|
import os |
|
import json |
|
import datasets |
|
import datasets.info |
|
import pandas as pd |
|
import numpy as np |
|
import tempfile |
|
import requests |
|
import io |
|
from pathlib import Path |
|
from datasets import load_dataset |
|
from typing import Iterable, Dict, Optional, Union, List |
|
|
|
|
|
_CITATION = """\ |
|
@dataset{kota_dohi_2023_7882613, |
|
author = {Kota Dohi and |
|
Keisuke Imoto and |
|
Noboru Harada and |
|
Daisuke Niizumi and |
|
Yuma Koizumi and |
|
Tomoya Nishida and |
|
Harsh Purohit and |
|
Takashi Endo and |
|
Yohei Kawaguchi}, |
|
title = {DCASE 2023 Challenge Task 2 Development Dataset}, |
|
month = mar, |
|
year = 2023, |
|
publisher = {Zenodo}, |
|
version = {3.0}, |
|
doi = {10.5281/zenodo.7882613}, |
|
url = {https://doi.org/10.5281/zenodo.7882613} |
|
} |
|
""" |
|
_LICENSE = "Creative Commons Attribution 4.0 International Public License" |
|
|
|
_METADATA_REG = r"attributes_\d+.csv" |
|
|
|
_NUM_TARGETS = 2 |
|
_NUM_CLASSES = 14 |
|
|
|
_TARGET_NAMES = ["normal", "anomaly"] |
|
_CLASS_NAMES = ["gearbox", "fan", "bearing", "slider", "ToyCar", "ToyTrain", "valve", "bandsaw", "grinder", "shaker", "ToyDrone", "ToyNscale", "ToyTank", "Vacuum"] |
|
|
|
_HOMEPAGE = { |
|
"dev": "https://zenodo.org/record/7690157", |
|
"add": "", |
|
"eval": "", |
|
} |
|
|
|
DATA_URLS = { |
|
"dev": { |
|
"train": "data/dev_train.tar.gz", |
|
"test": "data/dev_test.tar.gz", |
|
"metadata": "data/dev_metadata.csv", |
|
}, |
|
"add": { |
|
"train": "data/add_train.tar.gz", |
|
"metadata": "data/add_metadata.csv", |
|
}, |
|
"eval": { |
|
"test": "data/eval_test.tar.gz", |
|
"metadata": None, |
|
}, |
|
} |
|
|
|
EMBEDDING_URLS = { |
|
"dev": { |
|
"embeddings_ast-finetuned-audioset-10-10-0.4593": { |
|
"train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_train.npz", |
|
"test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_test.npz", |
|
"size": (1, 768), |
|
"dtype": "float32", |
|
}, |
|
}, |
|
"add": { |
|
"embeddings_ast-finetuned-audioset-10-10-0.4593": { |
|
"train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_add_train.npz", |
|
"size": (1, 768), |
|
"dtype": "float32", |
|
}, |
|
}, |
|
"eval": { |
|
"embeddings_ast-finetuned-audioset-10-10-0.4593": { |
|
"test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_eval_test.npz", |
|
"size": (1, 768), |
|
"dtype": "float32", |
|
}, |
|
}, |
|
} |
|
|
|
STATS = { |
|
"name": "Enriched Dataset of 'DCASE 2023 Challenge Task 2'", |
|
"configs": { |
|
'dev': { |
|
'date': "Mar 1, 2023", |
|
'version': "3.0.0", |
|
'homepage': "https://zenodo.org/record/7882613", |
|
"splits": ["train", "test"], |
|
}, |
|
'add': { |
|
'date': "Apr 15, 2023", |
|
'version': "1.0.0", |
|
'homepage': "https://zenodo.org/record/7830345", |
|
"splits": ["train"], |
|
}, |
|
'eval': { |
|
'date': "May 1, 2023", |
|
'version': "1.0.0", |
|
'homepage': "https://zenodo.org/record/7860847", |
|
"splits": ["test"], |
|
}, |
|
} |
|
} |
|
|
|
DATASET = { |
|
'dev': 'DCASE 2023 Challenge Task 2 Development Dataset', |
|
'add': 'DCASE 2023 Challenge Task 2 Additional Train Dataset', |
|
'eval': 'DCASE 2023 Challenge Task 2 Evaluation Dataset', |
|
} |
|
|
|
|
|
SPOTLIGHT_LAYOUTS = { |
|
"standard": {"orientation":"vertical","children":[{"kind":"split","weight":51.96463654223969,"orientation":"horizontal","children":[{"kind":"tab","weight":30,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"full","visibleColumns":["class","class_name","config","d1p","d1v","d2p","d2v","d3p","d3v","file_path","label","section","split"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.970588235294116,"children":[{"kind":"widget","name":"Similarity Map (2)","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"label","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":36.029411764705884,"children":[{"kind":"widget","name":"Similarity Map","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":None,"stackByColumnKey":None,"filter":False}}]}]},{"kind":"tab","weight":48.03536345776031,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"43a5beff-9423-41c9-a5ba-285a7ece7a02"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"5f035027-dd02-4587-ba77-defdf823c124"}],"visibleColumns":4}}]}]}, |
