ricdomolm commited on
Commit
0ca06d8
·
verified ·
1 Parent(s): c4ae69e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -27
README.md CHANGED
@@ -1,27 +1,52 @@
1
- ---
2
- license: mit
3
- dataset_info:
4
- features:
5
- - name: instruction
6
- dtype: string
7
- - name: output
8
- dtype: string
9
- - name: task
10
- dtype: string
11
- splits:
12
- - name: train
13
- num_bytes: 8972956600
14
- num_examples: 503698
15
- - name: validation
16
- num_bytes: 1259708059
17
- num_examples: 71638
18
- download_size: 4925396868
19
- dataset_size: 10232664659
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
- - split: validation
26
- path: data/validation-*
27
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ dataset_info:
4
+ features:
5
+ - name: instruction
6
+ dtype: string
7
+ - name: output
8
+ dtype: string
9
+ - name: task
10
+ dtype: string
11
+ splits:
12
+ - name: train
13
+ num_bytes: 8972956600
14
+ num_examples: 503698
15
+ - name: validation
16
+ num_bytes: 1259708059
17
+ num_examples: 71638
18
+ download_size: 4925396868
19
+ dataset_size: 10232664659
20
+ configs:
21
+ - config_name: default
22
+ data_files:
23
+ - split: train
24
+ path: data/train-*
25
+ - split: validation
26
+ path: data/validation-*
27
+ ---
28
+ # Lawma fine-tuning dataset
29
+
30
+ This fine-tuning dataset contains 260 legal classification tasks derived from the [Supreme Court](http://scdb.wustl.edu/data.php) and [Songer Court of Appeals](www.songerproject.org/us-courts-of-appeals-databases.html) databases, totalling over 500k training examples and 2B tokens. This dataset was used to train [Lawma 8B](https://huggingface.co/ricdomolm/lawma-8b) and [Lawma 70B](https://huggingface.co/ricdomolm/lawma-70b). The Lawma models outperform GPT-4 on 95\% of these legal tasks, on average by over 17 accuracy points. See our [arXiv preprint](https://arxiv.org/abs/2407.16615) and [GitHub repository](https://github.com/socialfoundations/lawma) for more details.
31
+
32
+ Our reasons to study these legal classification tasks are both technical and substantive. From a technical machine learning perspective, these tasks provide highly non-trivial classification problems where
33
+ even the best models leave much room for improvement. From a substantive legal perspective, efficient
34
+ solutions to such classification problems have rich and important applications in legal research.
35
+
36
+ This dataset was created for the project
37
+
38
+ *Lawma: The Power of Specizalization for Legal Tasks. Ricardo Dominguez-Olmedo and Vedant Nanda and Rediet Abebe and Stefan Bechtold and Christoph Engel and Jens Frankenreiter and Krishna Gummadi and Moritz Hardt and Michael Livermore. 2024*
39
+
40
+ Please cite as:
41
+
42
+ ```
43
+ @misc{dominguezolmedo2024lawmapowerspecializationlegal,
44
+ title={Lawma: The Power of Specialization for Legal Tasks},
45
+ author={Ricardo Dominguez-Olmedo and Vedant Nanda and Rediet Abebe and Stefan Bechtold and Christoph Engel and Jens Frankenreiter and Krishna Gummadi and Moritz Hardt and Michael Livermore},
46
+ year={2024},
47
+ eprint={2407.16615},
48
+ archivePrefix={arXiv},
49
+ primaryClass={cs.CL},
50
+ url={https://arxiv.org/abs/2407.16615},
51
+ }
52
+ ```