#!/usr/bin/env python # coding: utf-8 # # Create embeddings with the transformer library # # We use the Huggingface transformers library to create an embedding for a an audio dataset # # ## tldr; Play as callable functions import datasets from transformers import AutoFeatureExtractor, AutoModel, ASTForAudioClassification import torch import pandas as pd import umap import numpy as np _SPLIT = "train" _MODELNAME = "MIT/ast-finetuned-speech-commands-v2" def __set_device(): device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cuda": torch.cuda.empty_cache() return device def __permute_model2dataset_probabilities(model_probabilities): """ Model and dataset int mapping is different. Therefore, we need to permute the model's logits to match up to the dataset's order. Due to small size of vector do this on cpu """ cpu_copy = model_probabilities.to("cpu").detach().numpy() # only select model2dataset_truncated values as they map model ints to existing dataset ints permuted_vector = np.empty(shape=(len(labels),)) # Problem: model output has more output classes than dataset # Hence, only add those outputs that are mapped for key in model2dataset_truncated: dataset_int = model2dataset_truncated[key] permuted_vector[dataset_int] = cpu_copy[key] return permuted_vector def batch_probabilities_and_embeddings(model, feature_extractor, classifier): device = model.device def processing(batch): audios = [element["array"] for element in batch["audio"]] inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True, sampling_rate=16000).to(device) outputs = model(**inputs) embeddings = classifier(**inputs).last_hidden_state[:, 0].cpu() return {"logits":torch.tensor([__permute_model2dataset_probabilities(logit) for logit in outputs.logits]), "embedding": embeddings} return processing def annotate_probabilities_and_embeddings(dataset, modelname, batched=True, batch_size= 8): model = ASTForAudioClassification.from_pretrained(modelname) feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True) classifier = AutoModel.from_pretrained(modelname, output_hidden_states=True) device = __set_device() calc_outputs = batch_probabilities_and_embeddings(model.to(device), feature_extractor, classifier.to(device)) output_dataset = dataset.map(calc_outputs, batched = batched, batch_size = batch_size) return output_dataset def annotate_batch(model, dataset): device = model.device def batch_annotation(batch): logits = [torch.tensor(element) for element in batch["logits"]] probabilities_per_class = [torch.nn.functional.softmax(logit, dim=-1) for logit in logits] predicted_class_ids = [torch.argmax(logit).item() for logit in logits] # logits are already permuted to match dataset ordering -> no additional work needed predicted_labels = [labels[predicted_class_id] for predicted_class_id in predicted_class_ids] annotated_labels = [labels[element] for element in batch["label"]] probabilities = [] for index, prob_per_class in enumerate(probabilities_per_class): probabilities.append(prob_per_class[predicted_class_ids[index]].item()) return {"label_string": annotated_labels, "probability": probabilities, "probability_vector": probabilities_per_class, "prediction": predicted_class_ids, "prediction_string": predicted_labels} return batch_annotation def annotate_dataset(dataset, modelname, batched=True, batch_size=8): model = ASTForAudioClassification.from_pretrained(modelname) device = __set_device() annotate = annotate_batch(model.to(device), dataset) annotated_dataset = dataset.map(annotate, batched=batched, batch_size=batch_size) return annotated_dataset # ## Step-by-step example on speech-commands # # ### Load speech-commands from Huggingface hub # Use validation split to evaluate model's performance on unseen data dataset = datasets.load_dataset('speech_commands', 'v0.01', split=_SPLIT) labels = dataset.features["label"].names # use dict comprehension to build a dict that maps the dataset's string label to the dataset's int label label_dict = {label: i for label, i in zip(labels, range(len(labels)))} # {key: value for key, value in zip(keys, values)} model = ASTForAudioClassification.from_pretrained(_MODELNAME) # look up label from model int in the label dict and translate that label into the dataset int model2dataset_int_conversion = {i: label_dict[model.config.id2label[i]] if model.config.id2label[i] in label_dict.keys() else -1 for i in range(model.config.num_labels)} model2dataset_truncated = {key:value for key,value in model2dataset_int_conversion.items() if value != -1} # Let's have a look at all of the labels that we want to predict print(labels) # ### Compute probabilities and embeddings and annotate dataset # calculate logits and embedding for each sample and annotate dataset_annotated = annotate_probabilities_and_embeddings(dataset, _MODELNAME) # Now annotate labels and probabilities dataset_enriched = annotate_dataset(dataset_annotated, _MODELNAME) # ### Reduce embeddings for faster visualization embeddings = np.stack(np.array(dataset_enriched['embedding'])) reducer = umap.UMAP() reduced_embedding = reducer.fit_transform(embeddings) dataset_enriched = dataset_enriched.add_column("embedding_reduced", list(reduced_embedding)) df = dataset_enriched.to_pandas() df.to_parquet("data/dataset_audio_" + _SPLIT + ".parquet.gzip", compression='gzip')