repo_name
stringlengths
6
103
path
stringlengths
4
209
copies
stringclasses
325 values
size
stringlengths
4
7
content
stringlengths
838
1.04M
license
stringclasses
15 values
idlead/scikit-learn
sklearn/svm/setup.py
318
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
altairpearl/scikit-learn
sklearn/ensemble/tests/test_forest.py
22
41796
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.94, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", "mae", "friedman_mse")): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, est.transform, X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse", "mae"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name
bsd-3-clause
keras-team/keras-io
guides/working_with_rnns.py
1
19767
""" Title: Working with RNNs Authors: Scott Zhu, Francois Chollet Date created: 2019/07/08 Last modified: 2020/04/14 Description: Complete guide to using & customizing RNN layers. """ """ ## Introduction Recurrent neural networks (RNN) are a class of neural networks that is powerful for modeling sequence data such as time series or natural language. Schematically, a RNN layer uses a `for` loop to iterate over the timesteps of a sequence, while maintaining an internal state that encodes information about the timesteps it has seen so far. The Keras RNN API is designed with a focus on: - **Ease of use**: the built-in `keras.layers.RNN`, `keras.layers.LSTM`, `keras.layers.GRU` layers enable you to quickly build recurrent models without having to make difficult configuration choices. - **Ease of customization**: You can also define your own RNN cell layer (the inner part of the `for` loop) with custom behavior, and use it with the generic `keras.layers.RNN` layer (the `for` loop itself). This allows you to quickly prototype different research ideas in a flexible way with minimal code. """ """ ## Setup """ import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers """ ## Built-in RNN layers: a simple example """ """ There are three built-in RNN layers in Keras: 1. `keras.layers.SimpleRNN`, a fully-connected RNN where the output from previous timestep is to be fed to next timestep. 2. `keras.layers.GRU`, first proposed in [Cho et al., 2014](https://arxiv.org/abs/1406.1078). 3. `keras.layers.LSTM`, first proposed in [Hochreiter & Schmidhuber, 1997](https://www.bioinf.jku.at/publications/older/2604.pdf). In early 2015, Keras had the first reusable open-source Python implementations of LSTM and GRU. Here is a simple example of a `Sequential` model that processes sequences of integers, embeds each integer into a 64-dimensional vector, then processes the sequence of vectors using a `LSTM` layer. """ model = keras.Sequential() # Add an Embedding layer expecting input vocab of size 1000, and # output embedding dimension of size 64. model.add(layers.Embedding(input_dim=1000, output_dim=64)) # Add a LSTM layer with 128 internal units. model.add(layers.LSTM(128)) # Add a Dense layer with 10 units. model.add(layers.Dense(10)) model.summary() """ Built-in RNNs support a number of useful features: - Recurrent dropout, via the `dropout` and `recurrent_dropout` arguments - Ability to process an input sequence in reverse, via the `go_backwards` argument - Loop unrolling (which can lead to a large speedup when processing short sequences on CPU), via the `unroll` argument - ...and more. For more information, see the [RNN API documentation](https://keras.io/api/layers/recurrent_layers/). """ """ ## Outputs and states By default, the output of a RNN layer contains a single vector per sample. This vector is the RNN cell output corresponding to the last timestep, containing information about the entire input sequence. The shape of this output is `(batch_size, units)` where `units` corresponds to the `units` argument passed to the layer's constructor. A RNN layer can also return the entire sequence of outputs for each sample (one vector per timestep per sample), if you set `return_sequences=True`. The shape of this output is `(batch_size, timesteps, units)`. """ model = keras.Sequential() model.add(layers.Embedding(input_dim=1000, output_dim=64)) # The output of GRU will be a 3D tensor of shape (batch_size, timesteps, 256) model.add(layers.GRU(256, return_sequences=True)) # The output of SimpleRNN will be a 2D tensor of shape (batch_size, 128) model.add(layers.SimpleRNN(128)) model.add(layers.Dense(10)) model.summary() """ In addition, a RNN layer can return its final internal state(s). The returned states can be used to resume the RNN execution later, or [to initialize another RNN](https://arxiv.org/abs/1409.3215). This setting is commonly used in the encoder-decoder sequence-to-sequence model, where the encoder final state is used as the initial state of the decoder. To configure a RNN layer to return its internal state, set the `return_state` parameter to `True` when creating the layer. Note that `LSTM` has 2 state tensors, but `GRU` only has one. To configure the initial state of the layer, just call the layer with additional keyword argument `initial_state`. Note that the shape of the state needs to match the unit size of the layer, like in the example below. """ encoder_vocab = 1000 decoder_vocab = 2000 encoder_input = layers.Input(shape=(None,)) encoder_embedded = layers.Embedding(input_dim=encoder_vocab, output_dim=64)( encoder_input ) # Return states in addition to output output, state_h, state_c = layers.LSTM(64, return_state=True, name="encoder")( encoder_embedded ) encoder_state = [state_h, state_c] decoder_input = layers.Input(shape=(None,)) decoder_embedded = layers.Embedding(input_dim=decoder_vocab, output_dim=64)( decoder_input ) # Pass the 2 states to a new LSTM layer, as initial state decoder_output = layers.LSTM(64, name="decoder")( decoder_embedded, initial_state=encoder_state ) output = layers.Dense(10)(decoder_output) model = keras.Model([encoder_input, decoder_input], output) model.summary() """ ## RNN layers and RNN cells In addition to the built-in RNN layers, the RNN API also provides cell-level APIs. Unlike RNN layers, which processes whole batches of input sequences, the RNN cell only processes a single timestep. The cell is the inside of the `for` loop of a RNN layer. Wrapping a cell inside a `keras.layers.RNN` layer gives you a layer capable of processing batches of sequences, e.g. `RNN(LSTMCell(10))`. Mathematically, `RNN(LSTMCell(10))` produces the same result as `LSTM(10)`. In fact, the implementation of this layer in TF v1.x was just creating the corresponding RNN cell and wrapping it in a RNN layer. However using the built-in `GRU` and `LSTM` layers enable the use of CuDNN and you may see better performance. There are three built-in RNN cells, each of them corresponding to the matching RNN layer. - `keras.layers.SimpleRNNCell` corresponds to the `SimpleRNN` layer. - `keras.layers.GRUCell` corresponds to the `GRU` layer. - `keras.layers.LSTMCell` corresponds to the `LSTM` layer. The cell abstraction, together with the generic `keras.layers.RNN` class, make it very easy to implement custom RNN architectures for your research. """ """ ## Cross-batch statefulness When processing very long sequences (possibly infinite), you may want to use the pattern of **cross-batch statefulness**. Normally, the internal state of a RNN layer is reset every time it sees a new batch (i.e. every sample seen by the layer is assumed to be independent of the past). The layer will only maintain a state while processing a given sample. If you have very long sequences though, it is useful to break them into shorter sequences, and to feed these shorter sequences sequentially into a RNN layer without resetting the layer's state. That way, the layer can retain information about the entirety of the sequence, even though it's only seeing one sub-sequence at a time. You can do this by setting `stateful=True` in the constructor. If you have a sequence `s = [t0, t1, ... t1546, t1547]`, you would split it into e.g. ``` s1 = [t0, t1, ... t100] s2 = [t101, ... t201] ... s16 = [t1501, ... t1547] ``` Then you would process it via: ```python lstm_layer = layers.LSTM(64, stateful=True) for s in