", "episode", ")", ":", "episode_batch", "=", "{", "}", "for", "key", "in", "episode", ".", "keys", "(", ")", ":", "val", "=", "np", ".", "array", "(", "episode", "[", "key", "]", ")", ".", "copy", "(", ")", "# make inputs batch-major instead of time-major", "episode_batch", "[", "key", "]", "=", "val", ".", "swapaxes", "(", "0", ",", "1", ")", "return", "episode_batch" ]
Converts an episode to have the batch dimension in the major (first) dimension.
[ "Converts", "an", "episode", "to", "have", "the", "batch", "dimension", "in", "the", "major", "(", "first", ")", "dimension", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L114-L124
valid
openai/baselines
baselines/her/util.py
reshape_for_broadcasting
def reshape_for_broadcasting(source, target): """Reshapes a tensor (source) to have the correct shape and dtype of the target before broadcasting it with MPI. """ dim = len(target.get_shape()) shape = ([1] * (dim - 1)) + [-1] return tf.reshape(tf.cast(source, target.dtype), shape)
python
def reshape_for_broadcasting(source, target): """Reshapes a tensor (source) to have the correct shape and dtype of the target before broadcasting it with MPI. """ dim = len(target.get_shape()) shape = ([1] * (dim - 1)) + [-1] return tf.reshape(tf.cast(source, target.dtype), shape)
[ "def", "reshape_for_broadcasting", "(", "source", ",", "target", ")", ":", "dim", "=", "len", "(", "target", ".", "get_shape", "(", ")", ")", "shape", "=", "(", "[", "1", "]", "*", "(", "dim", "-", "1", ")", ")", "+", "[", "-", "1", "]", "return", "tf", ".", "reshape", "(", "tf", ".", "cast", "(", "source", ",", "target", ".", "dtype", ")", ",", "shape", ")" ]
Reshapes a tensor (source) to have the correct shape and dtype of the target before broadcasting it with MPI.
[ "Reshapes", "a", "tensor", "(", "source", ")", "to", "have", "the", "correct", "shape", "and", "dtype", "of", "the", "target", "before", "broadcasting", "it", "with", "MPI", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/util.py#L134-L140
valid
openai/baselines
baselines/ppo1/pposgd_simple.py
add_vtarg_and_adv
def add_vtarg_and_adv(seg, gamma, lam): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"]
python
def add_vtarg_and_adv(seg, gamma, lam): """ Compute target value using TD(lambda) estimator, and advantage with GAE(lambda) """ new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1 vpred = np.append(seg["vpred"], seg["nextvpred"]) T = len(seg["rew"]) seg["adv"] = gaelam = np.empty(T, 'float32') rew = seg["rew"] lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1-new[t+1] delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t] gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam seg["tdlamret"] = seg["adv"] + seg["vpred"]
[ "def", "add_vtarg_and_adv", "(", "seg", ",", "gamma", ",", "lam", ")", ":", "new", "=", "np", ".", "append", "(", "seg", "[", "\"new\"", "]", ",", "0", ")", "# last element is only used for last vtarg, but we already zeroed it if last new = 1", "vpred", "=", "np", ".", "append", "(", "seg", "[", "\"vpred\"", "]", ",", "seg", "[", "\"nextvpred\"", "]", ")", "T", "=", "len", "(", "seg", "[", "\"rew\"", "]", ")", "seg", "[", "\"adv\"", "]", "=", "gaelam", "=", "np", ".", "empty", "(", "T", ",", "'float32'", ")", "rew", "=", "seg", "[", "\"rew\"", "]", "lastgaelam", "=", "0", "for", "t", "in", "reversed", "(", "range", "(", "T", ")", ")", ":", "nonterminal", "=", "1", "-", "new", "[", "t", "+", "1", "]", "delta", "=", "rew", "[", "t", "]", "+", "gamma", "*", "vpred", "[", "t", "+", "1", "]", "*", "nonterminal", "-", "vpred", "[", "t", "]", "gaelam", "[", "t", "]", "=", "lastgaelam", "=", "delta", "+", "gamma", "*", "lam", "*", "nonterminal", "*", "lastgaelam", "seg", "[", "\"tdlamret\"", "]", "=", "seg", "[", "\"adv\"", "]", "+", "seg", "[", "\"vpred\"", "]" ]
Compute target value using TD(lambda) estimator, and advantage with GAE(lambda)
[ "Compute", "target", "value", "using", "TD", "(", "lambda", ")", "estimator", "and", "advantage", "with", "GAE", "(", "lambda", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/ppo1/pposgd_simple.py#L64-L78
valid
openai/baselines
baselines/common/tf_util.py
switch
def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x
python
def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x
[ "def", "switch", "(", "condition", ",", "then_expression", ",", "else_expression", ")", ":", "x_shape", "=", "copy", ".", "copy", "(", "then_expression", ".", "get_shape", "(", ")", ")", "x", "=", "tf", ".", "cond", "(", "tf", ".", "cast", "(", "condition", ",", "'bool'", ")", ",", "lambda", ":", "then_expression", ",", "lambda", ":", "else_expression", ")", "x", ".", "set_shape", "(", "x_shape", ")", "return", "x" ]
Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation.
[ "Switches", "between", "two", "operations", "depending", "on", "a", "scalar", "value", "(", "int", "or", "bool", ")", ".", "Note", "that", "both", "then_expression", "and", "else_expression", "should", "be", "symbolic", "tensors", "of", "the", "*", "same", "shape", "*", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L9-L24
valid
openai/baselines
baselines/common/tf_util.py
huber_loss
def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) )
python
def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) )
[ "def", "huber_loss", "(", "x", ",", "delta", "=", "1.0", ")", ":", "return", "tf", ".", "where", "(", "tf", ".", "abs", "(", "x", ")", "<", "delta", ",", "tf", ".", "square", "(", "x", ")", "*", "0.5", ",", "delta", "*", "(", "tf", ".", "abs", "(", "x", ")", "-", "0.5", "*", "delta", ")", ")" ]
Reference: https://en.wikipedia.org/wiki/Huber_loss
[ "Reference", ":", "https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Huber_loss" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L39-L45
valid
openai/baselines
baselines/common/tf_util.py
get_session
def get_session(config=None): """Get default session or create one with a given config""" sess = tf.get_default_session() if sess is None: sess = make_session(config=config, make_default=True) return sess
python
def get_session(config=None): """Get default session or create one with a given config""" sess = tf.get_default_session() if sess is None: sess = make_session(config=config, make_default=True) return sess
[ "def", "get_session", "(", "config", "=", "None", ")", ":", "sess", "=", "tf", ".", "get_default_session", "(", ")", "if", "sess", "is", "None", ":", "sess", "=", "make_session", "(", "config", "=", "config", ",", "make_default", "=", "True", ")", "return", "sess" ]
Get default session or create one with a given config
[ "Get", "default", "session", "or", "create", "one", "with", "a", "given", "config" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L51-L56
valid
openai/baselines
baselines/common/tf_util.py
make_session
def make_session(config=None, num_cpu=None, make_default=False, graph=None): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) if config is None: config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=config, graph=graph) else: return tf.Session(config=config, graph=graph)
python
def make_session(config=None, num_cpu=None, make_default=False, graph=None): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) if config is None: config = tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) config.gpu_options.allow_growth = True if make_default: return tf.InteractiveSession(config=config, graph=graph) else: return tf.Session(config=config, graph=graph)
[ "def", "make_session", "(", "config", "=", "None", ",", "num_cpu", "=", "None", ",", "make_default", "=", "False", ",", "graph", "=", "None", ")", ":", "if", "num_cpu", "is", "None", ":", "num_cpu", "=", "int", "(", "os", ".", "getenv", "(", "'RCALL_NUM_CPU'", ",", "multiprocessing", ".", "cpu_count", "(", ")", ")", ")", "if", "config", "is", "None", ":", "config", "=", "tf", ".", "ConfigProto", "(", "allow_soft_placement", "=", "True", ",", "inter_op_parallelism_threads", "=", "num_cpu", ",", "intra_op_parallelism_threads", "=", "num_cpu", ")", "config", ".", "gpu_options", ".", "allow_growth", "=", "True", "if", "make_default", ":", "return", "tf", ".", "InteractiveSession", "(", "config", "=", "config", ",", "graph", "=", "graph", ")", "else", ":", "return", "tf", ".", "Session", "(", "config", "=", "config", ",", "graph", "=", "graph", ")" ]
Returns a session that will use <num_cpu> CPU's only
[ "Returns", "a", "session", "that", "will", "use", "<num_cpu", ">", "CPU", "s", "only" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L58-L72
valid
openai/baselines
baselines/common/tf_util.py
initialize
def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED get_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables)
python
def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED get_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables)
[ "def", "initialize", "(", ")", ":", "new_variables", "=", "set", "(", "tf", ".", "global_variables", "(", ")", ")", "-", "ALREADY_INITIALIZED", "get_session", "(", ")", ".", "run", "(", "tf", ".", "variables_initializer", "(", "new_variables", ")", ")", "ALREADY_INITIALIZED", ".", "update", "(", "new_variables", ")" ]
Initialize all the uninitialized variables in the global scope.
[ "Initialize", "all", "the", "uninitialized", "variables", "in", "the", "global", "scope", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L87-L91
valid
openai/baselines
baselines/common/tf_util.py
function
def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0]
python
def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0]
[ "def", "function", "(", "inputs", ",", "outputs", ",", "updates", "=", "None", ",", "givens", "=", "None", ")", ":", "if", "isinstance", "(", "outputs", ",", "list", ")", ":", "return", "_Function", "(", "inputs", ",", "outputs", ",", "updates", ",", "givens", "=", "givens", ")", "elif", "isinstance", "(", "outputs", ",", "(", "dict", ",", "collections", ".", "OrderedDict", ")", ")", ":", "f", "=", "_Function", "(", "inputs", ",", "outputs", ".", "values", "(", ")", ",", "updates", ",", "givens", "=", "givens", ")", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "type", "(", "outputs", ")", "(", "zip", "(", "outputs", ".", "keys", "(", ")", ",", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", ")", ")", "else", ":", "f", "=", "_Function", "(", "inputs", ",", "[", "outputs", "]", ",", "updates", ",", "givens", "=", "givens", ")", "return", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "[", "0", "]" ]
Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. updates: [tf.Operation] or tf.Operation list of update functions or single update function that will be run whenever the function is called. The return is ignored.
[ "Just", "like", "Theano", "function", ".", "Take", "a", "bunch", "of", "tensorflow", "placeholders", "and", "expressions", "computed", "based", "on", "those", "placeholders", "and", "produces", "f", "(", "inputs", ")", "-", ">", "outputs", ".", "Function", "f", "takes", "values", "to", "be", "fed", "to", "the", "input", "s", "placeholders", "and", "produces", "the", "values", "of", "the", "expressions", "in", "outputs", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L137-L179
valid
openai/baselines
baselines/common/tf_util.py
adjust_shape
def adjust_shape(placeholder, data): ''' adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data ''' if not isinstance(data, np.ndarray) and not isinstance(data, list): return data if isinstance(data, list): data = np.array(data) placeholder_shape = [x or -1 for x in placeholder.shape.as_list()] assert _check_shape(placeholder_shape, data.shape), \ 'Shape of data {} is not compatible with shape of the placeholder {}'.format(data.shape, placeholder_shape) return np.reshape(data, placeholder_shape)
python
def adjust_shape(placeholder, data): ''' adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data ''' if not isinstance(data, np.ndarray) and not isinstance(data, list): return data if isinstance(data, list): data = np.array(data) placeholder_shape = [x or -1 for x in placeholder.shape.as_list()] assert _check_shape(placeholder_shape, data.shape), \ 'Shape of data {} is not compatible with shape of the placeholder {}'.format(data.shape, placeholder_shape) return np.reshape(data, placeholder_shape)
[ "def", "adjust_shape", "(", "placeholder", ",", "data", ")", ":", "if", "not", "isinstance", "(", "data", ",", "np", ".", "ndarray", ")", "and", "not", "isinstance", "(", "data", ",", "list", ")", ":", "return", "data", "if", "isinstance", "(", "data", ",", "list", ")", ":", "data", "=", "np", ".", "array", "(", "data", ")", "placeholder_shape", "=", "[", "x", "or", "-", "1", "for", "x", "in", "placeholder", ".", "shape", ".", "as_list", "(", ")", "]", "assert", "_check_shape", "(", "placeholder_shape", ",", "data", ".", "shape", ")", ",", "'Shape of data {} is not compatible with shape of the placeholder {}'", ".", "format", "(", "data", ".", "shape", ",", "placeholder_shape", ")", "return", "np", ".", "reshape", "(", "data", ",", "placeholder_shape", ")" ]
adjust shape of the data to the shape of the placeholder if possible. If shape is incompatible, AssertionError is thrown Parameters: placeholder tensorflow input placeholder data input data to be (potentially) reshaped to be fed into placeholder Returns: reshaped data
[ "adjust", "shape", "of", "the", "data", "to", "the", "shape", "of", "the", "placeholder", "if", "possible", ".", "If", "shape", "is", "incompatible", "AssertionError", "is", "thrown" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L377-L401
valid
openai/baselines
baselines/common/tf_util.py
_check_shape
def _check_shape(placeholder_shape, data_shape): ''' check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)''' return True squeezed_placeholder_shape = _squeeze_shape(placeholder_shape) squeezed_data_shape = _squeeze_shape(data_shape) for i, s_data in enumerate(squeezed_data_shape): s_placeholder = squeezed_placeholder_shape[i] if s_placeholder != -1 and s_data != s_placeholder: return False return True
python
def _check_shape(placeholder_shape, data_shape): ''' check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)''' return True squeezed_placeholder_shape = _squeeze_shape(placeholder_shape) squeezed_data_shape = _squeeze_shape(data_shape) for i, s_data in enumerate(squeezed_data_shape): s_placeholder = squeezed_placeholder_shape[i] if s_placeholder != -1 and s_data != s_placeholder: return False return True
[ "def", "_check_shape", "(", "placeholder_shape", ",", "data_shape", ")", ":", "return", "True", "squeezed_placeholder_shape", "=", "_squeeze_shape", "(", "placeholder_shape", ")", "squeezed_data_shape", "=", "_squeeze_shape", "(", "data_shape", ")", "for", "i", ",", "s_data", "in", "enumerate", "(", "squeezed_data_shape", ")", ":", "s_placeholder", "=", "squeezed_placeholder_shape", "[", "i", "]", "if", "s_placeholder", "!=", "-", "1", "and", "s_data", "!=", "s_placeholder", ":", "return", "False", "return", "True" ]
check if two shapes are compatible (i.e. differ only by dimensions of size 1, or by the batch dimension)
[ "check", "if", "two", "shapes", "are", "compatible", "(", "i", ".", "e", ".", "differ", "only", "by", "dimensions", "of", "size", "1", "or", "by", "the", "batch", "dimension", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/tf_util.py#L404-L416
valid
openai/baselines
baselines/logger.py
profile
def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name
python
def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name
[ "def", "profile", "(", "n", ")", ":", "def", "decorator_with_name", "(", "func", ")", ":", "def", "func_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "with", "profile_kv", "(", "n", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "func_wrapper", "return", "decorator_with_name" ]
Usage: @profile("my_func") def my_func(): code
[ "Usage", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/logger.py#L272-L283
valid
openai/baselines
baselines/common/atari_wrappers.py
wrap_deepmind
def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env
python
def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False): """Configure environment for DeepMind-style Atari. """ if episode_life: env = EpisodicLifeEnv(env) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if scale: env = ScaledFloatFrame(env) if clip_rewards: env = ClipRewardEnv(env) if frame_stack: env = FrameStack(env, 4) return env
[ "def", "wrap_deepmind", "(", "env", ",", "episode_life", "=", "True", ",", "clip_rewards", "=", "True", ",", "frame_stack", "=", "False", ",", "scale", "=", "False", ")", ":", "if", "episode_life", ":", "env", "=", "EpisodicLifeEnv", "(", "env", ")", "if", "'FIRE'", "in", "env", ".", "unwrapped", ".", "get_action_meanings", "(", ")", ":", "env", "=", "FireResetEnv", "(", "env", ")", "env", "=", "WarpFrame", "(", "env", ")", "if", "scale", ":", "env", "=", "ScaledFloatFrame", "(", "env", ")", "if", "clip_rewards", ":", "env", "=", "ClipRewardEnv", "(", "env", ")", "if", "frame_stack", ":", "env", "=", "FrameStack", "(", "env", ",", "4", ")", "return", "env" ]
Configure environment for DeepMind-style Atari.