|
"simple": {"orientation":"vertical","children":[{"kind":"split","weight":60.575296108291035,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"domain","stackByColumnKey":"prediction_correct_dcase2023_task2_baseline_ae","filter":False}}]}]},{"kind":"tab","weight":39.424703891708965,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]}]}, |
|
"extended": {"orientation":"vertical","children":[{"kind":"split","weight":54.145516074450086,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}}]}]},{"kind":"split","weight":45.854483925549914,"orientation":"horizontal","children":[{"kind":"tab","weight":58.581483486735245,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]},{"kind":"tab","weight":41.418516513264755,"children":[{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"class","stackByColumnKey":"dev_train_lof_anomaly"}}]}]}]}, |
|
} |
|
|
|
SPOTLIGHT_RENAME = { |
|
"audio": "original_audio", |
|
"path": "audio", |
|
} |
|
|
|
|
|
class DCASE2023Task2DatasetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DCASE2023Task2Dataset.""" |
|
|
|
def __init__(self, name, version, **kwargs): |
|
self.release_date = kwargs.pop("release_date", None) |
|
self.homepage = kwargs.pop("homepage", None) |
|
self.data_urls = kwargs.pop("data_urls", None) |
|
self.embeddings_urls = kwargs.pop("embeddings_urls", None) |
|
self.splits = kwargs.pop("splits", None) |
|
self.rename = kwargs.pop("rename", None) |
|
self.layout = kwargs.pop("layout", None) |
|
description = ( |
|
f"Dataset for the DCASE 2023 Challenge Task 2 'First-Shot Unsupervised Anomalous Sound Detection " |
|
f"for Machine Condition Monitoring'. released on {self.release_date}. Original data available under" |
|
f"{self.homepage}. " |
|
f"CONFIG: {name}." |
|
) |
|
super(DCASE2023Task2DatasetConfig, self).__init__( |
|
name=name, |
|
version=datasets.Version(version), |
|
description=description, |
|
) |
|
|
|
def to_spotlight(self, data: Union[pd.DataFrame, datasets.Dataset]) -> pd.DataFrame: |
|
|
|
def get_split(path: str) -> str: |
|
fn = os.path.basename(path) |
|
if "train" in fn: |
|
return "train" |
|
elif "test" in fn: |
|
return "test" |
|
else: |
|
raise NotImplementedError |
|
|
|
if type(data) == datasets.Dataset: |
|
|
|
df = data.to_pandas() |
|
df["split"] = data.split._name if "+" not in data.split._name else df["path"].map(get_split) |
|
df["config"] = data.config_name |
|
|
|
|
|
class_names = data.features["class"].names |
|
df["class_name"] = df["class"].apply(lambda x: class_names[x]) |
|
elif type(data) == pd.DataFrame: |
|
df = data |
|
else: |
|
raise TypeError("type(data) not in Union[pd.DataFrame, datasets.Dataset]") |
|
|
|
df["file_path"] = df["path"] |
|
df.rename(columns=self.rename, inplace=True) |
|
|
|
return df.copy() |
|
|
|
def get_layout(self, config: str = "standard") -> str: |
|
layout_json = tempfile.mktemp(".json") |
|
with open(layout_json, "w") as outfile: |
|
json.dump(self.layout[config], outfile) |
|
|
|
return layout_json |
|
|
|
|
|
class DCASE2023Task2Dataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection |
|
for Machine Condition Monitoring".""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
DEFAULT_CONFIG_NAME = "dev" |
|
|
|
BUILDER_CONFIGS = [ |
|
DCASE2023Task2DatasetConfig( |
|
name=key, |
|
version=stats["version"], |
|
dataset=DATASET[key], |
|
homepage=_HOMEPAGE[key], |
|
data_urls=DATA_URLS[key], |
|
embeddings_urls=EMBEDDING_URLS[key], |
|
release_date=stats["date"], |
|
splits=stats["splits"], |
|
layout=SPOTLIGHT_LAYOUTS, |
|
rename=SPOTLIGHT_RENAME, |
|
) |
|
for key, stats in STATS["configs"].items() |
|
] |
|
|
|
def _info(self): |
|
features = { |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"path": datasets.Value("string"), |
|
"section": datasets.Value("int64"), |
|
"domain": datasets.ClassLabel(num_classes=2, names=["source", "target"]), |
|
"label": datasets.ClassLabel(num_classes=_NUM_TARGETS, names=_TARGET_NAMES), |
|