sub_sequences: output = lstm_layer(s) ``` When you want to clear the state, you can use `layer.reset_states()`. > Note: In this setup, sample `i` in a given batch is assumed to be the continuation of sample `i` in the previous batch. This means that all batches should contain the same number of samples (batch size). E.g. if a batch contains `[sequence_A_from_t0_to_t100, sequence_B_from_t0_to_t100]`, the next batch should contain `[sequence_A_from_t101_to_t200, sequence_B_from_t101_to_t200]`. Here is a complete example: """ paragraph1 = np.random.random((20, 10, 50)).astype(np.float32) paragraph2 = np.random.random((20, 10, 50)).astype(np.float32) paragraph3 = np.random.random((20, 10, 50)).astype(np.float32) lstm_layer = layers.LSTM(64, stateful=True) output = lstm_layer(paragraph1) output = lstm_layer(paragraph2) output = lstm_layer(paragraph3) # reset_states() will reset the cached state to the original initial_state. # If no initial_state was provided, zero-states will be used by default. lstm_layer.reset_states() """ ### RNN State Reuse <a id="rnn_state_reuse"></a> """ """ The recorded states of the RNN layer are not included in the `layer.weights()`. If you would like to reuse the state from a RNN layer, you can retrieve the states value by `layer.states` and use it as the initial state for a new layer via the Keras functional API like `new_layer(inputs, initial_state=layer.states)`, or model subclassing. Please also note that sequential model might not be used in this case since it only supports layers with single input and output, the extra input of initial state makes it impossible to use here. """ paragraph1 = np.random.random((20, 10, 50)).astype(np.float32) paragraph2 = np.random.random((20, 10, 50)).astype(np.float32) paragraph3 = np.random.random((20, 10, 50)).astype(np.float32) lstm_layer = layers.LSTM(64, stateful=True) output = lstm_layer(paragraph1) output = lstm_layer(paragraph2) existing_state = lstm_layer.states new_lstm_layer = layers.LSTM(64) new_output = new_lstm_layer(paragraph3, initial_state=existing_state) """ ## Bidirectional RNNs For sequences other than time series (e.g. text), it is often the case that a RNN model can perform better if it not only processes sequence from start to end, but also backwards. For example, to predict the next word in a sentence, it is often useful to have the context around the word, not only just the words that come before it. Keras provides an easy API for you to build such bidirectional RNNs: the `keras.layers.Bidirectional` wrapper. """ model = keras.Sequential() model.add( layers.Bidirectional(layers.LSTM(64, return_sequences=True), input_shape=(5, 10)) ) model.add(layers.Bidirectional(layers.LSTM(32))) model.add(layers.Dense(10)) model.summary() """ Under the hood, `Bidirectional` will copy the RNN layer passed in, and flip the `go_backwards` field of the newly copied layer, so that it will process the inputs in reverse order. The output of the `Bidirectional` RNN will be, by default, the concatenation of the forward layer output and the backward layer output. If you need a different merging behavior, e.g. concatenation, change the `merge_mode` parameter in the `Bidirectional` wrapper constructor. For more details about `Bidirectional`, please check [the API docs](https://keras.io/api/layers/recurrent_layers/bidirectional/). """ """ ## Performance optimization and CuDNN kernels In TensorFlow 2.0, the built-in LSTM and GRU layers have been updated to leverage CuDNN kernels by default when a GPU is available. With this change, the prior `keras.layers.CuDNNLSTM/CuDNNGRU` layers have been deprecated, and you can build your model without worrying about the hardware it will run on. Since the CuDNN kernel is built with certain assumptions, this means the layer **will not be able to use the CuDNN kernel if you change the defaults of the built-in LSTM or GRU layers**. E.g.: - Changing the `activation` function from `tanh` to something else. - Changing the `recurrent_activation` function from `sigmoid` to something else. - Using `recurrent_dropout` > 0. - Setting `unroll` to True, which forces LSTM/GRU to decompose the inner `tf.while_loop` into an unrolled `for` loop. - Setting `use_bias` to False. - Using masking when the input data is not strictly right padded (if the mask corresponds to strictly right padded data, CuDNN can still be used. This is the most common case). For the detailed list of constraints, please see the documentation for the [LSTM](https://keras.io/api/layers/recurrent_layers/lstm/) and [GRU](https://keras.io/api/layers/recurrent_layers/gru/) layers. """ """ ### Using CuDNN kernels when available Let's build a simple LSTM model to demonstrate the performance difference. We'll use as input sequences the sequence of rows of MNIST digits (treating each row of pixels as a timestep), and we'll predict the digit's label. """ batch_size = 64 # Each MNIST image batch is a tensor of shape (batch_size, 28, 28). # Each input sequence will be of size (28, 28) (height is treated like time). input_dim = 28 units = 64 output_size = 10 # labels are from 0 to 9 # Build the RNN model def build_model(allow_cudnn_kernel=True): # CuDNN is only available at the layer level, and not at the cell level. # This means `LSTM(units)` will use the CuDNN kernel, # while RNN(LSTMCell(units)) will run on non-CuDNN kernel. if allow_cudnn_kernel: # The LSTM layer with default options uses CuDNN. lstm_layer = keras.layers.LSTM(units, input_shape=(None, input_dim)) else: # Wrapping a LSTMCell in a RNN layer will not use CuDNN. lstm_layer = keras.layers.RNN( keras.layers.LSTMCell(units), input_shape=(None, input_dim) ) model = keras.models.Sequential( [ lstm_layer, keras.layers.BatchNormalization(), keras.layers.Dense(output_size), ] ) return model """ Let's load the MNIST dataset: """ mnist = keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 sample, sample_label = x_train[0], y_train[0] """ Let's create a model instance and train it. We choose `sparse_categorical_crossentropy` as the loss function for the model. The output of the model has shape of `[batch_size, 10]`. The target for the model is an integer vector, each of the integer is in the range of 0 to 9. """ model = build_model(allow_cudnn_kernel=True) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer="sgd", metrics=["accuracy"], ) model.fit( x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=1 ) """ Now, let's compare to a model that does not use the CuDNN kernel: """ noncudnn_model = build_model(allow_cudnn_kernel=False) noncudnn_model.set_weights(model.get_weights()) noncudnn_model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer="sgd", metrics=["accuracy"], ) noncudnn_model.fit( x_train, y_train, validation_data=(x_test, y_test), batch_size=batch_size, epochs=1 ) """ When running on a machine with a NVIDIA GPU and CuDNN installed, the model built with CuDNN is much faster to train compared to the model that uses the regular TensorFlow kernel. The same CuDNN-enabled model can also be used to run inference in a CPU-only environment. The `tf.device` annotation below is just forcing the device placement. The model will run on CPU by default if no GPU is available. You simply don't have to worry about the hardware you're running on anymore. Isn't that pretty cool? """ import matplotlib.pyplot as plt with tf.device("CPU:0"): cpu_model = build_model(allow_cudnn_kernel=True) cpu_model.set_weights(model.get_weights()) result = tf.argmax(cpu_model.predict_on_batch(tf.expand_dims(sample, 0)), axis=1) print( "Predicted result is: %s, target result is: %s" % (result.numpy(), sample_label) ) plt.imshow(sample, cmap=plt.get_cmap("gray")) """ ## RNNs with list/dict inputs, or nested inputs Nested structures allow implementers to include more information within a single timestep. For example, a video frame could have audio and video input at the same time. The data shape in this case could be: `[batch, timestep, {"video": [height, width, channel], "audio": [frequency]}]` In another example, handwriting data could have both coordinates x and y for the current position of the pen, as well as pressure information. So the data representation could be: `[batch, timestep, {"location": [x, y], "pressure": [force]}]` The following code provides an example of how to build a custom RNN cell that accepts such structured inputs. """ """ ### Define a custom cell that supports nested input/output """ """ See [Making new Layers & Models via subclassing](/guides/making_new_layers_and_models_via_subclassing/) for details on writing your own layers. """ class NestedCell(keras.layers.Layer): def __init__(self, unit_1, unit_2, unit_3, **kwargs): self.unit_1 = unit_1 self.unit_2 = unit_2 self.unit_3 = unit_3 self.state_size = [tf.TensorShape([unit_1]), tf.TensorShape([unit_2, unit_3])] self.output_size = [tf.TensorShape([unit_1]), tf.TensorShape([unit_2, unit_3])] super(NestedCell, self).