[ "Configure", "environment", "for", "DeepMind", "-", "style", "Atari", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/atari_wrappers.py#L235-L249
valid
openai/baselines
baselines/common/atari_wrappers.py
EpisodicLifeEnv.reset
def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs
python
def reset(self, **kwargs): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset(**kwargs) else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs
[ "def", "reset", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "was_real_done", ":", "obs", "=", "self", ".", "env", ".", "reset", "(", "*", "*", "kwargs", ")", "else", ":", "# no-op step to advance from terminal/lost life state", "obs", ",", "_", ",", "_", ",", "_", "=", "self", ".", "env", ".", "step", "(", "0", ")", "self", ".", "lives", "=", "self", ".", "env", ".", "unwrapped", ".", "ale", ".", "lives", "(", ")", "return", "obs" ]
Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes.
[ "Reset", "only", "when", "lives", "are", "exhausted", ".", "This", "way", "all", "states", "are", "still", "reachable", "even", "though", "lives", "are", "episodic", "and", "the", "learner", "need", "not", "know", "about", "any", "of", "this", "behind", "-", "the", "-", "scenes", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/atari_wrappers.py#L84-L95
valid
openai/baselines
baselines/common/mpi_util.py
sync_from_root
def sync_from_root(sess, variables, comm=None): """ Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's """ if comm is None: comm = MPI.COMM_WORLD import tensorflow as tf values = comm.bcast(sess.run(variables)) sess.run([tf.assign(var, val) for (var, val) in zip(variables, values)])
python
def sync_from_root(sess, variables, comm=None): """ Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's """ if comm is None: comm = MPI.COMM_WORLD import tensorflow as tf values = comm.bcast(sess.run(variables)) sess.run([tf.assign(var, val) for (var, val) in zip(variables, values)])
[ "def", "sync_from_root", "(", "sess", ",", "variables", ",", "comm", "=", "None", ")", ":", "if", "comm", "is", "None", ":", "comm", "=", "MPI", ".", "COMM_WORLD", "import", "tensorflow", "as", "tf", "values", "=", "comm", ".", "bcast", "(", "sess", ".", "run", "(", "variables", ")", ")", "sess", ".", "run", "(", "[", "tf", ".", "assign", "(", "var", ",", "val", ")", "for", "(", "var", ",", "val", ")", "in", "zip", "(", "variables", ",", "values", ")", "]", ")" ]
Send the root node's parameters to every worker. Arguments: sess: the TensorFlow session. variables: all parameter variables including optimizer's
[ "Send", "the", "root", "node", "s", "parameters", "to", "every", "worker", ".", "Arguments", ":", "sess", ":", "the", "TensorFlow", "session", ".", "variables", ":", "all", "parameter", "variables", "including", "optimizer", "s" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L15-L26
valid
openai/baselines
baselines/common/mpi_util.py
gpu_count
def gpu_count(): """ Count the GPUs on this machine. """ if shutil.which('nvidia-smi') is None: return 0 output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv']) return max(0, len(output.split(b'\n')) - 2)
python
def gpu_count(): """ Count the GPUs on this machine. """ if shutil.which('nvidia-smi') is None: return 0 output = subprocess.check_output(['nvidia-smi', '--query-gpu=gpu_name', '--format=csv']) return max(0, len(output.split(b'\n')) - 2)
[ "def", "gpu_count", "(", ")", ":", "if", "shutil", ".", "which", "(", "'nvidia-smi'", ")", "is", "None", ":", "return", "0", "output", "=", "subprocess", ".", "check_output", "(", "[", "'nvidia-smi'", ",", "'--query-gpu=gpu_name'", ",", "'--format=csv'", "]", ")", "return", "max", "(", "0", ",", "len", "(", "output", ".", "split", "(", "b'\\n'", ")", ")", "-", "2", ")" ]
Count the GPUs on this machine.
[ "Count", "the", "GPUs", "on", "this", "machine", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L28-L35
valid
openai/baselines
baselines/common/mpi_util.py
setup_mpi_gpus
def setup_mpi_gpus(): """ Set CUDA_VISIBLE_DEVICES to MPI rank if not already set """ if 'CUDA_VISIBLE_DEVICES' not in os.environ: if sys.platform == 'darwin': # This Assumes if you're on OSX you're just ids = [] # doing a smoke test and don't want GPUs else: lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD) ids = [lrank] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))
python
def setup_mpi_gpus(): """ Set CUDA_VISIBLE_DEVICES to MPI rank if not already set """ if 'CUDA_VISIBLE_DEVICES' not in os.environ: if sys.platform == 'darwin': # This Assumes if you're on OSX you're just ids = [] # doing a smoke test and don't want GPUs else: lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD) ids = [lrank] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))
[ "def", "setup_mpi_gpus", "(", ")", ":", "if", "'CUDA_VISIBLE_DEVICES'", "not", "in", "os", ".", "environ", ":", "if", "sys", ".", "platform", "==", "'darwin'", ":", "# This Assumes if you're on OSX you're just", "ids", "=", "[", "]", "# doing a smoke test and don't want GPUs", "else", ":", "lrank", ",", "_lsize", "=", "get_local_rank_size", "(", "MPI", ".", "COMM_WORLD", ")", "ids", "=", "[", "lrank", "]", "os", ".", "environ", "[", "\"CUDA_VISIBLE_DEVICES\"", "]", "=", "\",\"", ".", "join", "(", "map", "(", "str", ",", "ids", ")", ")" ]
Set CUDA_VISIBLE_DEVICES to MPI rank if not already set
[ "Set", "CUDA_VISIBLE_DEVICES", "to", "MPI", "rank", "if", "not", "already", "set" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L37-L47
valid
openai/baselines
baselines/common/mpi_util.py
get_local_rank_size
def get_local_rank_size(comm): """ Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine """ this_node = platform.node() ranks_nodes = comm.allgather((comm.Get_rank(), this_node)) node2rankssofar = defaultdict(int) local_rank = None for (rank, node) in ranks_nodes: if rank == comm.Get_rank(): local_rank = node2rankssofar[node] node2rankssofar[node] += 1 assert local_rank is not None return local_rank, node2rankssofar[this_node]
python
def get_local_rank_size(comm): """ Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine """ this_node = platform.node() ranks_nodes = comm.allgather((comm.Get_rank(), this_node)) node2rankssofar = defaultdict(int) local_rank = None for (rank, node) in ranks_nodes: if rank == comm.Get_rank(): local_rank = node2rankssofar[node] node2rankssofar[node] += 1 assert local_rank is not None return local_rank, node2rankssofar[this_node]
[ "def", "get_local_rank_size", "(", "comm", ")", ":", "this_node", "=", "platform", ".", "node", "(", ")", "ranks_nodes", "=", "comm", ".", "allgather", "(", "(", "comm", ".", "Get_rank", "(", ")", ",", "this_node", ")", ")", "node2rankssofar", "=", "defaultdict", "(", "int", ")", "local_rank", "=", "None", "for", "(", "rank", ",", "node", ")", "in", "ranks_nodes", ":", "if", "rank", "==", "comm", ".", "Get_rank", "(", ")", ":", "local_rank", "=", "node2rankssofar", "[", "node", "]", "node2rankssofar", "[", "node", "]", "+=", "1", "assert", "local_rank", "is", "not", "None", "return", "local_rank", ",", "node2rankssofar", "[", "this_node", "]" ]
Returns the rank of each process on its machine The processes on a given machine will be assigned ranks 0, 1, 2, ..., N-1, where N is the number of processes on this machine. Useful if you want to assign one gpu per machine
[ "Returns", "the", "rank", "of", "each", "process", "on", "its", "machine", "The", "processes", "on", "a", "given", "machine", "will", "be", "assigned", "ranks", "0", "1", "2", "...", "N", "-", "1", "where", "N", "is", "the", "number", "of", "processes", "on", "this", "machine", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L49-L67
valid
openai/baselines
baselines/common/mpi_util.py
share_file
def share_file(comm, path): """ Copies the file from rank 0 to all other ranks Puts it in the same place on all machines """ localrank, _ = get_local_rank_size(comm) if comm.Get_rank() == 0: with open(path, 'rb') as fh: data = fh.read() comm.bcast(data) else: data = comm.bcast(None) if localrank == 0: os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'wb') as fh: fh.write(data) comm.Barrier()
python
def share_file(comm, path): """ Copies the file from rank 0 to all other ranks Puts it in the same place on all machines """ localrank, _ = get_local_rank_size(comm) if comm.Get_rank() == 0: with open(path, 'rb') as fh: data = fh.read() comm.bcast(data) else: data = comm.bcast(None) if localrank == 0: os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'wb') as fh: fh.write(data) comm.Barrier()
[ "def", "share_file", "(", "comm", ",", "path", ")", ":", "localrank", ",", "_", "=", "get_local_rank_size", "(", "comm", ")", "if", "comm", ".", "Get_rank", "(", ")", "==", "0", ":", "with", "open", "(", "path", ",", "'rb'", ")", "as", "fh", ":", "data", "=", "fh", ".", "read", "(", ")", "comm", ".", "bcast", "(", "data", ")", "else", ":", "data", "=", "comm", ".", "bcast", "(", "None", ")", "if", "localrank", "==", "0", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "path", ")", ",", "exist_ok", "=", "True", ")", "with", "open", "(", "path", ",", "'wb'", ")", "as", "fh", ":", "fh", ".", "write", "(", "data", ")", "comm", ".", "Barrier", "(", ")" ]
Copies the file from rank 0 to all other ranks Puts it in the same place on all machines
[ "Copies", "the", "file", "from", "rank", "0", "to", "all", "other", "ranks", "Puts", "it", "in", "the", "same", "place", "on", "all", "machines" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L69-L85
valid
openai/baselines
baselines/common/mpi_util.py
dict_gather
def dict_gather(comm, d, op='mean', assert_all_have_data=True): """ Perform a reduction operation over dicts """ if comm is None: return d alldicts = comm.allgather(d) size = comm.size k2li = defaultdict(list) for d in alldicts: for (k,v) in d.items(): k2li[k].append(v) result = {} for (k,li) in k2li.items(): if assert_all_have_data: assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k) if op=='mean': result[k] = np.mean(li, axis=0) elif op=='sum': result[k] = np.sum(li, axis=0) else: assert 0, op return result
python
def dict_gather(comm, d, op='mean', assert_all_have_data=True): """ Perform a reduction operation over dicts """ if comm is None: return d alldicts = comm.allgather(d) size = comm.size k2li = defaultdict(list) for d in alldicts: for (k,v) in d.items(): k2li[k].append(v) result = {} for (k,li) in k2li.items(): if assert_all_have_data: assert len(li)==size, "only %i out of %i MPI workers have sent '%s'" % (len(li), size, k) if op=='mean': result[k] = np.mean(li, axis=0) elif op=='sum': result[k] = np.sum(li, axis=0) else: assert 0, op return result
[ "def", "dict_gather", "(", "comm", ",", "d", ",", "op", "=", "'mean'", ",", "assert_all_have_data", "=", "True", ")", ":", "if", "comm", "is", "None", ":", "return", "d", "alldicts", "=", "comm", ".", "allgather", "(", "d", ")", "size", "=", "comm", ".", "size", "k2li", "=", "defaultdict", "(", "list", ")", "for", "d", "in", "alldicts", ":", "for", "(", "k", ",", "v", ")", "in", "d", ".", "items", "(", ")", ":", "k2li", "[", "k", "]", ".", "append", "(", "v", ")", "result", "=", "{", "}", "for", "(", "k", ",", "li", ")", "in", "k2li", ".", "items", "(", ")", ":", "if", "assert_all_have_data", ":", "assert", "len", "(", "li", ")", "==", "size", ",", "\"only %i out of %i MPI workers have sent '%s'\"", "%", "(", "len", "(", "li", ")", ",", "size", ",", "k", ")", "if", "op", "==", "'mean'", ":", "result", "[", "k", "]", "=", "np", ".", "mean", "(", "li", ",", "axis", "=", "0", ")", "elif", "op", "==", "'sum'", ":", "result", "[", "k", "]", "=", "np", ".", "sum", "(", "li", ",", "axis", "=", "0", ")", "else", ":", "assert", "0", ",", "op", "return", "result" ]
Perform a reduction operation over dicts
[ "Perform", "a", "reduction", "operation", "over", "dicts" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L87-L108
valid
openai/baselines
baselines/common/mpi_util.py
mpi_weighted_mean
def mpi_weighted_mean(comm, local_name2valcount): """ Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val)) else: name2sum[name] += val * count name2count[name] += count return {name : name2sum[name] / name2count[name] for name in name2sum} else: return {}
python
def mpi_weighted_mean(comm, local_name2valcount): """ Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val)) else: name2sum[name] += val * count name2count[name] += count return {name : name2sum[name] / name2count[name] for name in name2sum} else: return {}
[ "def", "mpi_weighted_mean", "(", "comm", ",", "local_name2valcount", ")", ":", "all_name2valcount", "=", "comm", ".", "gather", "(", "local_name2valcount", ")", "if", "comm", ".", "rank", "==", "0", ":", "name2sum", "=", "defaultdict", "(", "float", ")", "name2count", "=", "defaultdict", "(", "float", ")", "for", "n2vc", "in", "all_name2valcount", ":", "for", "(", "name", ",", "(", "val", ",", "count", ")", ")", "in", "n2vc", ".", "items", "(", ")", ":", "try", ":", "val", "=", "float", "(", "val", ")", "except", "ValueError", ":", "if", "comm", ".", "rank", "==", "0", ":", "warnings", ".", "warn", "(", "'WARNING: tried to compute mean on non-float {}={}'", ".", "format", "(", "name", ",", "val", ")", ")", "else", ":", "name2sum", "[", "name", "]", "+=", "val", "*", "count", "name2count", "[", "name", "]", "+=", "count", "return", "{", "name", ":", "name2sum", "[", "name", "]", "/", "name2count", "[", "name", "]", "for", "name", "in", "name2sum", "}", "else", ":", "return", "{", "}" ]
Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean
[ "Perform", "a", "weighted", "average", "over", "dicts", "that", "are", "each", "on", "a", "different", "node", "Input", ":", "local_name2valcount", ":", "dict", "mapping", "key", "-", ">", "(", "value", "count", ")", "Returns", ":", "key", "-", ">", "mean" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/mpi_util.py#L110-L132
valid
openai/baselines
baselines/trpo_mpi/trpo_mpi.py
learn