"class": datasets.ClassLabel(num_classes=_NUM_CLASSES, names=_CLASS_NAMES), |
|
"d1p": datasets.Value("string"), |
|
"d1v": datasets.Value("string"), |
|
"d2p": datasets.Value("string"), |
|
"d2v": datasets.Value("string"), |
|
"d3p": datasets.Value("string"), |
|
"d3v": datasets.Value("string"), |
|
"dev_train_lof_anomaly": datasets.Value("int64"), |
|
"dev_train_lof_anomaly_score": datasets.Value("float32"), |
|
"add_train_lof_anomaly": datasets.Value("int64"), |
|
"add_train_lof_anomaly_score": datasets.Value("float32"), |
|
} |
|
if self.config.embeddings_urls is not None: |
|
features.update({ |
|
emb_name: [datasets.Value(emb["dtype"])] for emb_name, emb in self.config.embeddings_urls.items() |
|
}) |
|
features = datasets.Features(features) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=self.config.description, |
|
features=features, |
|
supervised_keys=datasets.info.SupervisedKeysData("label"), |
|
homepage=self.config.homepage, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, |
|
dl_manager: datasets.DownloadManager |
|
): |
|
"""Returns SplitGenerators.""" |
|
dl_manager.download_config.ignore_url_params = True |
|
audio_path = {} |
|
local_extracted_archive = {} |
|
split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST} |
|
embeddings = {split: dict() for split in split_type} |
|
|
|
for split in split_type: |
|
if split in self.config.splits: |
|
audio_path[split] = dl_manager.download(self.config.data_urls[split]) |
|
local_extracted_archive[split] = dl_manager.extract( |
|
audio_path[split]) if not dl_manager.is_streaming else None |
|
if self.config.embeddings_urls is not None: |
|
for emb_name, emb_data in self.config.embeddings_urls.items(): |
|
downloaded_embeddings = dl_manager.download(emb_data[split]) |
|
if dl_manager.is_streaming: |
|
response = requests.get(downloaded_embeddings) |
|
response.raise_for_status() |
|
downloaded_embeddings = io.BytesIO(response.content) |
|
npz_file = np.load(downloaded_embeddings, allow_pickle=True) |
|
embeddings[split][emb_name] = npz_file["arr_0"].item() |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split_type[split], |
|
gen_kwargs={ |
|
"split": split, |
|
"local_extracted_archive": local_extracted_archive[split], |
|
"audio_files": dl_manager.iter_archive(audio_path[split]), |
|
"embeddings": embeddings[split], |
|
"metadata_file": dl_manager.download_and_extract(self.config.data_urls["metadata"]) if self.config.data_urls["metadata"] is not None else None, |
|
"scores_file": dl_manager.download_and_extract("data/scores.csv"), |
|
"is_streaming": dl_manager.is_streaming, |
|
}, |
|
) for split in split_type if split in self.config.splits |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
split: str, |
|
local_extracted_archive: Union[Dict, List], |
|
audio_files: Optional[Iterable], |
|
embeddings: Optional[Dict], |
|
metadata_file: Optional[str], |
|
scores_file: Optional[str], |
|
is_streaming: Optional[bool], |
|
): |
|
"""Yields examples.""" |
|
if metadata_file is not None: |
|
metadata = pd.read_csv(metadata_file) |
|
if scores_file is not None: |
|
scores = pd.read_csv(scores_file) |
|
data_fields = list(self._info().features.keys()) |
|
|
|
id_ = 0 |
|
for path, f in audio_files: |
|
lookup = Path(path).parent.name + "/" + Path(path).name |
|
if metadata_file is None or lookup in metadata["path"].values: |
|
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path |
|
if is_streaming: |
|
audio = {"path": path, "bytes": f.read()} |
|
else: |
|
audio = {"path": path, "bytes": None} |
|
result = {field: None for field in data_fields} |
|
if metadata_file is not None: |
|
result.update(metadata[metadata["path"] == lookup].T.squeeze().to_dict()) |
|
if scores is not None: |
|
result.update(scores[scores["path"] == lookup].T.squeeze().to_dict()) |
|
for emb_key in embeddings.keys(): |
|
result[emb_key] = np.asarray(embeddings[emb_key][lookup]).squeeze().tolist() |
|
result["path"] = path |
|
yield id_, {**result, "audio": audio} |
|
id_ += 1 |
|
|
|
|
|
if __name__ == "__main__": |
|
ds = load_dataset("dcase23-task2-enriched.py", "dev", split="train", streaming=True) |
|
|