__init__(**kwargs) def build(self, input_shapes): # expect input_shape to contain 2 items, [(batch, i1), (batch, i2, i3)] i1 = input_shapes[0][1] i2 = input_shapes[1][1] i3 = input_shapes[1][2] self.kernel_1 = self.add_weight( shape=(i1, self.unit_1), initializer="uniform", name="kernel_1" ) self.kernel_2_3 = self.add_weight( shape=(i2, i3, self.unit_2, self.unit_3), initializer="uniform", name="kernel_2_3", ) def call(self, inputs, states): # inputs should be in [(batch, input_1), (batch, input_2, input_3)] # state should be in shape [(batch, unit_1), (batch, unit_2, unit_3)] input_1, input_2 = tf.nest.flatten(inputs) s1, s2 = states output_1 = tf.matmul(input_1, self.kernel_1) output_2_3 = tf.einsum("bij,ijkl->bkl", input_2, self.kernel_2_3) state_1 = s1 + output_1 state_2_3 = s2 + output_2_3 output = (output_1, output_2_3) new_states = (state_1, state_2_3) return output, new_states def get_config(self): return {"unit_1": self.unit_1, "unit_2": unit_2, "unit_3": self.unit_3} """ ### Build a RNN model with nested input/output Let's build a Keras model that uses a `keras.layers.RNN` layer and the custom cell we just defined. """ unit_1 = 10 unit_2 = 20 unit_3 = 30 i1 = 32 i2 = 64 i3 = 32 batch_size = 64 num_batches = 10 timestep = 50 cell = NestedCell(unit_1, unit_2, unit_3) rnn = keras.layers.RNN(cell) input_1 = keras.Input((None, i1)) input_2 = keras.Input((None, i2, i3)) outputs = rnn((input_1, input_2)) model = keras.models.Model([input_1, input_2], outputs) model.compile(optimizer="adam", loss="mse", metrics=["accuracy"]) """ ### Train the model with randomly generated data Since there isn't a good candidate dataset for this model, we use random Numpy data for demonstration. """ input_1_data = np.random.random((batch_size * num_batches, timestep, i1)) input_2_data = np.random.random((batch_size * num_batches, timestep, i2, i3)) target_1_data = np.random.random((batch_size * num_batches, unit_1)) target_2_data = np.random.random((batch_size * num_batches, unit_2, unit_3)) input_data = [input_1_data, input_2_data] target_data = [target_1_data, target_2_data] model.fit(input_data, target_data, batch_size=batch_size) """ With the Keras `keras.layers.RNN` layer, You are only expected to define the math logic for individual step within the sequence, and the `keras.layers.RNN` layer will handle the sequence iteration for you. It's an incredibly powerful way to quickly prototype new kinds of RNNs (e.g. a LSTM variant). For more details, please visit the [API docs](https://keras.io/api/layers/recurrent_layers/rnn/). """
apache-2.0
h2oai/h2o
py/testdir_hosts/notest_GBM_parseTrain.py
9
2493
import unittest import random, sys, time, re sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_browse as h2b, h2o_import as h2i, h2o_glm, h2o_util, h2o_rf, h2o_jobs as h2j class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): h2o.init() @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GBM_parseTrain(self): bucket = 'home-0xdiag-datasets' files = [('standard', 'covtype200x.data', 'covtype.hex', 1800, 54), ('mnist', 'mnist8m.csv', 'mnist8m.hex',1800,0), ('manyfiles-nflx-gz', 'file_95.dat.gz', 'nflx.hex',1800,256), ('standard', 'allyears2k.csv', 'allyears2k.hex',1800,'IsArrDelayed'), ('standard', 'allyears.csv', 'allyears2k.hex',1800,'IsArrDelayed') ] for importFolderPath,csvFilename,trainKey,timeoutSecs,response in files: # PARSE train**************************************** start = time.time() parseResult = h2i.import_parse(bucket=bucket, path=importFolderPath + "/" + csvFilename, hex_key=trainKey, timeoutSecs=timeoutSecs) elapsed = time.time() - start print "parse end on ", csvFilename, 'took', elapsed, 'seconds',\ "%d pct. of timeout" % ((elapsed*100)/timeoutSecs) print "parse result:", parseResult['destination_key'] # GBM (train)**************************************** params = { 'destination_key': "GBMKEY", 'learn_rate':.1, 'ntrees':1, 'max_depth':1, 'min_rows':1, 'response':response } print "Using these parameters for GBM: ", params kwargs = params.copy() #noPoll -> False when GBM finished GBMResult = h2o_cmd.runGBM(parseResult=parseResult, noPoll=True,timeoutSecs=timeoutSecs,**kwargs) h2j.pollWaitJobs(pattern="GBMKEY",timeoutSecs=1800,pollTimeoutSecs=1800) #print "GBM training completed in", GBMResult['python_elapsed'], "seconds.", \ # "%f pct. of timeout" % (GBMResult['python_%timeout']) GBMView = h2o_cmd.runGBMView(model_key='GBMKEY') print GBMView['gbm_model']['errs'] if __name__ == '__main__': h2o.unit_main()
apache-2.0
inonit/wagtail
wagtail/wagtailusers/tests.py
2
19213
from __future__ import unicode_literals import unittest from django.test import TestCase from django.core.urlresolvers import reverse from django.contrib.auth import get_user_model from django.contrib.auth.models import Group, Permission from django.utils import six from wagtail.tests.utils import WagtailTestUtils from wagtail.wagtailcore import hooks from wagtail.wagtailusers.models import UserProfile from wagtail.wagtailcore.models import Page, GroupPagePermission class TestUserIndexView(TestCase, WagtailTestUtils): def setUp(self): # create a user that should be visible in the listing self.test_user = get_user_model().objects.create_user( username='testuser', email='testuser@email.com', password='password' ) self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_users:index'), params) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/index.html') self.assertContains(response, 'testuser') def test_allows_negative_ids(self): # see https://github.com/torchbox/wagtail/issues/565 get_user_model().objects.create_user('guardian', 'guardian@example.com', 'gu@rd14n', id=-1) response = self.get() self.assertEqual(response.status_code, 200) self.assertContains(response, 'testuser') self.assertContains(response, 'guardian') def test_search(self): response = self.get({'q': "Hello"}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['query_string'], "Hello") def test_pagination(self): pages = ['0', '1', '-1', '9999', 'Not a page'] for page in pages: response = self.get({'p': page}) self.assertEqual(response.status_code, 200) class TestUserCreateView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_users:add'), params) def post(self, post_data={}): return self.client.post(reverse('wagtailusers_users:add'), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/create.html') def test_create(self): response = self.post({ 'username': "testuser", 'email': "test@user.com", 'first_name': "Test", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_users:index')) # Check that the user was created users = get_user_model().objects.filter(username='testuser') self.assertEqual(users.count(), 1) self.assertEqual(users.first().email, 'test@user.com') def test_create_with_password_mismatch(self): response = self.post({ 'username': "testuser", 'email': "test@user.com", 'first_name': "Test", 'last_name': "User", 'password1': "password1", 'password2': "password2", }) # Should remain on page self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/create.html') self.assertTrue(response.context['form'].errors['password2']) # Check that the user was not created users = get_user_model().objects.filter(username='testuser') self.assertEqual(users.count(), 0) class TestUserEditView(TestCase, WagtailTestUtils): def setUp(self): # Create a user to edit self.test_user = get_user_model().objects.create_user( username='testuser', email='testuser@email.com', password='password' ) # Login self.login() def get(self, params={}, user_id=None): return self.client.get(reverse('wagtailusers_users:edit', args=(user_id or self.test_user.id, )), params) def post(self, post_data={}, user_id=None): return self.client.post(reverse('wagtailusers_users:edit', args=(user_id or self.test_user.id, )), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/edit.html') def test_nonexistant_redirect(self): self.assertEqual(self.get(user_id=100000).status_code, 404) def test_edit(self): response = self.post({ 'username': "testuser", 'email': "test@user.com", 'first_name': "Edited", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_users:index')) # Check that the user was edited user = get_user_model().objects.get(id=self.test_user.id) self.assertEqual(user.first_name, 'Edited') def test_edit_validation_error(self): # Leave "username" field blank. This should give a validation error response = self.post({ 'username': "", 'email': "test@user.com", 'first_name': "Teset", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should not redirect to index self.assertEqual(response.status_code, 200) class TestUserProfileCreation(TestCase, WagtailTestUtils): def setUp(self): # Create a user self.test_user = get_user_model().objects.create_user( username='testuser', email='testuser@email.com', password='password' ) def test_user_created_without_profile(self): self.assertEqual(UserProfile.objects.filter(user=self.test_user).count(), 0) with self.assertRaises(UserProfile.DoesNotExist): self.test_user.userprofile def test_user_profile_created_when_method_called(self): self.assertIsInstance(UserProfile.get_for_user(self.test_user), UserProfile) # and get it from the db too self.assertEqual(UserProfile.objects.filter(user=self.test_user).count(), 1) class TestGroupIndexView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_groups:index'), params) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/index.html') def test_search(self): response = self.get({'q': "Hello"}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['query_string'], "Hello") def test_pagination(self): pages = ['0', '1', '-1', '9999', 'Not a page'] for page in pages: response = self.get({'p': page}) self.assertEqual(response.status_code, 200) class TestGroupCreateView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_groups:add'), params) def post(self, post_data={}): post_defaults = { 'page_permissions-TOTAL_FORMS': ['0'], 'page_permissions-MAX_NUM_FORMS': ['1000'], 'page_permissions-INITIAL_FORMS': ['0'], } for k, v in six.iteritems(post_defaults): post_data[k] = post_data.get(k, v) return self.client.post(reverse('wagtailusers_groups:add'), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/create.html') def test_create_group(self): response = self.post({'name': "test group"}) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_groups:index')) # Check that the user was created groups = Group.objects.filter(name='test group') self.assertEqual(groups.count(), 1) def test_group_create_adding_permissions(self): response = self.post({ 'name': "test group", 'page_permissions-0-id': [''], 'page_permissions-0-page': ['1'], 'page_permissions-0-permission_type': ['publish'], 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['edit'], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now exists, with two page permissions new_group = Group.objects.get(name='test group') self.assertEqual(new_group.page_permissions.all().count(), 2) @unittest.expectedFailure def test_duplicate_page_permissions_error(self): # Try to submit duplicate page permission entries response = self.post({ 'name': "test group", 'page_permissions-0-id': [''], 'page_permissions-0-page': ['1'], 'page_permissions-0-permission_type': ['publish'], 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['publish'], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertEqual(response.status_code, 200) # the second form should have errors self.assertEqual(bool(response.context['formset'].errors[0]), False) self.assertEqual(bool(response.context['formset'].errors[1]), True) class TestGroupEditView(TestCase, WagtailTestUtils): def setUp(self): # Create a group to edit self.test_group = Group.objects.create(name='test group') self.root_page = Page.objects.get(id=1) self.root_add_permission = GroupPagePermission.objects.create(page=self.root_page, permission_type='add', group=self.test_group) # Get the hook-registered permissions, and add one to this group self.registered_permissions = Permission.objects.none() for fn in hooks.get_hooks('register_permissions'): self.registered_permissions = self.registered_permissions | fn() self.existing_permission = self.registered_permissions.order_by('pk')[0] self.another_permission = self.registered_permissions.order_by('pk')[1] self.test_group.permissions.add(self.existing_permission) # Login self.login() def get(self, params={}, group_id=None): return self.client.get(reverse('wagtailusers_groups:edit', args=(group_id or self.test_group.id, )), params) def post(self, post_data={}, group_id=None): post_defaults = { 'name': 'test group', 'permissions': [self.existing_permission.id], 'page_permissions-TOTAL_FORMS': ['1'], 'page_permissions-MAX_NUM_FORMS': ['1000'], 'page_permissions-INITIAL_FORMS': ['1'], # as we have one page permission already 'page_permissions-0-id': [self.root_add_permission.id], 'page_permissions-0-page': [self.root_add_permission.page.id], 'page_permissions-0-permission_type': [self.root_add_permission.permission_type] } for k, v in six.iteritems(post_defaults): post_data[k] = post_data.get(k, v) return self.client.post(reverse( 'wagtailusers_groups:edit', args=(group_id or self.test_group.id, )), post_data) def add_non_registered_perm(self): # Some groups may have django permissions assigned that are not # hook-registered as part of the wagtail interface. We need to ensure # that these permissions are not overwritten by our views. # Tests that use this method are testing the aforementioned # functionality. self.non_registered_perms = Permission.objects.exclude(id__in=self.registered_permissions) self.non_registered_perm = self.non_registered_perms[0] self.test_group.permissions.add(self.non_registered_perm) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/edit.html') def test_nonexistant_group_redirect(self): self.assertEqual(self.get(group_id=100000).status_code, 404) def test_group_edit(self): response = self.post({'name': "test group edited"}) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_groups:index')) # Check that the group was edited group = Group.objects.get(id=self.test_group.id) self.assertEqual(group.name, 'test group edited') def test_group_edit_validation_error(self): # Leave "name" field blank. This should give a validation error response = self.post({'name': ""}) # Should not redirect to index self.assertEqual(response.status_code, 200) def test_group_edit_adding_page_permissions(self): # The test group has one page permission to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.post({ 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['publish'], 'page_permissions-2-id': [''], 'page_permissions-2-page': ['1'], 'page_permissions-2-permission_type': ['edit'], 'page_permissions-TOTAL_FORMS': ['3'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now has three page permissions self.assertEqual(self.test_group.page_permissions.count(), 3) def test_group_edit_deleting_page_permissions(self): # The test group has one page permissions to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.post({ 'page_permissions-0-DELETE': ['1'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now has zero page permissions self.assertEqual(self.test_group.page_permissions.count(), 0) def test_group_edit_loads_with_page_permissions_shown(self): # The test group has one page permission to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.get() self.assertEqual(response.context['formset'].management_form['INITIAL_FORMS'].value(), 1) self.assertEqual(response.context['formset'].forms[0].instance, self.root_add_permission) root_edit_perm = GroupPagePermission.objects.create(page=self.root_page, permission_type='edit', group=self.test_group) # The test group now has two page permissions self.assertEqual(self.test_group.page_permissions.count(), 2) # Reload the page and check the form instances response = self.get() self.assertEqual(response.context['formset'].management_form['INITIAL_FORMS'].value(), 2) self.assertEqual(response.context['formset'].forms[0].instance, self.root_add_permission) self.assertEqual(response.context['formset'].forms[1].instance, root_edit_perm) def test_duplicate_page_permissions_error(self): # Try to submit duplicate page permission entries response = self.post({ 'page_permissions-1-id': [''], 'page_permissions-1-page': [self.root_add_permission.page.id], 'page_permissions-1-permission_type': [self.root_add_permission.permission_type], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertEqual(response.status_code, 200) # the second form should have errors self.assertEqual(bool(response.context['formset'].errors[0]), False) self.assertEqual(bool(response.context['formset'].errors[1]), True) def test_group_add_registered_django_permissions(self): # The test group has one django permission to begin with self.assertEqual(self.test_group.permissions.count(), 1) response = self.post({ 'permissions': [self.existing_permission.id, self.another_permission.id] }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) self.assertEqual(self.test_group.permissions.count(), 2) def test_group_form_includes_non_registered_permissions_in_initial_data(self): self.add_non_registered_perm() original_permissions = self.test_group.permissions.all() self.assertEqual(original_permissions.count(), 2) response = self.get() # See that the form is set up with the correct initial data self.assertEqual( response.context['form'].initial.get('permissions'), list(original_permissions.values_list('id', flat=True)) ) def test_group_retains_non_registered_permissions_when_editing(self): self.add_non_registered_perm() original_permissions = list(self.test_group.permissions.all()) # list() to force evaluation # submit the form with no changes (only submitting the exsisting # permission, as in the self.post function definition) self.post() # See that the group has the same permissions as before self.assertEqual(list(self.test_group.permissions.all()), original_permissions) self.assertEqual(self.test_group.permissions.count(), 2) def test_group_retains_non_registered_permissions_when_adding(self): self.add_non_registered_perm() # Add a second registered permission self.post({ 'permissions': [self.existing_permission.id, self.another_permission.id] }) # See that there are now three permissions in total self.assertEqual(self.test_group.permissions.count(), 3) # ...including the non-registered one self.assertIn(self.non_registered_perm, self.test_group.permissions.all()) def test_group_retains_non_registered_permissions_when_deleting(self): self.add_non_registered_perm() # Delete all registered permissions self.post({'permissions': []}) # See that the non-registered permission is still there self.assertEqual(self.test_group.permissions.count(), 1) self.assertEqual(self.test_group.permissions.all()[0], self.non_registered_perm)
bsd-3-clause
aetilley/revscoring
revscoring/datasources/parent_revision.py
1
1575
import mwparserfromhell as mwp from deltas.tokenizers import wikitext_split from . import revision from .datasource import Datasource metadata = Datasource("parent_revision.metadata") """ Returns a :class:`~revscoring.datasources.types.RevisionMetadata` for the parent revision. """ text = Datasource("parent_revision.text") """ Returns the text content of the parent revision. """ ################################ Tokenized ##################################### def process_tokens(revision_text): return [t for t in wikitext_split.tokenize(revision_text or '')] tokens = Datasource("parent_revision.tokens", process_tokens, depends_on=[text]) """ Returns a list of tokens. """ ############################### Parse tree ##################################### def process_parse_tree(revision_text): return mwp.parse(revision_text or "") parse_tree = Datasource("parent_revision.parse_tree", process_parse_tree, depends_on=[text]) """ Returns a :class:`mwparserfromhell.wikicode.WikiCode` abstract syntax tree representing the content of the revision. """ content = Datasource("parent_revision.content", revision.process_content, depends_on=[parse_tree]) """ Returns the raw content (no markup or templates) of the revision. """ content_tokens = Datasource("parent_revision.content_tokens", revision.process_content_tokens, depends_on=[content]) """ Returns tokens from the raw content (no markup or templates) of the current revision """
mit
wasade/picrust
scripts/pool_test_datasets.py
1
11756
#!/usr/bin/env python # File created on 10 April 2012 from __future__ import division __author__ = "Jesse Zaneveld" __copyright__ = "Copyright 2011-2013, The PICRUSt Project" __credits__ = ["Jesse Zaneveld"] __license__ = "GPL" __version__ = "1.0.0-dev" __maintainer__ = "Jesse Zaneveld" __email__ = "zaneveld@gmail.com" __status__ = "Development" from collections import defaultdict from os import listdir from os.path import join from cogent.util.option_parsing import parse_command_line_parameters,\ make_option from picrust.evaluate_test_datasets import unzip,evaluate_test_dataset,\ update_pooled_data, run_accuracy_calculations_on_biom_table,run_accuracy_calculations_on_pooled_data,\ format_scatter_data, format_correlation_data, run_and_format_roc_analysis from biom.parse import parse_biom_table, convert_biom_to_table script_info = {} script_info['brief_description'] = "Pool character predictions within a directory, given directories of expected vs. observed test results" script_info['script_description'] =\ """The script finds all paired expected and observed values in a set of directories and generates pooled .biom files in a specified output directory""" script_info['script_usage'] = [("","Pool .biom files according to holdout_distance.","%prog -i obs_otu_table_dir -e exp_otu_table_dir -p distance -o./evaluation_results/pooled_by_distance/")] script_info['output_description']= "Outputs will be obs,exp data points for the comparison" script_info['required_options'] = [ make_option('-i','--trait_table_dir',type="existing_dirpath",help='the input trait table directory (files in biom format)'),\ make_option('-e','--exp_trait_table_dir',type="existing_dirpath",help='the input expected trait table directory (files in biom format)'),\ make_option('-o','--output_dir',type="new_dirpath",help='the output directory'), ] script_info['optional_options'] = [ make_option('-f','--field_order',\ default='file_type,prediction_method,weighting_method,holdout_method,distance,organism',help='pass comma-separated categories, in the order they appear in file names. Categories are "file_type","prediction_method","weighting_method","holdout_method" (randomization vs. holdout),"distance",and "organism". Example: "-f file_type,test_method,asr_method specifies that files will be in the form: predict_traits--distance_exclusion--wagner. Any unspecified values are set to "not_specified". [default: %default]'),\ make_option('-p','--pool_by',\ default=False,help='pass comma-separated categories to pool results by those metadata categories. Valid categories are: holdout_method, prediction_method,weighting_method,distance and organism. For example, pass "distance" to output results pooled by holdout distance in addition to holdout method and prediction method [default: %default]') ] script_info['version'] = __version__ def iter_prediction_expectation_pairs(obs_dir_fp,exp_dir_fp,file_name_field_order,file_name_delimiter,verbose=False): """Iterate pairs of observed, expected biom file names""" input_files=sorted(listdir(obs_dir_fp)) for file_number,f in enumerate(input_files): if verbose: print "\nExamining file {0} of {1}: {2}".format(file_number+1,len(input_files),f) if 'accuracy_metrics' in f: print "%s is an Accuracy file...skipping" %str(f) continue #filename_components_list = f.split(file_name_delimiter) #Get predicted traits filename_metadata = get_metadata_from_filename(f,file_name_field_order,\ file_name_delimiter,verbose=verbose) if filename_metadata.get('file_type',None) == 'predict_traits': if verbose: #print "Found a prediction file" print "\tLoading .biom format observation table:",f try: obs_table =\ parse_biom_table(open(join(obs_dir_fp,f),'U')) except ValueError: print 'Failed, skipping...' continue # raise RuntimeError(\ # "Could not parse predicted trait file: %s. Is it a .biom formatted file?" %(f)) else: continue # Get paired observation file exp_filename = file_name_delimiter.join(['exp_biom_traits',filename_metadata['holdout_method'],filename_metadata['distance'],filename_metadata['organism']]) exp_filepath = join(exp_dir_fp,exp_filename) if verbose: print "\tLooking for the expected trait file matching %s here: %s" %(f,exp_filepath) try: exp_table =\ parse_biom_table(open(exp_filepath,"U")) except IOError, e: if strict: raise IOError(e) else: if verbose: print "Missing expectation file....skipping!" continue yield obs_table,exp_table,f def get_metadata_from_filename(f,file_name_field_order,file_name_delimiter,\ default_text='not_specified',verbose=False): """Extract metadata values from a filename""" filename_components = {} for i,field in enumerate(f.split(file_name_delimiter)): filename_components[i]=field #if verbose: # print "Filename components:",filename_components filename_metadata = {} try: for field in file_name_field_order.keys(): filename_metadata[field] =\ filename_components.get(file_name_field_order.get(field,default_text),default_text) #if verbose: # print "filename_metadata:",filename_metadata except IndexError, e: print "Could not parse filename %s using delimiter: %s. Skipping..." %(f,file_name_delimiter) return None return filename_metadata def pool_test_dataset_dir(obs_dir_fp,exp_dir_fp,file_name_delimiter="--",\ file_name_field_order=\ {'file_type':0,"prediction_method":1,"weighting_method":2,"holdout_method":3,\ "distance":4,"organism":5},strict=False, verbose=True,pool_by=['distance']): """Retrun pooled control & evaluation results from the given directories obs_dir_fp -- directory containing PICRUST-predicted genomes. These MUST start with 'predict_traits', and must contain the values specified in file_name_field_order,\ separated by the delimiter given in file_name_delimiter. For example: predict_traits--exclude_tips_by_distance--0.87--'NC_000913|646311926' exp_dir_fp -- as obs_dir_fp above, but expectation file names (usually sequenced genomes with known gene content) must start with exp_biom_traits file_name_delimiter -- the delimiter that separates metadata stored in the filename NOTE: technically this isn't the best way of doing things. We may want at some point to revisit this setup and store metadata about each comparison in a separate file. But storing in the filename is convenient for our initial analysis. file_name_field_order -- the order of the required metadata fields in the filename. Required fields are file_type,method,distance,and organism pool_by -- if passed, concatenate traits from each trial that is identical in this category. e.g. pool_by 'distance' will pool traits across individual test genomes with the same holdout distance. The method assumes that for each file type in the observed directory, a paired file is also found in the exp_dir with similar method, distance, and organism, but a varied file type (test_tree, test_trait_table) Process: 1. Search test directory for all gene predictions in the correct format 2. For each, find the corresponding expected trait table in the expectation file 3. Pool by specified pool_by values 4. Return dicts of pooled observation,expectation values """ trials = defaultdict(list) #We'll want a quick unzip fn for converting points to trials #TODO: separate out into a 'get_paired_data_from_dirs' function pooled_observations = {} pooled_expectations = {} pairs = iter_prediction_expectation_pairs(obs_dir_fp,exp_dir_fp,file_name_field_order,file_name_delimiter,verbose=verbose) file_number = 0 for obs_table,exp_table,filename in pairs: #print "analyzing filename:",filename filename_metadata= get_metadata_from_filename(filename,file_name_field_order,\ file_name_delimiter,verbose=verbose) #base_tag = '%s\t%s\t' %(filename_metadata['holdout_method'],filename_metadata['prediction_method']) #tags = [base_tag+'all_results'] if 'file_type' in pool_by: pool_by.remove('file_type') #we do this manually at the end combined_tag = ['all']*len(file_name_field_order.keys()) for field in file_name_field_order.keys(): #print combined_tag #print file_name_field_order idx = file_name_field_order[field] #print idx if field in pool_by: combined_tag[idx] = filename_metadata[field] tags=[file_name_delimiter.join(combined_tag)] if verbose: print "Pooling by:", pool_by print "Combined tags:",tags pooled_observations,pooled_expectations =\ update_pooled_data(obs_table,exp_table,tags,pooled_observations,\ pooled_expectations,str(file_number),verbose=verbose) file_number += 1 return pooled_observations,pooled_expectations def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) pool_by = opts.pool_by.split(',') #Construct a dict from user specified field order file_name_field_order = {} for i,field in enumerate(opts.field_order.split(',')): file_name_field_order[field]=i if opts.verbose: print "Assuming file names are in this order:",file_name_field_order for k in pool_by: #Check that we're only pooling by values that exist if k not in file_name_field_order.keys(): err_text=\ "Bad value for option '--pool_by'. Can't pool by '%s'. Valid categories are: %s" %(k,\ ",".join(file_name_field_order.keys())) raise ValueError(err_text) if opts.verbose: print "Pooling results by:",pool_by file_name_delimiter='--' pooled_observations,pooled_expectations = pool_test_dataset_dir(opts.trait_table_dir,\ opts.exp_trait_table_dir,file_name_delimiter=file_name_delimiter,\ file_name_field_order=file_name_field_order,pool_by=pool_by,\ verbose=opts.verbose) #prediction_prefix = 'predict_traits' #expectation_prefix = 'exp_biom_traits' for tag in pooled_observations.keys(): obs_table = pooled_observations[tag] exp_table = pooled_expectations[tag] #obs_table_filename = file_name_delimiter.join([prediction_prefix]+[t for t in tag.split()]) #exp_table_filename = file_name_delimiter.join([expectation_prefix]+[t for t in tag.split()]) obs_table_filename = file_name_delimiter.join(['predict_traits']+[t for t in tag.split()]) exp_table_filename = file_name_delimiter.join(['exp_biom_table']+[t for t in tag.split()]) obs_outpath = join(opts.output_dir,obs_table_filename) exp_outpath = join(opts.output_dir,exp_table_filename) print obs_outpath print exp_outpath f=open(obs_outpath,'w') f.write(obs_table.delimitedSelf()) f.close() f=open(exp_outpath,'w') f.write(exp_table.delimitedSelf()) f.close() if __name__ == "__main__": main()
gpl-3.0
schets/scikit-learn
examples/svm/plot_iris.py
62
3251
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problem. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
aetilley/revscoring
revscoring/scorer_models/scorer_model.py
2
9100