def learn(*, network, env, total_timesteps, timesteps_per_batch=1024, # what to train on max_kl=0.001, cg_iters=10, gamma=0.99, lam=1.0, # advantage estimation seed=None, ent_coef=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters =3, max_episodes=0, max_iters=0, # time constraint callback=None, load_path=None, **network_kwargs ): ''' learn a policy function with TRPO algorithm Parameters: ---------- network neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types) or function that takes input placeholder and returns tuple (output, None) for feedforward nets or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets env environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class timesteps_per_batch timesteps per gradient estimation batch max_kl max KL divergence between old policy and new policy ( KL(pi_old || pi) ) ent_coef coefficient of policy entropy term in the optimization objective cg_iters number of iterations of conjugate gradient algorithm cg_damping conjugate gradient damping vf_stepsize learning rate for adam optimizer used to optimie value function loss vf_iters number of iterations of value function optimization iterations per each policy optimization step total_timesteps max number of timesteps max_episodes max number of episodes max_iters maximum number of policy optimization iterations callback function to be called with (locals(), globals()) each policy optimization step load_path str, path to load the model from (default: None, i.e. no model is loaded) **network_kwargs keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network Returns: ------- learnt model ''' if MPI is not None: nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() else: nworkers = 1 rank = 0 cpus_per_worker = 1 U.get_session(config=tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=cpus_per_worker, intra_op_parallelism_threads=cpus_per_worker )) policy = build_policy(env, network, value_network='copy', **network_kwargs) set_global_seeds(seed) np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space ob = observation_placeholder(ob_space) with tf.variable_scope("pi"): pi = policy(observ_placeholder=ob) with tf.variable_scope("oldpi"): oldpi = policy(observ_placeholder=ob) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = ent_coef * meanent vferr = tf.reduce_mean(tf.square(pi.vf - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = get_trainable_variables("pi") # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")] # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")] var_list = get_pi_trainable_variables("pi") vf_var_list = get_vf_trainable_variables("pi") vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start+sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) if MPI is not None: out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers else: out = np.copy(x) return out U.initialize() if load_path is not None: pi.load(load_path) th_init = get_flat() if MPI is not None: MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0: # noththing to be done return pi assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \ 'out of max_iters, total_timesteps, and max_episodes only one should be specified' while True: if callback: callback(locals(), globals()) if total_timesteps and timesteps_so_far >= total_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break logger.log("********** Iteration %i ************"%iters_so_far) with timed("sampling"): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret) if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = seg["ob"], seg["ac"], atarg fvpargs = [arr[::5] for arr in args] def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p assign_old_eq_new() # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0) assert np.isfinite(stepdir).all() shs = .5*stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=64): g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values if MPI is not None: listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples else: listoflrpairs = [lrlocal] lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if rank==0: logger.dump_tabular() return pi
python
def learn(*, network, env, total_timesteps, timesteps_per_batch=1024, # what to train on max_kl=0.001, cg_iters=10, gamma=0.99, lam=1.0, # advantage estimation seed=None, ent_coef=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters =3, max_episodes=0, max_iters=0, # time constraint callback=None, load_path=None, **network_kwargs ): ''' learn a policy function with TRPO algorithm Parameters: ---------- network neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types) or function that takes input placeholder and returns tuple (output, None) for feedforward nets or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets env environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class timesteps_per_batch timesteps per gradient estimation batch max_kl max KL divergence between old policy and new policy ( KL(pi_old || pi) ) ent_coef coefficient of policy entropy term in the optimization objective cg_iters number of iterations of conjugate gradient algorithm cg_damping conjugate gradient damping vf_stepsize learning rate for adam optimizer used to optimie value function loss vf_iters number of iterations of value function optimization iterations per each policy optimization step total_timesteps max number of timesteps max_episodes max number of episodes max_iters maximum number of policy optimization iterations callback function to be called with (locals(), globals()) each policy optimization step load_path str, path to load the model from (default: None, i.e. no model is loaded) **network_kwargs keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network Returns: ------- learnt model ''' if MPI is not None: nworkers = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() else: nworkers = 1 rank = 0 cpus_per_worker = 1 U.get_session(config=tf.ConfigProto( allow_soft_placement=True, inter_op_parallelism_threads=cpus_per_worker, intra_op_parallelism_threads=cpus_per_worker )) policy = build_policy(env, network, value_network='copy', **network_kwargs) set_global_seeds(seed) np.set_printoptions(precision=3) # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space ob = observation_placeholder(ob_space) with tf.variable_scope("pi"): pi = policy(observ_placeholder=ob) with tf.variable_scope("oldpi"): oldpi = policy(observ_placeholder=ob) atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = ent_coef * meanent vferr = tf.reduce_mean(tf.square(pi.vf - ret)) ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = get_trainable_variables("pi") # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")] # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")] var_list = get_pi_trainable_variables("pi") vf_var_list = get_vf_trainable_variables("pi") vfadam = MpiAdam(vf_var_list) get_flat = U.GetFlat(var_list) set_from_flat = U.SetFromFlat(var_list) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: sz = U.intprod(shape) tangents.append(tf.reshape(flat_tangent[start:start+sz], shape)) start += sz gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) #pylint: disable=E1111 fvp = U.flatgrad(gvp, var_list) assign_old_eq_new = U.function([],[], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(get_variables("oldpi"), get_variables("pi"))]) compute_losses = U.function([ob, ac, atarg], losses) compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)]) compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp) compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if rank == 0: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def allmean(x): assert isinstance(x, np.ndarray) if MPI is not None: out = np.empty_like(x) MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM) out /= nworkers else: out = np.copy(x) return out U.initialize() if load_path is not None: pi.load(load_path) th_init = get_flat() if MPI is not None: MPI.COMM_WORLD.Bcast(th_init, root=0) set_from_flat(th_init) vfadam.sync() print("Init param sum", th_init.sum(), flush=True) # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards if sum([max_iters>0, total_timesteps>0, max_episodes>0])==0: # noththing to be done return pi assert sum([max_iters>0, total_timesteps>0, max_episodes>0]) < 2, \ 'out of max_iters, total_timesteps, and max_episodes only one should be specified' while True: if callback: callback(locals(), globals()) if total_timesteps and timesteps_so_far >= total_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break logger.log("********** Iteration %i ************"%iters_so_far) with timed("sampling"): seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret) if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy args = seg["ob"], seg["ac"], atarg fvpargs = [arr[::5] for arr in args] def fisher_vector_product(p): return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p assign_old_eq_new() # set old parameter values to new parameter values with timed("computegrad"): *lossbefore, g = compute_lossandgrad(*args) lossbefore = allmean(np.array(lossbefore)) g = allmean(g) if np.allclose(g, 0): logger.log("Got zero gradient. not updating") else: with timed("cg"): stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank==0) assert np.isfinite(stepdir).all() shs = .5*stepdir.dot(fisher_vector_product(stepdir)) lm = np.sqrt(shs / max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lm expectedimprove = g.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize set_from_flat(thnew) meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f"%(expectedimprove, improve)) if not np.isfinite(meanlosses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl > max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") set_from_flat(thbefore) if nworkers > 1 and iters_so_far % 20 == 0: paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) for (lossname, lossval) in zip(loss_names, meanlosses): logger.record_tabular(lossname, lossval) with timed("vf"): for _ in range(vf_iters): for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=64): g = allmean(compute_vflossandgrad(mbob, mbret)) vfadam.update(g, vf_stepsize) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values if MPI is not None: listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples else: listoflrpairs = [lrlocal] lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if rank==0: logger.dump_tabular() return pi
[ "def", "learn", "(", "*", ",", "network", ",", "env", ",", "total_timesteps", ",", "timesteps_per_batch", "=", "1024", ",", "# what to train on", "max_kl", "=", "0.001", ",", "cg_iters", "=", "10", ",", "gamma", "=", "0.99", ",", "lam", "=", "1.0", ",", "# advantage estimation", "seed", "=", "None", ",", "ent_coef", "=", "0.0", ",", "cg_damping", "=", "1e-2", ",", "vf_stepsize", "=", "3e-4", ",", "vf_iters", "=", "3", ",", "max_episodes", "=", "0", ",", "max_iters", "=", "0", ",", "# time constraint", "callback", "=", "None", ",", "load_path", "=", "None", ",", "*", "*", "network_kwargs", ")", ":", "if", "MPI", "is", "not", "None", ":", "nworkers", "=", "MPI", ".", "COMM_WORLD", ".", "Get_size", "(", ")", "rank", "=", "MPI", ".", "COMM_WORLD", ".", "Get_rank", "(", ")", "else", ":", "nworkers", "=", "1", "rank", "=", "0", "cpus_per_worker", "=", "1", "U", ".", "get_session", "(", "config", "=", "tf", ".", "ConfigProto", "(", "allow_soft_placement", "=", "True", ",", "inter_op_parallelism_threads", "=", "cpus_per_worker", ",", "intra_op_parallelism_threads", "=", "cpus_per_worker", ")", ")", "policy", "=", "build_policy", "(", "env", ",", "network", ",", "value_network", "=", "'copy'", ",", "*", "*", "network_kwargs", ")", "set_global_seeds", "(", "seed", ")", "np", ".", "set_printoptions", "(", "precision", "=", "3", ")", "# Setup losses and stuff", "# ----------------------------------------", "ob_space", "=", "env", ".", "observation_space", "ac_space", "=", "env", ".", "action_space", "ob", "=", "observation_placeholder", "(", "ob_space", ")", "with", "tf", ".", "variable_scope", "(", "\"pi\"", ")", ":", "pi", "=", "policy", "(", "observ_placeholder", "=", "ob", ")", "with", "tf", ".", "variable_scope", "(", "\"oldpi\"", ")", ":", "oldpi", "=", "policy", "(", "observ_placeholder", "=", "ob", ")", "atarg", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "float32", ",", "shape", "=", "[", "None", "]", ")", "# Target advantage function (if applicable)", "ret", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "float32", ",", "shape", "=", "[", "None", "]", ")", "# Empirical return", "ac", "=", "pi", ".", "pdtype", ".", "sample_placeholder", "(", "[", "None", "]", ")", "kloldnew", "=", "oldpi", ".", "pd", ".", "kl", "(", "pi", ".", "pd", ")", "ent", "=", "pi", ".", "pd", ".", "entropy", "(", ")", "meankl", "=", "tf", ".", "reduce_mean", "(", "kloldnew", ")", "meanent", "=", "tf", ".", "reduce_mean", "(", "ent", ")", "entbonus", "=", "ent_coef", "*", "meanent", "vferr", "=", "tf", ".", "reduce_mean", "(", "tf", ".", "square", "(", "pi", ".", "vf", "-", "ret", ")", ")", "ratio", "=", "tf", ".", "exp", "(", "pi", ".", "pd", ".", "logp", "(", "ac", ")", "-", "oldpi", ".", "pd", ".", "logp", "(", "ac", ")", ")", "# advantage * pnew / pold", "surrgain", "=", "tf", ".", "reduce_mean", "(", "ratio", "*", "atarg", ")", "optimgain", "=", "surrgain", "+", "entbonus", "losses", "=", "[", "optimgain", ",", "meankl", ",", "entbonus", ",", "surrgain", ",", "meanent", "]", "loss_names", "=", "[", "\"optimgain\"", ",", "\"meankl\"", ",", "\"entloss\"", ",", "\"surrgain\"", ",", "\"entropy\"", "]", "dist", "=", "meankl", "all_var_list", "=", "get_trainable_variables", "(", "\"pi\"", ")", "# var_list = [v for v in all_var_list if v.name.split(\"/\")[1].startswith(\"pol\")]", "# vf_var_list = [v for v in all_var_list if v.name.split(\"/\")[1].startswith(\"vf\")]", "var_list", "=", "get_pi_trainable_variables", "(", "\"pi\"", ")", "vf_var_list", "=", "get_vf_trainable_variables", "(", "\"pi\"", ")", "vfadam", "=", "MpiAdam", "(", "vf_var_list", ")", "get_flat", "=", "U", ".", "GetFlat", "(", "var_list", ")", "set_from_flat", "=", "U", ".", "SetFromFlat", "(", "var_list", ")", "klgrads", "=", "tf", ".", "gradients", "(", "dist", ",", "var_list", ")", "flat_tangent", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "float32", ",", "shape", "=", "[", "None", "]", ",", "name", "=", "\"flat_tan\"", ")", "shapes", "=", "[", "var", ".", "get_shape", "(", ")", ".", "as_list", "(", ")", "for", "var", "in", "var_list", "]", "start", "=", "0", "tangents", "=", "[", "]", "for", "shape", "in", "shapes", ":", "sz", "=", "U", ".", "intprod", "(", "shape", ")", "tangents", ".", "append", "(", "tf", ".", "reshape", "(", "flat_tangent", "[", "start", ":", "start", "+", "sz", "]", ",", "shape", ")", ")", "start", "+=", "sz", "gvp", "=", "tf", ".", "add_n", "(", "[", "tf", ".", "reduce_sum", "(", "g", "*", "tangent", ")", "for", "(", "g", ",", "tangent", ")", "in", "zipsame", "(", "klgrads", ",", "tangents", ")", "]", ")", "#pylint: disable=E1111", "fvp", "=", "U", ".", "flatgrad", "(", "gvp", ",", "var_list", ")", "assign_old_eq_new", "=", "U", ".", "function", "(", "[", "]", ",", "[", "]", ",", "updates", "=", "[", "tf", ".", "assign", "(", "oldv", ",", "newv", ")", "for", "(", "oldv", ",", "newv", ")", "in", "zipsame", "(", "get_variables", "(", "\"oldpi\"", ")", ",", "get_variables", "(", "\"pi\"", ")", ")", "]", ")", "compute_losses", "=", "U", ".", "function", "(", "[", "ob", ",", "ac", ",", "atarg", "]", ",", "losses", ")", "compute_lossandgrad", "=", "U", ".", "function", "(", "[", "ob", ",", "ac", ",", "atarg", "]", ",", "losses", "+", "[", "U", ".", "flatgrad", "(", "optimgain", ",", "var_list", ")", "]", ")", "compute_fvp", "=", "U", ".", "function", "(", "[", "flat_tangent", ",", "ob", ",", "ac", ",", "atarg", "]", ",", "fvp", ")", "compute_vflossandgrad", "=", "U", ".", "function", "(", "[", "ob", ",", "ret", "]", ",", "U", ".", "flatgrad", "(", "vferr", ",", "vf_var_list", ")", ")", "@", "contextmanager", "def", "timed", "(", "msg", ")", ":", "if", "rank", "==", "0", ":", "print", "(", "colorize", "(", "msg", ",", "color", "=", "'magenta'", ")", ")", "tstart", "=", "time", ".", "time", "(", ")", "yield", "print", "(", "colorize", "(", "\"done in %.3f seconds\"", "%", "(", "time", ".", "time", "(", ")", "-", "tstart", ")", ",", "color", "=", "'magenta'", ")", ")", "else", ":", "yield", "def", "allmean", "(", "x", ")", ":", "assert", "isinstance", "(", "x", ",", "np", ".", "ndarray", ")", "if", "MPI", "is", "not", "None", ":", "out", "=", "np", ".", "empty_like", "(", "x", ")", "MPI", ".", "COMM_WORLD", ".", "Allreduce", "(", "x", ",", "out", ",", "op", "=", "MPI", ".", "SUM", ")", "out", "/=", "nworkers", "else", ":", "out", "=", "np", ".", "copy", "(", "x", ")", "return", "out", "U", ".", "initialize", "(", ")", "if", "load_path", "is", "not", "None", ":", "pi", ".", "load", "(", "load_path", ")", "th_init", "=", "get_flat", "(", ")", "if", "MPI", "is", "not", "None", ":", "MPI", ".", "COMM_WORLD", ".", "Bcast", "(", "th_init", ",", "root", "=", "0", ")", "set_from_flat", "(", "th_init", ")", "vfadam", ".", "sync", "(", ")", "print", "(", "\"Init param sum\"", ",", "th_init", ".", "sum", "(", ")", ",", "flush", "=", "True", ")", "# Prepare for rollouts", "# ----------------------------------------", "seg_gen", "=", "traj_segment_generator", "(", "pi", ",", "env", ",", "timesteps_per_batch", ",", "stochastic", "=", "True", ")", "episodes_so_far", "=", "0", "timesteps_so_far", "=", "0", "iters_so_far", "=", "0", "tstart", "=", "time", ".", "time", "(", ")", "lenbuffer", "=", "deque", "(", "maxlen", "=", "40", ")", "# rolling buffer for episode lengths", "rewbuffer", "=", "deque", "(", "maxlen", "=", "40", ")", "# rolling buffer for episode rewards", "if", "sum", "(", "[", "max_iters", ">", "0", ",", "total_timesteps", ">", "0", ",", "max_episodes", ">", "0", "]", ")", "==", "0", ":", "# noththing to be done", "return", "pi", "assert", "sum", "(", "[", "max_iters", ">", "0", ",", "total_timesteps", ">", "0", ",", "max_episodes", ">", "0", "]", ")", "<", "2", ",", "'out of max_iters, total_timesteps, and max_episodes only one should be specified'", "while", "True", ":", "if", "callback", ":", "callback", "(", "locals", "(", ")", ",", "globals", "(", ")", ")", "if", "total_timesteps", "and", "timesteps_so_far", ">=", "total_timesteps", ":", "break", "elif", "max_episodes", "and", "episodes_so_far", ">=", "max_episodes", ":", "break", "elif", "max_iters", "and", "iters_so_far", ">=", "max_iters", ":", "break", "logger", ".", "log", "(", "\"********** Iteration %i ************\"", "%", "iters_so_far", ")", "with", "timed", "(", "\"sampling\"", ")", ":", "seg", "=", "seg_gen", ".", "__next__", "(", ")", "add_vtarg_and_adv", "(", "seg", ",", "gamma", ",", "lam", ")", "# ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))", "ob", ",", "ac", ",", "atarg", ",", "tdlamret", "=", "seg", "[", "\"ob\"", "]", ",", "seg", "[", "\"ac\"", "]", ",", "seg", "[", "\"adv\"", "]", ",", "seg", "[", "\"tdlamret\"", "]", "vpredbefore", "=", "seg", "[", "\"vpred\"", "]", "# predicted value function before udpate", "atarg", "=", "(", "atarg", "-", "atarg", ".", "mean", "(", ")", ")", "/", "atarg", ".", "std", "(", ")", "# standardized advantage function estimate", "if", "hasattr", "(", "pi", ",", "\"ret_rms\"", ")", ":", "pi", ".", "ret_rms", ".", "update", "(", "tdlamret", ")", "if", "hasattr", "(", "pi", ",", "\"ob_rms\"", ")", ":", "pi", ".", "ob_rms", ".", "update", "(", "ob", ")", "# update running mean/std for policy", "args", "=", "seg", "[", "\"ob\"", "]", ",", "seg", "[", "\"ac\"", "]", ",", "atarg", "fvpargs", "=", "[", "arr", "[", ":", ":", "5", "]", "for", "arr", "in", "args", "]", "def", "fisher_vector_product", "(", "p", ")", ":", "return", "allmean", "(", "compute_fvp", "(", "p", ",", "*", "fvpargs", ")", ")", "+", "cg_damping", "*", "p", "assign_old_eq_new", "(", ")", "# set old parameter values to new parameter values", "with", "timed", "(", "\"computegrad\"", ")", ":", "*", "lossbefore", ",", "g", "=", "compute_lossandgrad", "(", "*", "args", ")", "lossbefore", "=", "allmean", "(", "np", ".", "array", "(", "lossbefore", ")", ")", "g", "=", "allmean", "(", "g", ")", "if", "np", ".", "allclose", "(", "g", ",", "0", ")", ":", "logger", ".", "log", "(", "\"Got zero gradient. not updating\"", ")", "else", ":", "with", "timed", "(", "\"cg\"", ")", ":", "stepdir", "=", "cg", "(", "fisher_vector_product", ",", "g", ",", "cg_iters", "=", "cg_iters", ",", "verbose", "=", "rank", "==", "0", ")", "assert", "np", ".", "isfinite", "(", "stepdir", ")", ".", "all", "(", ")", "shs", "=", ".5", "*", "stepdir", ".", "dot", "(", "fisher_vector_product", "(", "stepdir", ")", ")", "lm", "=", "np", ".", "sqrt", "(", "shs", "/", "max_kl", ")", "# logger.log(\"lagrange multiplier:\", lm, \"gnorm:\", np.linalg.norm(g))", "fullstep", "=", "stepdir", "/", "lm", "expectedimprove", "=", "g", ".", "dot", "(", "fullstep", ")", "surrbefore", "=", "lossbefore", "[", "0", "]", "stepsize", "=", "1.0", "thbefore", "=", "get_flat", "(", ")", "for", "_", "in", "range", "(", "10", ")", ":", "thnew", "=", "thbefore", "+", "fullstep", "*", "stepsize", "set_from_flat", "(", "thnew", ")", "meanlosses", "=", "surr", ",", "kl", ",", "", "*", "_", "=", "allmean", "(", "np", ".", "array", "(", "compute_losses", "(", "*", "args", ")", ")", ")", "improve", "=", "surr", "-", "surrbefore", "logger", ".", "log", "(", "\"Expected: %.3f Actual: %.3f\"", "%", "(", "expectedimprove", ",", "improve", ")", ")", "if", "not", "np", ".", "isfinite", "(", "meanlosses", ")", ".", "all", "(", ")", ":", "logger", ".", "log", "(", "\"Got non-finite value of losses -- bad!\"", ")", "elif", "kl", ">", "max_kl", "*", "1.5", ":", "logger", ".", "log", "(", "\"violated KL constraint. shrinking step.\"", ")", "elif", "improve", "<", "0", ":", "logger", ".", "log", "(", "\"surrogate didn't improve. shrinking step.\"", ")", "else", ":", "logger", ".", "log", "(", "\"Stepsize OK!\"", ")", "break", "stepsize", "*=", ".5", "else", ":", "logger", ".", "log", "(", "\"couldn't compute a good step\"", ")", "set_from_flat", "(", "thbefore", ")", "if", "nworkers", ">", "1", "and", "iters_so_far", "%", "20", "==", "0", ":", "paramsums", "=", "MPI", ".", "COMM_WORLD", ".", "allgather", "(", "(", "thnew", ".", "sum", "(", ")", ",", "vfadam", ".", "getflat", "(", ")", ".", "sum", "(", ")", ")", ")", "# list of tuples", "assert", "all", "(", "np", ".", "allclose", "(", "ps", ",", "paramsums", "[", "0", "]", ")", "for", "ps", "in", "paramsums", "[", "1", ":", "]", ")", "for", "(", "lossname", ",", "lossval", ")", "in", "zip", "(", "loss_names", ",", "meanlosses", ")", ":", "logger", ".", "record_tabular", "(", "lossname", ",", "lossval", ")", "with", "timed", "(", "\"vf\"", ")", ":", "for", "_", "in", "range", "(", "vf_iters", ")", ":", "for", "(", "mbob", ",", "mbret", ")", "in", "dataset", ".", "iterbatches", "(", "(", "seg", "[", "\"ob\"", "]", ",", "seg", "[", "\"tdlamret\"", "]", ")", ",", "include_final_partial_batch", "=", "False", ",", "batch_size", "=", "64", ")", ":", "g", "=", "allmean", "(", "compute_vflossandgrad", "(", "mbob", ",", "mbret", ")", ")", "vfadam", ".", "update", "(", "g", ",", "vf_stepsize", ")", "logger", ".", "record_tabular", "(", "\"ev_tdlam_before\"", ",", "explained_variance", "(", "vpredbefore", ",", "tdlamret", ")", ")", "lrlocal", "=", "(", "seg", "[", "\"ep_lens\"", "]", ",", "seg", "[", "\"ep_rets\"", "]", ")", "# local values", "if", "MPI", "is", "not", "None", ":", "listoflrpairs", "=", "MPI", ".", "COMM_WORLD", ".", "allgather", "(", "lrlocal", ")", "# list of tuples", "else", ":", "listoflrpairs", "=", "[", "lrlocal", "]", "lens", ",", "rews", "=", "map", "(", "flatten_lists", ",", "zip", "(", "*", "listoflrpairs", ")", ")", "lenbuffer", ".", "extend", "(", "lens", ")", "rewbuffer", ".", "extend", "(", "rews", ")", "logger", ".", "record_tabular", "(", "\"EpLenMean\"", ",", "np", ".", "mean", "(", "lenbuffer", ")", ")", "logger", ".", "record_tabular", "(", "\"EpRewMean\"", ",", "np", ".", "mean", "(", "rewbuffer", ")", ")", "logger", ".", "record_tabular", "(", "\"EpThisIter\"", ",", "len", "(", "lens", ")", ")", "episodes_so_far", "+=", "len", "(", "lens", ")", "timesteps_so_far", "+=", "sum", "(", "lens", ")", "iters_so_far", "+=", "1", "logger", ".", "record_tabular", "(", "\"EpisodesSoFar\"", ",", "episodes_so_far", ")", "logger", ".", "record_tabular", "(", "\"TimestepsSoFar\"", ",", "timesteps_so_far", ")", "logger", ".", "record_tabular", "(", "\"TimeElapsed\"", ",", "time", ".", "time", "(", ")", "-", "tstart", ")", "if", "rank", "==", "0", ":", "logger", ".", "dump_tabular", "(", ")", "return", "pi" ]
learn a policy function with TRPO algorithm Parameters: ---------- network neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types) or function that takes input placeholder and returns tuple (output, None) for feedforward nets or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets env environment (one of the gym environments or wrapped via baselines.common.vec_env.VecEnv-type class timesteps_per_batch timesteps per gradient estimation batch max_kl max KL divergence between old policy and new policy ( KL(pi_old || pi) ) ent_coef coefficient of policy entropy term in the optimization objective cg_iters number of iterations of conjugate gradient algorithm cg_damping conjugate gradient damping vf_stepsize learning rate for adam optimizer used to optimie value function loss vf_iters number of iterations of value function optimization iterations per each policy optimization step total_timesteps max number of timesteps max_episodes max number of episodes max_iters maximum number of policy optimization iterations callback function to be called with (locals(), globals()) each policy optimization step load_path str, path to load the model from (default: None, i.e. no model is loaded) **network_kwargs keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network Returns: ------- learnt model
[ "learn", "a", "policy", "function", "with", "TRPO", "algorithm" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/trpo_mpi/trpo_mpi.py#L89-L392
valid
openai/baselines
baselines/common/math_util.py
discount
def discount(x, gamma): """ computes discounted sums along 0th dimension of x. inputs ------ x: ndarray gamma: float outputs ------- y: ndarray with same shape as x, satisfying y[t] = x[t] + gamma*x[t+1] + gamma^2*x[t+2] + ... + gamma^k x[t+k], where k = len(x) - t - 1 """ assert x.ndim >= 1 return scipy.signal.lfilter([1],[1,-gamma],x[::-1], axis=0)[::-1]
python
def discount(x, gamma): """ computes discounted sums along 0th dimension of x. inputs ------ x: ndarray gamma: float outputs ------- y: ndarray with same shape as x, satisfying y[t] = x[t] + gamma*x[t+1] + gamma^2*x[t+2] + ... + gamma^k x[t+k], where k = len(x) - t - 1 """ assert x.ndim >= 1 return scipy.signal.lfilter([1],[1,-gamma],x[::-1], axis=0)[::-1]
[ "def", "discount", "(", "x", ",", "gamma", ")", ":", "assert", "x", ".", "ndim", ">=", "1", "return", "scipy", ".", "signal", ".", "lfilter", "(", "[", "1", "]", ",", "[", "1", ",", "-", "gamma", "]", ",", "x", "[", ":", ":", "-", "1", "]", ",", "axis", "=", "0", ")", "[", ":", ":", "-", "1", "]" ]
computes discounted sums along 0th dimension of x. inputs ------ x: ndarray gamma: float outputs ------- y: ndarray with same shape as x, satisfying y[t] = x[t] + gamma*x[t+1] + gamma^2*x[t+2] + ... + gamma^k x[t+k], where k = len(x) - t - 1
[ "computes", "discounted", "sums", "along", "0th", "dimension", "of", "x", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/math_util.py#L5-L23
valid
openai/baselines
baselines/common/math_util.py
explained_variance
def explained_variance(ypred,y): """ Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
python
def explained_variance(ypred,y): """ Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero """ assert y.ndim == 1 and ypred.ndim == 1 vary = np.var(y) return np.nan if vary==0 else 1 - np.var(y-ypred)/vary
[ "def", "explained_variance", "(", "ypred", ",", "y", ")", ":", "assert", "y", ".", "ndim", "==", "1", "and", "ypred", ".", "ndim", "==", "1", "vary", "=", "np", ".", "var", "(", "y", ")", "return", "np", ".", "nan", "if", "vary", "==", "0", "else", "1", "-", "np", ".", "var", "(", "y", "-", "ypred", ")", "/", "vary" ]
Computes fraction of variance that ypred explains about y. Returns 1 - Var[y-ypred] / Var[y] interpretation: ev=0 => might as well have predicted zero ev=1 => perfect prediction ev<0 => worse than just predicting zero
[ "Computes", "fraction", "of", "variance", "that", "ypred", "explains", "about", "y", ".", "Returns", "1", "-", "Var", "[", "y", "-", "ypred", "]", "/", "Var", "[", "y", "]" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/math_util.py#L25-L38
valid
openai/baselines
baselines/common/math_util.py
discount_with_boundaries
def discount_with_boundaries(X, New, gamma): """ X: 2d array of floats, time x features New: 2d array of bools, indicating when a new episode has started """ Y = np.zeros_like(X) T = X.shape[0] Y[T-1] = X[T-1] for t in range(T-2, -1, -1): Y[t] = X[t] + gamma * Y[t+1] * (1 - New[t+1]) return Y
python
def discount_with_boundaries(X, New, gamma): """ X: 2d array of floats, time x features New: 2d array of bools, indicating when a new episode has started """ Y = np.zeros_like(X) T = X.shape[0] Y[T-1] = X[T-1] for t in range(T-2, -1, -1): Y[t] = X[t] + gamma * Y[t+1] * (1 - New[t+1]) return Y
[ "def", "discount_with_boundaries", "(", "X", ",", "New", ",", "gamma", ")", ":", "Y", "=", "np", ".", "zeros_like", "(", "X", ")", "T", "=", "X", ".", "shape", "[", "0", "]", "Y", "[", "T", "-", "1", "]", "=", "X", "[", "T", "-", "1", "]", "for", "t", "in", "range", "(", "T", "-", "2", ",", "-", "1", ",", "-", "1", ")", ":", "Y", "[", "t", "]", "=", "X", "[", "t", "]", "+", "gamma", "*", "Y", "[", "t", "+", "1", "]", "*", "(", "1", "-", "New", "[", "t", "+", "1", "]", ")", "return", "Y" ]
X: 2d array of floats, time x features New: 2d array of bools, indicating when a new episode has started
[ "X", ":", "2d", "array", "of", "floats", "time", "x", "features", "New", ":", "2d", "array", "of", "bools", "indicating", "when", "a", "new", "episode", "has", "started" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/math_util.py#L63-L73
valid
openai/baselines
baselines/deepq/replay_buffer.py
ReplayBuffer.sample
def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes)
python
def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes)
[ "def", "sample", "(", "self", ",", "batch_size", ")", ":", "idxes", "=", "[", "random", ".", "randint", "(", "0", ",", "len", "(", "self", ".", "_storage", ")", "-", "1", ")", "for", "_", "in", "range", "(", "batch_size", ")", "]", "return", "self", ".", "_encode_sample", "(", "idxes", ")" ]
Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise.
[ "Sample", "a", "batch", "of", "experiences", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/replay_buffer.py#L45-L68
valid
openai/baselines
baselines/deepq/replay_buffer.py
PrioritizedReplayBuffer.add
def add(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super().add(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha
python
def add(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super().add(*args, **kwargs) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha
[ "def", "add", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "idx", "=", "self", ".", "_next_idx", "super", "(", ")", ".", "add", "(", "*", "args", ",", "*", "*", "kwargs", ")", "self", ".", "_it_sum", "[", "idx", "]", "=", "self", ".", "_max_priority", "**", "self", ".", "_alpha", "self", ".", "_it_min", "[", "idx", "]", "=", "self", ".", "_max_priority", "**", "self", ".", "_alpha" ]
See ReplayBuffer.store_effect
[ "See", "ReplayBuffer", ".", "store_effect" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/replay_buffer.py#L100-L105
valid
openai/baselines
baselines/deepq/replay_buffer.py
PrioritizedReplayBuffer.sample
def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage)) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes])
python
def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage)) ** (-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes])
[ "def", "sample", "(", "self", ",", "batch_size", ",", "beta", ")", ":", "assert", "beta", ">", "0", "idxes", "=", "self", ".", "_sample_proportional", "(", "batch_size", ")", "weights", "=", "[", "]", "p_min", "=", "self", ".", "_it_min", ".", "min", "(", ")", "/", "self", ".", "_it_sum", ".", "sum", "(", ")", "max_weight", "=", "(", "p_min", "*", "len", "(", "self", ".", "_storage", ")", ")", "**", "(", "-", "beta", ")", "for", "idx", "in", "idxes", ":", "p_sample", "=", "self", ".", "_it_sum", "[", "idx", "]", "/", "self", ".", "_it_sum", ".", "sum", "(", ")", "weight", "=", "(", "p_sample", "*", "len", "(", "self", ".", "_storage", ")", ")", "**", "(", "-", "beta", ")", "weights", ".", "append", "(", "weight", "/", "max_weight", ")", "weights", "=", "np", ".", "array", "(", "weights", ")", "encoded_sample", "=", "self", ".", "_encode_sample", "(", "idxes", ")", "return", "tuple", "(", "list", "(", "encoded_sample", ")", "+", "[", "weights", ",", "idxes", "]", ")" ]
Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
[ "Sample", "a", "batch", "of", "experiences", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/replay_buffer.py#L117-L167
valid
openai/baselines
baselines/deepq/replay_buffer.py
PrioritizedReplayBuffer.update_priorities
def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority)
python
def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority ** self._alpha self._it_min[idx] = priority ** self._alpha self._max_priority = max(self._max_priority, priority)
[ "def", "update_priorities", "(", "self", ",", "idxes", ",", "priorities", ")", ":", "assert", "len", "(", "idxes", ")", "==", "len", "(", "priorities", ")", "for", "idx", ",", "priority", "in", "zip", "(", "idxes", ",", "priorities", ")", ":", "assert", "priority", ">", "0", "assert", "0", "<=", "idx", "<", "len", "(", "self", ".", "_storage", ")", "self", ".", "_it_sum", "[", "idx", "]", "=", "priority", "**", "self", ".", "_alpha", "self", ".", "_it_min", "[", "idx", "]", "=", "priority", "**", "self", ".", "_alpha", "self", ".", "_max_priority", "=", "max", "(", "self", ".", "_max_priority", ",", "priority", ")" ]
Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`.
[ "Update", "priorities", "of", "sampled", "transitions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/replay_buffer.py#L169-L191
valid
openai/baselines
baselines/common/retro_wrappers.py
wrap_deepmind_retro
def wrap_deepmind_retro(env, scale=True, frame_stack=4): """ Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind """ env = WarpFrame(env) env = ClipRewardEnv(env) if frame_stack > 1: env = FrameStack(env, frame_stack) if scale: env = ScaledFloatFrame(env) return env
python
def wrap_deepmind_retro(env, scale=True, frame_stack=4): """ Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind """ env = WarpFrame(env) env = ClipRewardEnv(env) if frame_stack > 1: env = FrameStack(env, frame_stack) if scale: env = ScaledFloatFrame(env) return env
[ "def", "wrap_deepmind_retro", "(", "env", ",", "scale", "=", "True", ",", "frame_stack", "=", "4", ")", ":", "env", "=", "WarpFrame", "(", "env", ")", "env", "=", "ClipRewardEnv", "(", "env", ")", "if", "frame_stack", ">", "1", ":", "env", "=", "FrameStack", "(", "env", ",", "frame_stack", ")", "if", "scale", ":", "env", "=", "ScaledFloatFrame", "(", "env", ")", "return", "env" ]
Configure environment for retro games, using config similar to DeepMind-style Atari in wrap_deepmind
[ "Configure", "environment", "for", "retro", "games", "using", "config", "similar", "to", "DeepMind", "-", "style", "Atari", "in", "wrap_deepmind" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/retro_wrappers.py#L212-L222
valid
openai/baselines
baselines/deepq/build_graph.py
scope_vars
def scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """ return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES, scope=scope if isinstance(scope, str) else scope.name )
python
def scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """ return tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES, scope=scope if isinstance(scope, str) else scope.name )
[ "def", "scope_vars", "(", "scope", ",", "trainable_only", "=", "False", ")", ":", "return", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "TRAINABLE_VARIABLES", "if", "trainable_only", "else", "tf", ".", "GraphKeys", ".", "GLOBAL_VARIABLES", ",", "scope", "=", "scope", "if", "isinstance", "(", "scope", ",", "str", ")", "else", "scope", ".", "name", ")" ]
Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`.
[ "Get", "variables", "inside", "a", "scope", "The", "scope", "can", "be", "specified", "as", "a", "string", "Parameters", "----------", "scope", ":", "str", "or", "VariableScope", "scope", "in", "which", "the", "variables", "reside", ".", "trainable_only", ":", "bool", "whether", "or", "not", "to", "return", "only", "the", "variables", "that", "were", "marked", "as", "trainable", ".", "Returns", "-------", "vars", ":", "[", "tf", ".", "Variable", "]", "list", "of", "variables", "in", "scope", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/build_graph.py#L100-L118
valid
openai/baselines
baselines/deepq/build_graph.py
build_act
def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None): """Creates the act function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True}, updates=[update_eps_expr]) def act(ob, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps) return act
python
def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None): """Creates the act function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True}, updates=[update_eps_expr]) def act(ob, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps) return act
[ "def", "build_act", "(", "make_obs_ph", ",", "q_func", ",", "num_actions", ",", "scope", "=", "\"deepq\"", ",", "reuse", "=", "None", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "reuse", ")", ":", "observations_ph", "=", "make_obs_ph", "(", "\"observation\"", ")", "stochastic_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "bool", ",", "(", ")", ",", "name", "=", "\"stochastic\"", ")", "update_eps_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "(", ")", ",", "name", "=", "\"update_eps\"", ")", "eps", "=", "tf", ".", "get_variable", "(", "\"eps\"", ",", "(", ")", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0", ")", ")", "q_values", "=", "q_func", "(", "observations_ph", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"q_func\"", ")", "deterministic_actions", "=", "tf", ".", "argmax", "(", "q_values", ",", "axis", "=", "1", ")", "batch_size", "=", "tf", ".", "shape", "(", "observations_ph", ".", "get", "(", ")", ")", "[", "0", "]", "random_actions", "=", "tf", ".", "random_uniform", "(", "tf", ".", "stack", "(", "[", "batch_size", "]", ")", ",", "minval", "=", "0", ",", "maxval", "=", "num_actions", ",", "dtype", "=", "tf", ".", "int64", ")", "chose_random", "=", "tf", ".", "random_uniform", "(", "tf", ".", "stack", "(", "[", "batch_size", "]", ")", ",", "minval", "=", "0", ",", "maxval", "=", "1", ",", "dtype", "=", "tf", ".", "float32", ")", "<", "eps", "stochastic_actions", "=", "tf", ".", "where", "(", "chose_random", ",", "random_actions", ",", "deterministic_actions", ")", "output_actions", "=", "tf", ".", "cond", "(", "stochastic_ph", ",", "lambda", ":", "stochastic_actions", ",", "lambda", ":", "deterministic_actions", ")", "update_eps_expr", "=", "eps", ".", "assign", "(", "tf", ".", "cond", "(", "update_eps_ph", ">=", "0", ",", "lambda", ":", "update_eps_ph", ",", "lambda", ":", "eps", ")", ")", "_act", "=", "U", ".", "function", "(", "inputs", "=", "[", "observations_ph", ",", "stochastic_ph", ",", "update_eps_ph", "]", ",", "outputs", "=", "output_actions", ",", "givens", "=", "{", "update_eps_ph", ":", "-", "1.0", ",", "stochastic_ph", ":", "True", "}", ",", "updates", "=", "[", "update_eps_expr", "]", ")", "def", "act", "(", "ob", ",", "stochastic", "=", "True", ",", "update_eps", "=", "-", "1", ")", ":", "return", "_act", "(", "ob", ",", "stochastic", ",", "update_eps", ")", "return", "act" ]
Creates the act function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details.
[ "Creates", "the", "act", "function", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/build_graph.py#L146-L199
valid
openai/baselines
baselines/deepq/build_graph.py
build_act_with_param_noise
def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None): """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905): Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.placeholder(tf.bool, (), name="reset") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. q_values = q_func(observations_ph.get(), num_actions, scope="q_func") # Perturbable Q used for the actual rollout. q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func") # We have to wrap this code into a function due to the way tf.cond() works. See # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for # a more detailed discussion. def perturb_vars(original_scope, perturbed_scope): all_vars = scope_vars(absolute_scope_name(original_scope)) all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope)) assert len(all_vars) == len(all_perturbed_vars) perturb_ops = [] for var, perturbed_var in zip(all_vars, all_perturbed_vars): if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else: # Do not perturb, just assign. op = tf.assign(perturbed_var, var) perturb_ops.append(op) assert len(perturb_ops) == len(all_vars) return tf.group(*perturb_ops) # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy # of the network and measures the effect of that perturbation in action space. If the perturbation # is too big, reduce scale of perturbation, otherwise increase. q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func") perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func") kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1) mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]): update_scale_expr = tf.cond(mean_kl < param_noise_threshold, lambda: param_noise_scale.assign(param_noise_scale * 1.01), lambda: param_noise_scale.assign(param_noise_scale / 1.01), ) return update_scale_expr # Functionality to update the threshold for parameter space noise. update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0, lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold)) # Put everything together. deterministic_actions = tf.argmax(q_values_perturbed, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [ update_eps_expr, tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)), update_param_noise_threshold_expr, ] _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False}, updates=updates) def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale) return act
python
def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None): """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905): Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter with tf.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.placeholder(tf.bool, (), name="reset") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. q_values = q_func(observations_ph.get(), num_actions, scope="q_func") # Perturbable Q used for the actual rollout. q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func") # We have to wrap this code into a function due to the way tf.cond() works. See # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for # a more detailed discussion. def perturb_vars(original_scope, perturbed_scope): all_vars = scope_vars(absolute_scope_name(original_scope)) all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope)) assert len(all_vars) == len(all_perturbed_vars) perturb_ops = [] for var, perturbed_var in zip(all_vars, all_perturbed_vars): if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else: # Do not perturb, just assign. op = tf.assign(perturbed_var, var) perturb_ops.append(op) assert len(perturb_ops) == len(all_vars) return tf.group(*perturb_ops) # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy # of the network and measures the effect of that perturbation in action space. If the perturbation # is too big, reduce scale of perturbation, otherwise increase. q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func") perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func") kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1) mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]): update_scale_expr = tf.cond(mean_kl < param_noise_threshold, lambda: param_noise_scale.assign(param_noise_scale * 1.01), lambda: param_noise_scale.assign(param_noise_scale / 1.01), ) return update_scale_expr # Functionality to update the threshold for parameter space noise. update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0, lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold)) # Put everything together. deterministic_actions = tf.argmax(q_values_perturbed, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [ update_eps_expr, tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)), update_param_noise_threshold_expr, ] _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False}, updates=updates) def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale) return act
[ "def", "build_act_with_param_noise", "(", "make_obs_ph", ",", "q_func", ",", "num_actions", ",", "scope", "=", "\"deepq\"", ",", "reuse", "=", "None", ",", "param_noise_filter_func", "=", "None", ")", ":", "if", "param_noise_filter_func", "is", "None", ":", "param_noise_filter_func", "=", "default_param_noise_filter", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "reuse", ")", ":", "observations_ph", "=", "make_obs_ph", "(", "\"observation\"", ")", "stochastic_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "bool", ",", "(", ")", ",", "name", "=", "\"stochastic\"", ")", "update_eps_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "(", ")", ",", "name", "=", "\"update_eps\"", ")", "update_param_noise_threshold_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "(", ")", ",", "name", "=", "\"update_param_noise_threshold\"", ")", "update_param_noise_scale_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "bool", ",", "(", ")", ",", "name", "=", "\"update_param_noise_scale\"", ")", "reset_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "bool", ",", "(", ")", ",", "name", "=", "\"reset\"", ")", "eps", "=", "tf", ".", "get_variable", "(", "\"eps\"", ",", "(", ")", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0", ")", ")", "param_noise_scale", "=", "tf", ".", "get_variable", "(", "\"param_noise_scale\"", ",", "(", ")", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.01", ")", ",", "trainable", "=", "False", ")", "param_noise_threshold", "=", "tf", ".", "get_variable", "(", "\"param_noise_threshold\"", ",", "(", ")", ",", "initializer", "=", "tf", ".", "constant_initializer", "(", "0.05", ")", ",", "trainable", "=", "False", ")", "# Unmodified Q.", "q_values", "=", "q_func", "(", "observations_ph", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"q_func\"", ")", "# Perturbable Q used for the actual rollout.", "q_values_perturbed", "=", "q_func", "(", "observations_ph", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"perturbed_q_func\"", ")", "# We have to wrap this code into a function due to the way tf.cond() works. See", "# https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for", "# a more detailed discussion.", "def", "perturb_vars", "(", "original_scope", ",", "perturbed_scope", ")", ":", "all_vars", "=", "scope_vars", "(", "absolute_scope_name", "(", "original_scope", ")", ")", "all_perturbed_vars", "=", "scope_vars", "(", "absolute_scope_name", "(", "perturbed_scope", ")", ")", "assert", "len", "(", "all_vars", ")", "==", "len", "(", "all_perturbed_vars", ")", "perturb_ops", "=", "[", "]", "for", "var", ",", "perturbed_var", "in", "zip", "(", "all_vars", ",", "all_perturbed_vars", ")", ":", "if", "param_noise_filter_func", "(", "perturbed_var", ")", ":", "# Perturb this variable.", "op", "=", "tf", ".", "assign", "(", "perturbed_var", ",", "var", "+", "tf", ".", "random_normal", "(", "shape", "=", "tf", ".", "shape", "(", "var", ")", ",", "mean", "=", "0.", ",", "stddev", "=", "param_noise_scale", ")", ")", "else", ":", "# Do not perturb, just assign.", "op", "=", "tf", ".", "assign", "(", "perturbed_var", ",", "var", ")", "perturb_ops", ".", "append", "(", "op", ")", "assert", "len", "(", "perturb_ops", ")", "==", "len", "(", "all_vars", ")", "return", "tf", ".", "group", "(", "*", "perturb_ops", ")", "# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy", "# of the network and measures the effect of that perturbation in action space. If the perturbation", "# is too big, reduce scale of perturbation, otherwise increase.", "q_values_adaptive", "=", "q_func", "(", "observations_ph", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"adaptive_q_func\"", ")", "perturb_for_adaption", "=", "perturb_vars", "(", "original_scope", "=", "\"q_func\"", ",", "perturbed_scope", "=", "\"adaptive_q_func\"", ")", "kl", "=", "tf", ".", "reduce_sum", "(", "tf", ".", "nn", ".", "softmax", "(", "q_values", ")", "*", "(", "tf", ".", "log", "(", "tf", ".", "nn", ".", "softmax", "(", "q_values", ")", ")", "-", "tf", ".", "log", "(", "tf", ".", "nn", ".", "softmax", "(", "q_values_adaptive", ")", ")", ")", ",", "axis", "=", "-", "1", ")", "mean_kl", "=", "tf", ".", "reduce_mean", "(", "kl", ")", "def", "update_scale", "(", ")", ":", "with", "tf", ".", "control_dependencies", "(", "[", "perturb_for_adaption", "]", ")", ":", "update_scale_expr", "=", "tf", ".", "cond", "(", "mean_kl", "<", "param_noise_threshold", ",", "lambda", ":", "param_noise_scale", ".", "assign", "(", "param_noise_scale", "*", "1.01", ")", ",", "lambda", ":", "param_noise_scale", ".", "assign", "(", "param_noise_scale", "/", "1.01", ")", ",", ")", "return", "update_scale_expr", "# Functionality to update the threshold for parameter space noise.", "update_param_noise_threshold_expr", "=", "param_noise_threshold", ".", "assign", "(", "tf", ".", "cond", "(", "update_param_noise_threshold_ph", ">=", "0", ",", "lambda", ":", "update_param_noise_threshold_ph", ",", "lambda", ":", "param_noise_threshold", ")", ")", "# Put everything together.", "deterministic_actions", "=", "tf", ".", "argmax", "(", "q_values_perturbed", ",", "axis", "=", "1", ")", "batch_size", "=", "tf", ".", "shape", "(", "observations_ph", ".", "get", "(", ")", ")", "[", "0", "]", "random_actions", "=", "tf", ".", "random_uniform", "(", "tf", ".", "stack", "(", "[", "batch_size", "]", ")", ",", "minval", "=", "0", ",", "maxval", "=", "num_actions", ",", "dtype", "=", "tf", ".", "int64", ")", "chose_random", "=", "tf", ".", "random_uniform", "(", "tf", ".", "stack", "(", "[", "batch_size", "]", ")", ",", "minval", "=", "0", ",", "maxval", "=", "1", ",", "dtype", "=", "tf", ".", "float32", ")", "<", "eps", "stochastic_actions", "=", "tf", ".", "where", "(", "chose_random", ",", "random_actions", ",", "deterministic_actions", ")", "output_actions", "=", "tf", ".", "cond", "(", "stochastic_ph", ",", "lambda", ":", "stochastic_actions", ",", "lambda", ":", "deterministic_actions", ")", "update_eps_expr", "=", "eps", ".", "assign", "(", "tf", ".", "cond", "(", "update_eps_ph", ">=", "0", ",", "lambda", ":", "update_eps_ph", ",", "lambda", ":", "eps", ")", ")", "updates", "=", "[", "update_eps_expr", ",", "tf", ".", "cond", "(", "reset_ph", ",", "lambda", ":", "perturb_vars", "(", "original_scope", "=", "\"q_func\"", ",", "perturbed_scope", "=", "\"perturbed_q_func\"", ")", ",", "lambda", ":", "tf", ".", "group", "(", "*", "[", "]", ")", ")", ",", "tf", ".", "cond", "(", "update_param_noise_scale_ph", ",", "lambda", ":", "update_scale", "(", ")", ",", "lambda", ":", "tf", ".", "Variable", "(", "0.", ",", "trainable", "=", "False", ")", ")", ",", "update_param_noise_threshold_expr", ",", "]", "_act", "=", "U", ".", "function", "(", "inputs", "=", "[", "observations_ph", ",", "stochastic_ph", ",", "update_eps_ph", ",", "reset_ph", ",", "update_param_noise_threshold_ph", ",", "update_param_noise_scale_ph", "]", ",", "outputs", "=", "output_actions", ",", "givens", "=", "{", "update_eps_ph", ":", "-", "1.0", ",", "stochastic_ph", ":", "True", ",", "reset_ph", ":", "False", ",", "update_param_noise_threshold_ph", ":", "False", ",", "update_param_noise_scale_ph", ":", "False", "}", ",", "updates", "=", "updates", ")", "def", "act", "(", "ob", ",", "reset", "=", "False", ",", "update_param_noise_threshold", "=", "False", ",", "update_param_noise_scale", "=", "False", ",", "stochastic", "=", "True", ",", "update_eps", "=", "-", "1", ")", ":", "return", "_act", "(", "ob", ",", "stochastic", ",", "update_eps", ",", "reset", ",", "update_param_noise_threshold", ",", "update_param_noise_scale", ")", "return", "act" ]
Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905): Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details.
[ "Creates", "the", "act", "function", "with", "support", "for", "parameter", "space", "noise", "exploration", "(", "https", ":", "//", "arxiv", ".", "org", "/", "abs", "/", "1706", ".", "01905", ")", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/build_graph.py#L202-L314
valid
openai/baselines
baselines/deepq/build_graph.py
build_train
def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0, double_q=True, scope="deepq", reuse=None, param_noise=False, param_noise_filter_func=None): """Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. """ if param_noise: act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse, param_noise_filter_func=param_noise_filter_func) else: act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): # set up placeholders obs_t_input = make_obs_ph("obs_t") act_t_ph = tf.placeholder(tf.int32, [None], name="action") rew_t_ph = tf.placeholder(tf.float32, [None], name="reward") obs_tp1_input = make_obs_ph("obs_tp1") done_mask_ph = tf.placeholder(tf.float32, [None], name="done") importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight") # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func") # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func") # q scores for actions which we know were selected in the given state. q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = U.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) # compute optimization op (potentially with gradient clipping) if grad_norm_clipping is not None: gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) optimize_expr = optimizer.apply_gradients(gradients) else: optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)): update_target_expr.append(var_target.assign(var)) update_target_expr = tf.group(*update_target_expr) # Create callable functions train = U.function( inputs=[ obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, importance_weights_ph ], outputs=td_error, updates=[optimize_expr] ) update_target = U.function([], [], updates=[update_target_expr]) q_values = U.function([obs_t_input], q_t) return act_f, train, update_target, {'q_values': q_values}
python
def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0, double_q=True, scope="deepq", reuse=None, param_noise=False, param_noise_filter_func=None): """Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. """ if param_noise: act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse, param_noise_filter_func=param_noise_filter_func) else: act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse) with tf.variable_scope(scope, reuse=reuse): # set up placeholders obs_t_input = make_obs_ph("obs_t") act_t_ph = tf.placeholder(tf.int32, [None], name="action") rew_t_ph = tf.placeholder(tf.float32, [None], name="reward") obs_tp1_input = make_obs_ph("obs_tp1") done_mask_ph = tf.placeholder(tf.float32, [None], name="done") importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight") # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func") # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func") # q scores for actions which we know were selected in the given state. q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = U.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) # compute optimization op (potentially with gradient clipping) if grad_norm_clipping is not None: gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) optimize_expr = optimizer.apply_gradients(gradients) else: optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)): update_target_expr.append(var_target.assign(var)) update_target_expr = tf.group(*update_target_expr) # Create callable functions train = U.function( inputs=[ obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, importance_weights_ph ], outputs=td_error, updates=[optimize_expr] ) update_target = U.function([], [], updates=[update_target_expr]) q_values = U.function([obs_t_input], q_t) return act_f, train, update_target, {'q_values': q_values}
[ "def", "build_train", "(", "make_obs_ph", ",", "q_func", ",", "num_actions", ",", "optimizer", ",", "grad_norm_clipping", "=", "None", ",", "gamma", "=", "1.0", ",", "double_q", "=", "True", ",", "scope", "=", "\"deepq\"", ",", "reuse", "=", "None", ",", "param_noise", "=", "False", ",", "param_noise_filter_func", "=", "None", ")", ":", "if", "param_noise", ":", "act_f", "=", "build_act_with_param_noise", "(", "make_obs_ph", ",", "q_func", ",", "num_actions", ",", "scope", "=", "scope", ",", "reuse", "=", "reuse", ",", "param_noise_filter_func", "=", "param_noise_filter_func", ")", "else", ":", "act_f", "=", "build_act", "(", "make_obs_ph", ",", "q_func", ",", "num_actions", ",", "scope", "=", "scope", ",", "reuse", "=", "reuse", ")", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "reuse", ")", ":", "# set up placeholders", "obs_t_input", "=", "make_obs_ph", "(", "\"obs_t\"", ")", "act_t_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "int32", ",", "[", "None", "]", ",", "name", "=", "\"action\"", ")", "rew_t_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "None", "]", ",", "name", "=", "\"reward\"", ")", "obs_tp1_input", "=", "make_obs_ph", "(", "\"obs_tp1\"", ")", "done_mask_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "None", "]", ",", "name", "=", "\"done\"", ")", "importance_weights_ph", "=", "tf", ".", "placeholder", "(", "tf", ".", "float32", ",", "[", "None", "]", ",", "name", "=", "\"weight\"", ")", "# q network evaluation", "q_t", "=", "q_func", "(", "obs_t_input", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"q_func\"", ",", "reuse", "=", "True", ")", "# reuse parameters from act", "q_func_vars", "=", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "GLOBAL_VARIABLES", ",", "scope", "=", "tf", ".", "get_variable_scope", "(", ")", ".", "name", "+", "\"/q_func\"", ")", "# target q network evalution", "q_tp1", "=", "q_func", "(", "obs_tp1_input", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"target_q_func\"", ")", "target_q_func_vars", "=", "tf", ".", "get_collection", "(", "tf", ".", "GraphKeys", ".", "GLOBAL_VARIABLES", ",", "scope", "=", "tf", ".", "get_variable_scope", "(", ")", ".", "name", "+", "\"/target_q_func\"", ")", "# q scores for actions which we know were selected in the given state.", "q_t_selected", "=", "tf", ".", "reduce_sum", "(", "q_t", "*", "tf", ".", "one_hot", "(", "act_t_ph", ",", "num_actions", ")", ",", "1", ")", "# compute estimate of best possible value starting from state at t + 1", "if", "double_q", ":", "q_tp1_using_online_net", "=", "q_func", "(", "obs_tp1_input", ".", "get", "(", ")", ",", "num_actions", ",", "scope", "=", "\"q_func\"", ",", "reuse", "=", "True", ")", "q_tp1_best_using_online_net", "=", "tf", ".", "argmax", "(", "q_tp1_using_online_net", ",", "1", ")", "q_tp1_best", "=", "tf", ".", "reduce_sum", "(", "q_tp1", "*", "tf", ".", "one_hot", "(", "q_tp1_best_using_online_net", ",", "num_actions", ")", ",", "1", ")", "else", ":", "q_tp1_best", "=", "tf", ".", "reduce_max", "(", "q_tp1", ",", "1", ")", "q_tp1_best_masked", "=", "(", "1.0", "-", "done_mask_ph", ")", "*", "q_tp1_best", "# compute RHS of bellman equation", "q_t_selected_target", "=", "rew_t_ph", "+", "gamma", "*", "q_tp1_best_masked", "# compute the error (potentially clipped)", "td_error", "=", "q_t_selected", "-", "tf", ".", "stop_gradient", "(", "q_t_selected_target", ")", "errors", "=", "U", ".", "huber_loss", "(", "td_error", ")", "weighted_error", "=", "tf", ".", "reduce_mean", "(", "importance_weights_ph", "*", "errors", ")", "# compute optimization op (potentially with gradient clipping)", "if", "grad_norm_clipping", "is", "not", "None", ":", "gradients", "=", "optimizer", ".", "compute_gradients", "(", "weighted_error", ",", "var_list", "=", "q_func_vars", ")", "for", "i", ",", "(", "grad", ",", "var", ")", "in", "enumerate", "(", "gradients", ")", ":", "if", "grad", "is", "not", "None", ":", "gradients", "[", "i", "]", "=", "(", "tf", ".", "clip_by_norm", "(", "grad", ",", "grad_norm_clipping", ")", ",", "var", ")", "optimize_expr", "=", "optimizer", ".", "apply_gradients", "(", "gradients", ")", "else", ":", "optimize_expr", "=", "optimizer", ".", "minimize", "(", "weighted_error", ",", "var_list", "=", "q_func_vars", ")", "# update_target_fn will be called periodically to copy Q network to target Q network", "update_target_expr", "=", "[", "]", "for", "var", ",", "var_target", "in", "zip", "(", "sorted", "(", "q_func_vars", ",", "key", "=", "lambda", "v", ":", "v", ".", "name", ")", ",", "sorted", "(", "target_q_func_vars", ",", "key", "=", "lambda", "v", ":", "v", ".", "name", ")", ")", ":", "update_target_expr", ".", "append", "(", "var_target", ".", "assign", "(", "var", ")", ")", "update_target_expr", "=", "tf", ".", "group", "(", "*", "update_target_expr", ")", "# Create callable functions", "train", "=", "U", ".", "function", "(", "inputs", "=", "[", "obs_t_input", ",", "act_t_ph", ",", "rew_t_ph", ",", "obs_tp1_input", ",", "done_mask_ph", ",", "importance_weights_ph", "]", ",", "outputs", "=", "td_error", ",", "updates", "=", "[", "optimize_expr", "]", ")", "update_target", "=", "U", ".", "function", "(", "[", "]", ",", "[", "]", ",", "updates", "=", "[", "update_target_expr", "]", ")", "q_values", "=", "U", ".", "function", "(", "[", "obs_t_input", "]", ",", "q_t", ")", "return", "act_f", ",", "train", ",", "update_target", ",", "{", "'q_values'", ":", "q_values", "}" ]
Creates the train function: Parameters ---------- make_obs_ph: str -> tf.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values.
[ "Creates", "the", "train", "function", ":" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/build_graph.py#L317-L449
valid
openai/baselines
baselines/common/running_mean_std.py
profile_tf_runningmeanstd
def profile_tf_runningmeanstd(): import time from baselines.common import tf_util tf_util.get_session( config=tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1, allow_soft_placement=True )) x = np.random.random((376,)) n_trials = 10000 rms = RunningMeanStd() tfrms = TfRunningMeanStd() tic1 = time.time() for _ in range(n_trials): rms.update(x) tic2 = time.time() for _ in range(n_trials): tfrms.update(x) tic3 = time.time() print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2)) tic1 = time.time() for _ in range(n_trials): z1 = rms.mean tic2 = time.time() for _ in range(n_trials): z2 = tfrms.mean assert z1 == z2 tic3 = time.time() print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2)) ''' options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0) '''
python
def profile_tf_runningmeanstd(): import time from baselines.common import tf_util tf_util.get_session( config=tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1, allow_soft_placement=True )) x = np.random.random((376,)) n_trials = 10000 rms = RunningMeanStd() tfrms = TfRunningMeanStd() tic1 = time.time() for _ in range(n_trials): rms.update(x) tic2 = time.time() for _ in range(n_trials): tfrms.update(x) tic3 = time.time() print('rms update time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms update time ({} trials): {} s'.format(n_trials, tic3 - tic2)) tic1 = time.time() for _ in range(n_trials): z1 = rms.mean tic2 = time.time() for _ in range(n_trials): z2 = tfrms.mean assert z1 == z2 tic3 = time.time() print('rms get mean time ({} trials): {} s'.format(n_trials, tic2 - tic1)) print('tfrms get mean time ({} trials): {} s'.format(n_trials, tic3 - tic2)) ''' options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0) '''
[ "def", "profile_tf_runningmeanstd", "(", ")", ":", "import", "time", "from", "baselines", ".", "common", "import", "tf_util", "tf_util", ".", "get_session", "(", "config", "=", "tf", ".", "ConfigProto", "(", "inter_op_parallelism_threads", "=", "1", ",", "intra_op_parallelism_threads", "=", "1", ",", "allow_soft_placement", "=", "True", ")", ")", "x", "=", "np", ".", "random", ".", "random", "(", "(", "376", ",", ")", ")", "n_trials", "=", "10000", "rms", "=", "RunningMeanStd", "(", ")", "tfrms", "=", "TfRunningMeanStd", "(", ")", "tic1", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "n_trials", ")", ":", "rms", ".", "update", "(", "x", ")", "tic2", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "n_trials", ")", ":", "tfrms", ".", "update", "(", "x", ")", "tic3", "=", "time", ".", "time", "(", ")", "print", "(", "'rms update time ({} trials): {} s'", ".", "format", "(", "n_trials", ",", "tic2", "-", "tic1", ")", ")", "print", "(", "'tfrms update time ({} trials): {} s'", ".", "format", "(", "n_trials", ",", "tic3", "-", "tic2", ")", ")", "tic1", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "n_trials", ")", ":", "z1", "=", "rms", ".", "mean", "tic2", "=", "time", ".", "time", "(", ")", "for", "_", "in", "range", "(", "n_trials", ")", ":", "z2", "=", "tfrms", ".", "mean", "assert", "z1", "==", "z2", "tic3", "=", "time", ".", "time", "(", ")", "print", "(", "'rms get mean time ({} trials): {} s'", ".", "format", "(", "n_trials", ",", "tic2", "-", "tic1", ")", ")", "print", "(", "'tfrms get mean time ({} trials): {} s'", ".", "format", "(", "n_trials", ",", "tic3", "-", "tic2", ")", ")" ]
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #pylint: disable=E1101 run_metadata = tf.RunMetadata() profile_opts = dict(options=options, run_metadata=run_metadata) from tensorflow.python.client import timeline fetched_timeline = timeline.Timeline(run_metadata.step_stats) #pylint: disable=E1101 chrome_trace = fetched_timeline.generate_chrome_trace_format() outfile = '/tmp/timeline.json' with open(outfile, 'wt') as f: f.write(chrome_trace) print('Successfully saved profile to {}. Exiting.'.format(outfile)) exit(0)
[ "options", "=", "tf", ".", "RunOptions", "(", "trace_level", "=", "tf", ".", "RunOptions", ".", "FULL_TRACE", ")", "#pylint", ":", "disable", "=", "E1101", "run_metadata", "=", "tf", ".", "RunMetadata", "()", "profile_opts", "=", "dict", "(", "options", "=", "options", "run_metadata", "=", "run_metadata", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/common/running_mean_std.py#L120-L182
valid
openai/baselines
baselines/her/her_sampler.py
make_sample_her_transitions
def make_sample_her_transitions(replay_strategy, replay_k, reward_fun): """Creates a sample function that can be used for HER experience replay. Args: replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none', regular DDPG experience replay is used replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times as many HER replays as regular replays are used) reward_fun (function): function to re-compute the reward with substituted goals """ if replay_strategy == 'future': future_p = 1 - (1. / (1 + replay_k)) else: # 'replay_strategy' == 'none' future_p = 0 def _sample_her_transitions(episode_batch, batch_size_in_transitions): """episode_batch is {key: array(buffer_size x T x dim_key)} """ T = episode_batch['u'].shape[1] rollout_batch_size = episode_batch['u'].shape[0] batch_size = batch_size_in_transitions # Select which episodes and time steps to use. episode_idxs = np.random.randint(0, rollout_batch_size, batch_size) t_samples = np.random.randint(T, size=batch_size) transitions = {key: episode_batch[key][episode_idxs, t_samples].copy() for key in episode_batch.keys()} # Select future time indexes proportional with probability future_p. These # will be used for HER replay by substituting in future goals. her_indexes = np.where(np.random.uniform(size=batch_size) < future_p) future_offset = np.random.uniform(size=batch_size) * (T - t_samples) future_offset = future_offset.astype(int) future_t = (t_samples + 1 + future_offset)[her_indexes] # Replace goal with achieved goal but only for the previously-selected # HER transitions (as defined by her_indexes). For the other transitions, # keep the original goal. future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t] transitions['g'][her_indexes] = future_ag # Reconstruct info dictionary for reward computation. info = {} for key, value in transitions.items(): if key.startswith('info_'): info[key.replace('info_', '')] = value # Re-compute reward since we may have substituted the goal. reward_params = {k: transitions[k] for k in ['ag_2', 'g']} reward_params['info'] = info transitions['r'] = reward_fun(**reward_params) transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:]) for k in transitions.keys()} assert(transitions['u'].shape[0] == batch_size_in_transitions) return transitions return _sample_her_transitions
python
def make_sample_her_transitions(replay_strategy, replay_k, reward_fun): """Creates a sample function that can be used for HER experience replay. Args: replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none', regular DDPG experience replay is used replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times as many HER replays as regular replays are used) reward_fun (function): function to re-compute the reward with substituted goals """ if replay_strategy == 'future': future_p = 1 - (1. / (1 + replay_k)) else: # 'replay_strategy' == 'none' future_p = 0 def _sample_her_transitions(episode_batch, batch_size_in_transitions): """episode_batch is {key: array(buffer_size x T x dim_key)} """ T = episode_batch['u'].shape[1] rollout_batch_size = episode_batch['u'].shape[0] batch_size = batch_size_in_transitions # Select which episodes and time steps to use. episode_idxs = np.random.randint(0, rollout_batch_size, batch_size) t_samples = np.random.randint(T, size=batch_size) transitions = {key: episode_batch[key][episode_idxs, t_samples].copy() for key in episode_batch.keys()} # Select future time indexes proportional with probability future_p. These # will be used for HER replay by substituting in future goals. her_indexes = np.where(np.random.uniform(size=batch_size) < future_p) future_offset = np.random.uniform(size=batch_size) * (T - t_samples) future_offset = future_offset.astype(int) future_t = (t_samples + 1 + future_offset)[her_indexes] # Replace goal with achieved goal but only for the previously-selected # HER transitions (as defined by her_indexes). For the other transitions, # keep the original goal. future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t] transitions['g'][her_indexes] = future_ag # Reconstruct info dictionary for reward computation. info = {} for key, value in transitions.items(): if key.startswith('info_'): info[key.replace('info_', '')] = value # Re-compute reward since we may have substituted the goal. reward_params = {k: transitions[k] for k in ['ag_2', 'g']} reward_params['info'] = info transitions['r'] = reward_fun(**reward_params) transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:]) for k in transitions.keys()} assert(transitions['u'].shape[0] == batch_size_in_transitions) return transitions return _sample_her_transitions
[ "def", "make_sample_her_transitions", "(", "replay_strategy", ",", "replay_k", ",", "reward_fun", ")", ":", "if", "replay_strategy", "==", "'future'", ":", "future_p", "=", "1", "-", "(", "1.", "/", "(", "1", "+", "replay_k", ")", ")", "else", ":", "# 'replay_strategy' == 'none'", "future_p", "=", "0", "def", "_sample_her_transitions", "(", "episode_batch", ",", "batch_size_in_transitions", ")", ":", "\"\"\"episode_batch is {key: array(buffer_size x T x dim_key)}\n \"\"\"", "T", "=", "episode_batch", "[", "'u'", "]", ".", "shape", "[", "1", "]", "rollout_batch_size", "=", "episode_batch", "[", "'u'", "]", ".", "shape", "[", "0", "]", "batch_size", "=", "batch_size_in_transitions", "# Select which episodes and time steps to use.", "episode_idxs", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "rollout_batch_size", ",", "batch_size", ")", "t_samples", "=", "np", ".", "random", ".", "randint", "(", "T", ",", "size", "=", "batch_size", ")", "transitions", "=", "{", "key", ":", "episode_batch", "[", "key", "]", "[", "episode_idxs", ",", "t_samples", "]", ".", "copy", "(", ")", "for", "key", "in", "episode_batch", ".", "keys", "(", ")", "}", "# Select future time indexes proportional with probability future_p. These", "# will be used for HER replay by substituting in future goals.", "her_indexes", "=", "np", ".", "where", "(", "np", ".", "random", ".", "uniform", "(", "size", "=", "batch_size", ")", "<", "future_p", ")", "future_offset", "=", "np", ".", "random", ".", "uniform", "(", "size", "=", "batch_size", ")", "*", "(", "T", "-", "t_samples", ")", "future_offset", "=", "future_offset", ".", "astype", "(", "int", ")", "future_t", "=", "(", "t_samples", "+", "1", "+", "future_offset", ")", "[", "her_indexes", "]", "# Replace goal with achieved goal but only for the previously-selected", "# HER transitions (as defined by her_indexes). For the other transitions,", "# keep the original goal.", "future_ag", "=", "episode_batch", "[", "'ag'", "]", "[", "episode_idxs", "[", "her_indexes", "]", ",", "future_t", "]", "transitions", "[", "'g'", "]", "[", "her_indexes", "]", "=", "future_ag", "# Reconstruct info dictionary for reward computation.", "info", "=", "{", "}", "for", "key", ",", "value", "in", "transitions", ".", "items", "(", ")", ":", "if", "key", ".", "startswith", "(", "'info_'", ")", ":", "info", "[", "key", ".", "replace", "(", "'info_'", ",", "''", ")", "]", "=", "value", "# Re-compute reward since we may have substituted the goal.", "reward_params", "=", "{", "k", ":", "transitions", "[", "k", "]", "for", "k", "in", "[", "'ag_2'", ",", "'g'", "]", "}", "reward_params", "[", "'info'", "]", "=", "info", "transitions", "[", "'r'", "]", "=", "reward_fun", "(", "*", "*", "reward_params", ")", "transitions", "=", "{", "k", ":", "transitions", "[", "k", "]", ".", "reshape", "(", "batch_size", ",", "*", "transitions", "[", "k", "]", ".", "shape", "[", "1", ":", "]", ")", "for", "k", "in", "transitions", ".", "keys", "(", ")", "}", "assert", "(", "transitions", "[", "'u'", "]", ".", "shape", "[", "0", "]", "==", "batch_size_in_transitions", ")", "return", "transitions", "return", "_sample_her_transitions" ]
Creates a sample function that can be used for HER experience replay. Args: replay_strategy (in ['future', 'none']): the HER replay strategy; if set to 'none', regular DDPG experience replay is used replay_k (int): the ratio between HER replays and regular replays (e.g. k = 4 -> 4 times as many HER replays as regular replays are used) reward_fun (function): function to re-compute the reward with substituted goals
[ "Creates", "a", "sample", "function", "that", "can", "be", "used", "for", "HER", "experience", "replay", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/her_sampler.py#L4-L63
valid
openai/baselines
baselines/deepq/experiments/custom_cartpole.py
model
def model(inpt, num_actions, scope, reuse=False): """This model takes as input an observation and returns values of all actions.""" with tf.variable_scope(scope, reuse=reuse): out = inpt out = layers.fully_connected(out, num_outputs=64, activation_fn=tf.nn.tanh) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out
python
def model(inpt, num_actions, scope, reuse=False): """This model takes as input an observation and returns values of all actions.""" with tf.variable_scope(scope, reuse=reuse): out = inpt out = layers.fully_connected(out, num_outputs=64, activation_fn=tf.nn.tanh) out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out
[ "def", "model", "(", "inpt", ",", "num_actions", ",", "scope", ",", "reuse", "=", "False", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ",", "reuse", "=", "reuse", ")", ":", "out", "=", "inpt", "out", "=", "layers", ".", "fully_connected", "(", "out", ",", "num_outputs", "=", "64", ",", "activation_fn", "=", "tf", ".", "nn", ".", "tanh", ")", "out", "=", "layers", ".", "fully_connected", "(", "out", ",", "num_outputs", "=", "num_actions", ",", "activation_fn", "=", "None", ")", "return", "out" ]
This model takes as input an observation and returns values of all actions.
[ "This", "model", "takes", "as", "input", "an", "observation", "and", "returns", "values", "of", "all", "actions", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/deepq/experiments/custom_cartpole.py#L16-L22
valid
openai/baselines
baselines/her/replay_buffer.py
ReplayBuffer.sample
def sample(self, batch_size): """Returns a dict {key: array(batch_size x shapes[key])} """ buffers = {} with self.lock: assert self.current_size > 0 for key in self.buffers.keys(): buffers[key] = self.buffers[key][:self.current_size] buffers['o_2'] = buffers['o'][:, 1:, :] buffers['ag_2'] = buffers['ag'][:, 1:, :] transitions = self.sample_transitions(buffers, batch_size) for key in (['r', 'o_2', 'ag_2'] + list(self.buffers.keys())): assert key in transitions, "key %s missing from transitions" % key return transitions
python
def sample(self, batch_size): """Returns a dict {key: array(batch_size x shapes[key])} """ buffers = {} with self.lock: assert self.current_size > 0 for key in self.buffers.keys(): buffers[key] = self.buffers[key][:self.current_size] buffers['o_2'] = buffers['o'][:, 1:, :] buffers['ag_2'] = buffers['ag'][:, 1:, :] transitions = self.sample_transitions(buffers, batch_size) for key in (['r', 'o_2', 'ag_2'] + list(self.buffers.keys())): assert key in transitions, "key %s missing from transitions" % key return transitions
[ "def", "sample", "(", "self", ",", "batch_size", ")", ":", "buffers", "=", "{", "}", "with", "self", ".", "lock", ":", "assert", "self", ".", "current_size", ">", "0", "for", "key", "in", "self", ".", "buffers", ".", "keys", "(", ")", ":", "buffers", "[", "key", "]", "=", "self", ".", "buffers", "[", "key", "]", "[", ":", "self", ".", "current_size", "]", "buffers", "[", "'o_2'", "]", "=", "buffers", "[", "'o'", "]", "[", ":", ",", "1", ":", ",", ":", "]", "buffers", "[", "'ag_2'", "]", "=", "buffers", "[", "'ag'", "]", "[", ":", ",", "1", ":", ",", ":", "]", "transitions", "=", "self", ".", "sample_transitions", "(", "buffers", ",", "batch_size", ")", "for", "key", "in", "(", "[", "'r'", ",", "'o_2'", ",", "'ag_2'", "]", "+", "list", "(", "self", ".", "buffers", ".", "keys", "(", ")", ")", ")", ":", "assert", "key", "in", "transitions", ",", "\"key %s missing from transitions\"", "%", "key", "return", "transitions" ]
Returns a dict {key: array(batch_size x shapes[key])}
[ "Returns", "a", "dict", "{", "key", ":", "array", "(", "batch_size", "x", "shapes", "[", "key", "]", ")", "}" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/replay_buffer.py#L37-L55
valid
openai/baselines
baselines/her/replay_buffer.py
ReplayBuffer.store_episode
def store_episode(self, episode_batch): """episode_batch: array(batch_size x (T or T+1) x dim_key) """ batch_sizes = [len(episode_batch[key]) for key in episode_batch.keys()] assert np.all(np.array(batch_sizes) == batch_sizes[0]) batch_size = batch_sizes[0] with self.lock: idxs = self._get_storage_idx(batch_size) # load inputs into buffers for key in self.buffers.keys(): self.buffers[key][idxs] = episode_batch[key] self.n_transitions_stored += batch_size * self.T
python
def store_episode(self, episode_batch): """episode_batch: array(batch_size x (T or T+1) x dim_key) """ batch_sizes = [len(episode_batch[key]) for key in episode_batch.keys()] assert np.all(np.array(batch_sizes) == batch_sizes[0]) batch_size = batch_sizes[0] with self.lock: idxs = self._get_storage_idx(batch_size) # load inputs into buffers for key in self.buffers.keys(): self.buffers[key][idxs] = episode_batch[key] self.n_transitions_stored += batch_size * self.T
[ "def", "store_episode", "(", "self", ",", "episode_batch", ")", ":", "batch_sizes", "=", "[", "len", "(", "episode_batch", "[", "key", "]", ")", "for", "key", "in", "episode_batch", ".", "keys", "(", ")", "]", "assert", "np", ".", "all", "(", "np", ".", "array", "(", "batch_sizes", ")", "==", "batch_sizes", "[", "0", "]", ")", "batch_size", "=", "batch_sizes", "[", "0", "]", "with", "self", ".", "lock", ":", "idxs", "=", "self", ".", "_get_storage_idx", "(", "batch_size", ")", "# load inputs into buffers", "for", "key", "in", "self", ".", "buffers", ".", "keys", "(", ")", ":", "self", ".", "buffers", "[", "key", "]", "[", "idxs", "]", "=", "episode_batch", "[", "key", "]", "self", ".", "n_transitions_stored", "+=", "batch_size", "*", "self", ".", "T" ]
episode_batch: array(batch_size x (T or T+1) x dim_key)
[ "episode_batch", ":", "array", "(", "batch_size", "x", "(", "T", "or", "T", "+", "1", ")", "x", "dim_key", ")" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/replay_buffer.py#L57-L71
valid
openai/baselines
baselines/her/ddpg.py
DDPG.store_episode
def store_episode(self, episode_batch, update_stats=True): """ episode_batch: array of batch_size x (T or T+1) x dim_key 'o' is of size T+1, others are of size T """ self.buffer.store_episode(episode_batch) if update_stats: # add transitions to normalizer episode_batch['o_2'] = episode_batch['o'][:, 1:, :] episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :] num_normalizing_transitions = transitions_in_episode_batch(episode_batch) transitions = self.sample_transitions(episode_batch, num_normalizing_transitions) o, g, ag = transitions['o'], transitions['g'], transitions['ag'] transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g) # No need to preprocess the o_2 and g_2 since this is only used for stats self.o_stats.update(transitions['o']) self.g_stats.update(transitions['g']) self.o_stats.recompute_stats() self.g_stats.recompute_stats()
python
def store_episode(self, episode_batch, update_stats=True): """ episode_batch: array of batch_size x (T or T+1) x dim_key 'o' is of size T+1, others are of size T """ self.buffer.store_episode(episode_batch) if update_stats: # add transitions to normalizer episode_batch['o_2'] = episode_batch['o'][:, 1:, :] episode_batch['ag_2'] = episode_batch['ag'][:, 1:, :] num_normalizing_transitions = transitions_in_episode_batch(episode_batch) transitions = self.sample_transitions(episode_batch, num_normalizing_transitions) o, g, ag = transitions['o'], transitions['g'], transitions['ag'] transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g) # No need to preprocess the o_2 and g_2 since this is only used for stats self.o_stats.update(transitions['o']) self.g_stats.update(transitions['g']) self.o_stats.recompute_stats() self.g_stats.recompute_stats()
[ "def", "store_episode", "(", "self", ",", "episode_batch", ",", "update_stats", "=", "True", ")", ":", "self", ".", "buffer", ".", "store_episode", "(", "episode_batch", ")", "if", "update_stats", ":", "# add transitions to normalizer", "episode_batch", "[", "'o_2'", "]", "=", "episode_batch", "[", "'o'", "]", "[", ":", ",", "1", ":", ",", ":", "]", "episode_batch", "[", "'ag_2'", "]", "=", "episode_batch", "[", "'ag'", "]", "[", ":", ",", "1", ":", ",", ":", "]", "num_normalizing_transitions", "=", "transitions_in_episode_batch", "(", "episode_batch", ")", "transitions", "=", "self", ".", "sample_transitions", "(", "episode_batch", ",", "num_normalizing_transitions", ")", "o", ",", "g", ",", "ag", "=", "transitions", "[", "'o'", "]", ",", "transitions", "[", "'g'", "]", ",", "transitions", "[", "'ag'", "]", "transitions", "[", "'o'", "]", ",", "transitions", "[", "'g'", "]", "=", "self", ".", "_preprocess_og", "(", "o", ",", "ag", ",", "g", ")", "# No need to preprocess the o_2 and g_2 since this is only used for stats", "self", ".", "o_stats", ".", "update", "(", "transitions", "[", "'o'", "]", ")", "self", ".", "g_stats", ".", "update", "(", "transitions", "[", "'g'", "]", ")", "self", ".", "o_stats", ".", "recompute_stats", "(", ")", "self", ".", "g_stats", ".", "recompute_stats", "(", ")" ]
episode_batch: array of batch_size x (T or T+1) x dim_key 'o' is of size T+1, others are of size T
[ "episode_batch", ":", "array", "of", "batch_size", "x", "(", "T", "or", "T", "+", "1", ")", "x", "dim_key", "o", "is", "of", "size", "T", "+", "1", "others", "are", "of", "size", "T" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/ddpg.py#L217-L240
valid
openai/baselines
baselines/run.py
parse_cmdline_kwargs
def parse_cmdline_kwargs(args): ''' convert a list of '='-spaced command-line arguments to a dictionary, evaluating python objects when possible ''' def parse(v): assert isinstance(v, str) try: return eval(v) except (NameError, SyntaxError): return v return {k: parse(v) for k,v in parse_unknown_args(args).items()}
python
def parse_cmdline_kwargs(args): ''' convert a list of '='-spaced command-line arguments to a dictionary, evaluating python objects when possible ''' def parse(v): assert isinstance(v, str) try: return eval(v) except (NameError, SyntaxError): return v return {k: parse(v) for k,v in parse_unknown_args(args).items()}
[ "def", "parse_cmdline_kwargs", "(", "args", ")", ":", "def", "parse", "(", "v", ")", ":", "assert", "isinstance", "(", "v", ",", "str", ")", "try", ":", "return", "eval", "(", "v", ")", "except", "(", "NameError", ",", "SyntaxError", ")", ":", "return", "v", "return", "{", "k", ":", "parse", "(", "v", ")", "for", "k", ",", "v", "in", "parse_unknown_args", "(", "args", ")", ".", "items", "(", ")", "}" ]
convert a list of '='-spaced command-line arguments to a dictionary, evaluating python objects when possible
[ "convert", "a", "list", "of", "=", "-", "spaced", "command", "-", "line", "arguments", "to", "a", "dictionary", "evaluating", "python", "objects", "when", "possible" ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/run.py#L180-L192
valid
openai/baselines
baselines/her/experiment/config.py
cached_make_env
def cached_make_env(make_env): """ Only creates a new environment from the provided function if one has not yet already been created. This is useful here because we need to infer certain properties of the env, e.g. its observation and action spaces, without any intend of actually using it. """ if make_env not in CACHED_ENVS: env = make_env() CACHED_ENVS[make_env] = env return CACHED_ENVS[make_env]
python
def cached_make_env(make_env): """ Only creates a new environment from the provided function if one has not yet already been created. This is useful here because we need to infer certain properties of the env, e.g. its observation and action spaces, without any intend of actually using it. """ if make_env not in CACHED_ENVS: env = make_env() CACHED_ENVS[make_env] = env return CACHED_ENVS[make_env]
[ "def", "cached_make_env", "(", "make_env", ")", ":", "if", "make_env", "not", "in", "CACHED_ENVS", ":", "env", "=", "make_env", "(", ")", "CACHED_ENVS", "[", "make_env", "]", "=", "env", "return", "CACHED_ENVS", "[", "make_env", "]" ]
Only creates a new environment from the provided function if one has not yet already been created. This is useful here because we need to infer certain properties of the env, e.g. its observation and action spaces, without any intend of actually using it.
[ "Only", "creates", "a", "new", "environment", "from", "the", "provided", "function", "if", "one", "has", "not", "yet", "already", "been", "created", ".", "This", "is", "useful", "here", "because", "we", "need", "to", "infer", "certain", "properties", "of", "the", "env", "e", ".", "g", ".", "its", "observation", "and", "action", "spaces", "without", "any", "intend", "of", "actually", "using", "it", "." ]
3301089b48c42b87b396e246ea3f56fa4bfc9678
https://github.com/openai/baselines/blob/3301089b48c42b87b396e246ea3f56fa4bfc9678/baselines/her/experiment/config.py#L61-L70
valid
aleju/imgaug
imgaug/augmentables/kps.py
compute_geometric_median
def compute_geometric_median(X, eps=1e-5): """ Estimate the geometric median of points in 2D. Code from https://stackoverflow.com/a/30305181 Parameters ---------- X : (N,2) ndarray Points in 2D. Second axis must be given in xy-form. eps : float, optional Distance threshold when to return the median. Returns ------- (2,) ndarray Geometric median as xy-coordinate. """ y = np.mean(X, 0) while True: D = scipy.spatial.distance.cdist(X, [y]) nonzeros = (D != 0)[:, 0] Dinv = 1 / D[nonzeros] Dinvs = np.sum(Dinv) W = Dinv / Dinvs T = np.sum(W * X[nonzeros], 0) num_zeros = len(X) - np.sum(nonzeros) if num_zeros == 0: y1 = T elif num_zeros == len(X): return y else: R = (T - y) * Dinvs r = np.linalg.norm(R) rinv = 0 if r == 0 else num_zeros/r y1 = max(0, 1-rinv)*T + min(1, rinv)*y if scipy.spatial.distance.euclidean(y, y1) < eps: return y1 y = y1
python
def compute_geometric_median(X, eps=1e-5): """ Estimate the geometric median of points in 2D. Code from https://stackoverflow.com/a/30305181 Parameters ---------- X : (N,2) ndarray Points in 2D. Second axis must be given in xy-form. eps : float, optional Distance threshold when to return the median. Returns ------- (2,) ndarray Geometric median as xy-coordinate. """ y = np.mean(X, 0) while True: D = scipy.spatial.distance.cdist(X, [y]) nonzeros = (D != 0)[:, 0] Dinv = 1 / D[nonzeros] Dinvs = np.sum(Dinv) W = Dinv / Dinvs T = np.sum(W * X[nonzeros], 0) num_zeros = len(X) - np.sum(nonzeros) if num_zeros == 0: y1 = T elif num_zeros == len(X): return y else: R = (T - y) * Dinvs r = np.linalg.norm(R) rinv = 0 if r == 0 else num_zeros/r y1 = max(0, 1-rinv)*T + min(1, rinv)*y if scipy.spatial.distance.euclidean(y, y1) < eps: return y1 y = y1
[ "def", "compute_geometric_median", "(", "X", ",", "eps", "=", "1e-5", ")", ":", "y", "=", "np", ".", "mean", "(", "X", ",", "0", ")", "while", "True", ":", "D", "=", "scipy", ".", "spatial", ".", "distance", ".", "cdist", "(", "X", ",", "[", "y", "]", ")", "nonzeros", "=", "(", "D", "!=", "0", ")", "[", ":", ",", "0", "]", "Dinv", "=", "1", "/", "D", "[", "nonzeros", "]", "Dinvs", "=", "np", ".", "sum", "(", "Dinv", ")", "W", "=", "Dinv", "/", "Dinvs", "T", "=", "np", ".", "sum", "(", "W", "*", "X", "[", "nonzeros", "]", ",", "0", ")", "num_zeros", "=", "len", "(", "X", ")", "-", "np", ".", "sum", "(", "nonzeros", ")", "if", "num_zeros", "==", "0", ":", "y1", "=", "T", "elif", "num_zeros", "==", "len", "(", "X", ")", ":", "return", "y", "else", ":", "R", "=", "(", "T", "-", "y", ")", "*", "Dinvs", "r", "=", "np", ".", "linalg", ".", "norm", "(", "R", ")", "rinv", "=", "0", "if", "r", "==", "0", "else", "num_zeros", "/", "r", "y1", "=", "max", "(", "0", ",", "1", "-", "rinv", ")", "*", "T", "+", "min", "(", "1", ",", "rinv", ")", "*", "y", "if", "scipy", ".", "spatial", ".", "distance", ".", "euclidean", "(", "y", ",", "y1", ")", "<", "eps", ":", "return", "y1", "y", "=", "y1" ]
Estimate the geometric median of points in 2D. Code from https://stackoverflow.com/a/30305181 Parameters ---------- X : (N,2) ndarray Points in 2D. Second axis must be given in xy-form. eps : float, optional Distance threshold when to return the median. Returns ------- (2,) ndarray Geometric median as xy-coordinate.
[ "Estimate", "the", "geometric", "median", "of", "points", "in", "2D", "." ]
786be74aa855513840113ea523c5df495dc6a8af
https://github.com/aleju/imgaug/blob/786be74aa855513840113ea523c5df495dc6a8af/imgaug/augmentables/kps.py#L13-L58
valid
aleju/imgaug
imgaug/augmentables/kps.py
Keypoint.project
def project(self, from_shape, to_shape): """ Project the keypoint onto a new position on a new image. E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected onto a new image with size (width=200, height=200), its new position will be (20, 40). This is intended for cases where the original image is resized. It cannot be used for more complex changes (e.g. padding, cropping). Parameters ---------- from_shape : tuple of int Shape of the original image. (Before resize.) to_shape : tuple of int Shape of the new image. (After resize.) Returns ------- imgaug.Keypoint Keypoint object with new coordinates. """ xy_proj = project_coords([(self.x, self.y)], from_shape, to_shape) return self.deepcopy(x=xy_proj[0][0], y=xy_proj[0][1])
python
def project(self, from_shape, to_shape): """ Project the keypoint onto a new position on a new image. E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected onto a new image with size (width=200, height=200), its new position will be (20, 40). This is intended for cases where the original image is resized. It cannot be used for more complex changes (e.g. padding, cropping). Parameters ---------- from_shape : tuple of int Shape of the original image. (Before resize.) to_shape : tuple of int Shape of the new image. (After resize.) Returns ------- imgaug.Keypoint Keypoint object with new coordinates. """ xy_proj = project_coords([(self.x, self.y)], from_shape, to_shape) return self.deepcopy(x=xy_proj[0][0], y=xy_proj[0][1])
[ "def", "project", "(", "self", ",", "from_shape", ",", "to_shape", ")", ":", "xy_proj", "=", "project_coords", "(", "[", "(", "self", ".", "x", ",", "self", ".", "y", ")", "]", ",", "from_shape", ",", "to_shape", ")", "return", "self", ".", "deepcopy", "(", "x", "=", "xy_proj", "[", "0", "]", "[", "0", "]", ",", "y", "=", "xy_proj", "[", "0", "]", "[", "1", "]", ")" ]
Project the keypoint onto a new position on a new image. E.g. if the keypoint is on its original image at x=(10 of 100 pixels) and y=(20 of 100 pixels) and is projected onto a new image with size (width=200, height=200), its new position will be (20, 40). This is intended for cases where the original image is resized. It cannot be used for more complex changes (e.g. padding, cropping). Parameters ---------- from_shape : tuple of int Shape of the original image. (Before resize.) to_shape : tuple of int Shape of the new image. (After resize.) Returns ------- imgaug.Keypoint Keypoint object with new coordinates.
[ "Project", "the", "keypoint", "onto", "a", "new", "position", "on", "a", "new", "image", "." ]
786be74aa855513840113ea523c5df495dc6a8af
https://github.com/aleju/imgaug/blob/786be74aa855513840113ea523c5df495dc6a8af/imgaug/augmentables/kps.py#L105-L131
valid