""" .. autoclass:: revscoring.scorer_models.scorer_model.ScorerModel :members: .. autoclass:: revscoring.scorer_models.scorer_model.MLScorerModel :members: .. autoclass:: revscoring.scorer_models.scorer_model.ScikitLearnClassifier :members: """ import pickle import time import traceback from statistics import mean, stdev from sklearn.metrics import auc, roc_curve import yamlconf from ..extractors import Extractor from .util import normalize_json class ScorerModel: """ A model used to score a revision based on a set of features. """ def __init__(self, features, language=None, version=None): """ :Parameters: features : `list`(`Feature`) A list of `Feature` s that will be used to train the model and score new observations. language : `Language` A language to use when applying a feature set. """ self.features = tuple(features) self.language = language self.version = version def __getattr__(self, attr): if attr is "version": return None else: raise AttributeError(attr) def score(self, feature_values): """ Make a prediction or otherwise use the model to generate a score. :Parameters: feature_values : collection(`mixed`) an ordered collection of values that correspond to the `Feature` s provided to the constructor :Returns: A `dict` of statistics """ raise NotImplementedError() def _validate_features(self, feature_values): """ Checks the features against provided values to confirm types, ordinality, etc. """ return [feature.validate(feature_values) for feature, value in zip(self.feature, feature_values)] def _generate_stats(self, values): columns = zip(*values) stats = tuple((mean(c), stdev(c)) for c in columns) return stats def _scale_and_center(self, values, stats): for feature_values in values: yield (tuple((val-mean)/max(sd, 0.01) for (mean, sd), val in zip(stats, feature_values))) @classmethod def from_config(cls, config, name, section_key='scorer_models'): section = config[section_key][name] if 'module' in section: return yamlconf.import_module(section['module']) elif 'class' in section: class_path = section['class'] Class = yamlconf.import_module(class_path) assert cls != Class return Class.from_config(config, name, section_key=section_key) class MLScorerModel(ScorerModel): """ A machine learned model used to score a revision based on a set of features. Machine learned models are trained and tested against labeled data. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.trained = None def train(self, values_labels): """ Trains the model on labeled data. :Parameters: values_scores : `iterable`((`<values_labels>`, `<label>`)) an iterable of labeled data Where <values_labels> is an ordered collection of predictive values that correspond to the `Feature` s provided to the constructor :Returns: A dictionary of model statistics. """ raise NotImplementedError() def test(self, values_labels): """ Tests the model against a labeled data. Note that test data should be withheld from from train data. :Parameters: values_labels : `iterable`((`<feature_values>`, `<label>`)) an iterable of labeled data Where <values_labels> is an ordered collection of predictive values that correspond to the `Feature` s provided to the constructor :Returns: A dictionary of test results. """ raise NotImplementedError() @classmethod def load(cls, f): """ Reads serialized model information from a file. Make sure to open the file as a binary stream. """ return pickle.load(f) def dump(self, f): """ Writes serialized model information to a file. Make sure to open the file as a binary stream. """ pickle.dump(self, f) @classmethod def from_config(cls, config, name, section_key="scorer_models"): """ Constructs a model from configuration. """ section = config[section_key][name] if 'model_file' in section: return cls.load(open(section['model_file'], 'rb')) else: return cls(**{k:v for k,v in section.items() if k != "class"}) class ScikitLearnClassifier(MLScorerModel): def __init__(self, features, classifier_model, language=None, version=None): super().__init__(features, language=language, version=version) self.classifier_model = classifier_model def train(self, values_labels): """ :Returns: A dictionary with the fields: * seconds_elapsed -- Time in seconds spent fitting the model """ start = time.time() values, labels = zip(*values_labels) # Fit SVC model self.classifier_model.fit(values, labels) self.trained = time.time() return { 'seconds_elapsed': time.time() - start } def score(self, feature_values): """ Generates a score for a single revision based on a set of extracted feature_values. :Parameters: feature_values : collection(`mixed`) an ordered collection of values that correspond to the `Feature` s provided to the constructor :Returns: A dict with the fields: * predicion -- The most likely class * probability -- A mapping of probabilities for input classes corresponding to the classes the classifier was trained on. Generating this probability is slower than a simple prediction. """ prediction = self.classifier_model.predict([feature_values])[0] labels = self.classifier_model.classes_ probas = self.classifier_model.predict_proba([feature_values])[0] probability = {label:proba for label, proba in zip(labels, probas)} doc = { 'prediction': prediction, 'probability': probability } return normalize_json(doc) def test(self, values_labels): """ :Returns: A dictionary of test statistics with the fields: * accuracy -- The mean accuracy of classification * table -- A truth table for classification * roc * auc -- The area under the ROC curve * fpr -- A list of false-positive rate values * tpr -- A list of true-positive rate values * thresholds -- Thresholds on the decision function used to compute fpr and tpr. """ values, labels = zip(*values_labels) scores = [self.score(feature_values) for feature_values in values] return { 'table': self._label_table(scores, labels), 'accuracy': self.classifier_model.score(values, labels), 'roc': self._roc_stats(scores, labels, self.classifier_model.classes_) } @classmethod def _roc_stats(cls, scores, labels, possible_labels): if len(possible_labels) <= 2: # Binary classification, class choice doesn't matter. comparison_label = possible_labels[0] return cls._roc_single_class(scores, labels, comparison_label) else: roc_stats = {} for comparison_label in possible_labels: roc_stats[comparison_label] = \ cls._roc_single_class(scores, labels, comparison_label) return roc_stats @classmethod def _roc_single_class(cls, scores, labels, comparison_label): probabilities = [s['probability'][comparison_label] for s in scores] true_positives = [l == comparison_label for l in labels] fpr, tpr, thresholds = roc_curve(true_positives, probabilities) return { 'curve': { 'fpr': list(fpr), 'tpr': list(tpr), 'thresholds': list(thresholds) }, 'auc': auc(fpr, tpr) } @staticmethod def _label_table(scores, labels): predicteds = [s['prediction'] for s in scores] table = {} for pair in zip(labels, predicteds): table[pair] = table.get(pair, 0) + 1 return table
mit
pravsripad/mne-python
tutorials/epochs/20_visualize_epochs.py
2
11573
# -*- coding: utf-8 -*- """ .. _tut-visualize-epochs: ======================== Visualizing epoched data ======================== This tutorial shows how to plot epoched data as time series, how to plot the spectral density of epoched data, how to plot epochs as an imagemap, and how to plot the sensor locations and projectors stored in `~mne.Epochs` objects. We'll start by importing the modules we need, loading the continuous (raw) sample data, and cropping it to save memory: """ # %% import mne sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = (sample_data_folder / 'MEG' / 'sample' / 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, verbose=False).crop(tmax=120) # %% # To create the `~mne.Epochs` data structure, we'll extract the event # IDs stored in the :term:`stim channel`, map those integer event IDs to more # descriptive condition labels using an event dictionary, and pass those to the # `~mne.Epochs` constructor, along with the `~mne.io.Raw` data and the # desired temporal limits of our epochs, ``tmin`` and ``tmax`` (for a # detailed explanation of these steps, see :ref:`tut-epochs-class`). events = mne.find_events(raw, stim_channel='STI 014') event_dict = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'face': 5, 'button': 32} epochs = mne.Epochs(raw, events, tmin=-0.2, tmax=0.5, event_id=event_dict, preload=True) del raw # %% # Plotting ``Epochs`` as time series # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # .. sidebar:: Interactivity in pipelines and scripts # # To use the interactive features of the `~mne.Epochs.plot` method # when running your code non-interactively, pass the ``block=True`` # parameter, which halts the Python interpreter until the figure window is # closed. That way, any channels or epochs that you mark as "bad" will be # taken into account in subsequent processing steps. # # To visualize epoched data as time series (one time series per channel), the # `mne.Epochs.plot` method is available. It creates an interactive window # where you can scroll through epochs and channels, enable/disable any # unapplied :term:`SSP projectors <projector>` to see how they affect the # signal, and even manually mark bad channels (by clicking the channel name) or # bad epochs (by clicking the data) for later dropping. Channels marked "bad" # will be shown in light grey color and will be added to # ``epochs.info['bads']``; epochs marked as bad will be indicated as ``'USER'`` # in ``epochs.drop_log``. # # Here we'll plot only the "catch" trials from the :ref:`sample dataset # <sample-dataset>`, and pass in our events array so that the button press # responses also get marked (we'll plot them in red, and plot the "face" events # defining time zero for each epoch in blue). We also need to pass in # our ``event_dict`` so that the `~mne.Epochs.plot` method will know what # we mean by "button" — this is because subsetting the conditions by # calling ``epochs['face']`` automatically purges the dropped entries from # ``epochs.event_id``: catch_trials_and_buttonpresses = mne.pick_events(events, include=[5, 32]) epochs['face'].plot(events=catch_trials_and_buttonpresses, event_id=event_dict, event_color=dict(button='red', face='blue')) # %% # To see all sensors at once, we can use butterfly mode and group by selection: epochs['face'].plot(events=catch_trials_and_buttonpresses, event_id=event_dict, event_color=dict(button='red', face='blue'), group_by='selection', butterfly=True) # %% # Plotting projectors from an ``Epochs`` object # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # In the plot above we can see heartbeat artifacts in the magnetometer # channels, so before we continue let's load ECG projectors from disk and apply # them to the data: ecg_proj_file = (sample_data_folder / 'MEG' / 'sample' / 'sample_audvis_ecg-proj.fif') ecg_projs = mne.read_proj(ecg_proj_file) epochs.add_proj(ecg_projs) epochs.apply_proj() # %% # Just as we saw in the :ref:`tut-section-raw-plot-proj` section, we can plot # the projectors present in an `~mne.Epochs` object using the same # `~mne.Epochs.plot_projs_topomap` method. Since the original three # empty-room magnetometer projectors were inherited from the # `~mne.io.Raw` file, and we added two ECG projectors for each sensor # type, we should see nine projector topomaps: epochs.plot_projs_topomap(vlim='joint') # %% # Note that these field maps illustrate aspects of the signal that *have # already been removed* (because projectors in `~mne.io.Raw` data are # applied by default when epoching, and because we called # `~mne.Epochs.apply_proj` after adding additional ECG projectors from # file). You can check this by examining the ``'active'`` field of the # projectors: print(all(proj['active'] for proj in epochs.info['projs'])) # %% # Plotting sensor locations # ^^^^^^^^^^^^^^^^^^^^^^^^^ # # Just like `~mne.io.Raw` objects, `~mne.Epochs` objects # keep track of sensor locations, which can be visualized with the # `~mne.Epochs.plot_sensors` method: epochs.plot_sensors(kind='3d', ch_type='all') epochs.plot_sensors(kind='topomap', ch_type='all') # %% # Plotting the power spectrum of ``Epochs`` # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Again, just like `~mne.io.Raw` objects, `~mne.Epochs` objects # have a `~mne.Epochs.plot_psd` method for plotting the `spectral # density`_ of the data. epochs['auditory'].plot_psd(picks='eeg') # %% # It is also possible to plot spectral estimates across sensors as a scalp # topography, using `~mne.Epochs.plot_psd_topomap`. The default parameters will # plot five frequency bands (δ, θ, α, β, γ), will compute power based on # magnetometer channels, and will plot the power estimates in decibels: epochs['visual/right'].plot_psd_topomap() # %% # Just like `~mne.Epochs.plot_projs_topomap`, # `~mne.Epochs.plot_psd_topomap` has a ``vlim='joint'`` option for fixing # the colorbar limits jointly across all subplots, to give a better sense of # the relative magnitude in each frequency band. You can change which channel # type is used via the ``ch_type`` parameter, and if you want to view # different frequency bands than the defaults, the ``bands`` parameter takes a # list of tuples, with each tuple containing either a single frequency and a # subplot title, or lower/upper frequency limits and a subplot title: bands = [(10, '10 Hz'), (15, '15 Hz'), (20, '20 Hz'), (10, 20, '10-20 Hz')] epochs['visual/right'].plot_psd_topomap(bands=bands, vlim='joint', ch_type='grad') # %% # If you prefer untransformed power estimates, you can pass ``dB=False``. It is # also possible to normalize the power estimates by dividing by the total power # across all frequencies, by passing ``normalize=True``. See the docstring of # `~mne.Epochs.plot_psd_topomap` for details. # # # Plotting ``Epochs`` as an image map # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # A convenient way to visualize many epochs simultaneously is to plot them as # an image map, with each row of pixels in the image representing a single # epoch, the horizontal axis representing time, and each pixel's color # representing the signal value at that time sample for that epoch. Of course, # this requires either a separate image map for each channel, or some way of # combining information across channels. The latter is possible using the # `~mne.Epochs.plot_image` method; the former can be achieved with the # `~mne.Epochs.plot_image` method (one channel at a time) or with the # `~mne.Epochs.plot_topo_image` method (all sensors at once). # # By default, the image map generated by `~mne.Epochs.plot_image` will be # accompanied by a scalebar indicating the range of the colormap, and a time # series showing the average signal across epochs and a bootstrapped 95% # confidence band around the mean. `~mne.Epochs.plot_image` is a highly # customizable method with many parameters, including customization of the # auxiliary colorbar and averaged time series subplots. See the docstrings of # `~mne.Epochs.plot_image` and `mne.viz.plot_compare_evokeds` (which is # used to plot the average time series) for full details. Here we'll show the # mean across magnetometers for all epochs with an auditory stimulus: epochs['auditory'].plot_image(picks='mag', combine='mean') # %% # To plot image maps for individual sensors or a small group of sensors, use # the ``picks`` parameter. Passing ``combine=None`` (the default) will yield # separate plots for each sensor in ``picks``; passing ``combine='gfp'`` will # plot the global field power (useful for combining sensors that respond with # opposite polarity). # sphinx_gallery_thumbnail_number = 11 epochs['auditory'].plot_image(picks=['MEG 0242', 'MEG 0243']) epochs['auditory'].plot_image(picks=['MEG 0242', 'MEG 0243'], combine='gfp') # %% # To plot an image map for *all* sensors, use # `~mne.Epochs.plot_topo_image`, which is optimized for plotting a large # number of image maps simultaneously, and (in interactive sessions) allows you # to click on each small image map to pop open a separate figure with the # full-sized image plot (as if you had called `~mne.Epochs.plot_image` on # just that sensor). At the small scale shown in this tutorial it's hard to see # much useful detail in these plots; it's often best when plotting # interactively to maximize the topo image plots to fullscreen. The default is # a figure with black background, so here we specify a white background and # black foreground text. By default `~mne.Epochs.plot_topo_image` will # show magnetometers and gradiometers on the same plot (and hence not show a # colorbar, since the sensors are on different scales) so we'll also pass a # `~mne.channels.Layout` restricting each plot to one channel type. # First, however, we'll also drop any epochs that have unusually high signal # levels, because they can cause the colormap limits to be too extreme and # therefore mask smaller signal fluctuations of interest. reject_criteria = dict(mag=3000e-15, # 3000 fT grad=3000e-13, # 3000 fT/cm eeg=150e-6) # 150 µV epochs.drop_bad(reject=reject_criteria) for ch_type, title in dict(mag='Magnetometers', grad='Gradiometers').items(): layout = mne.channels.find_layout(epochs.info, ch_type=ch_type) epochs['auditory/left'].plot_topo_image(layout=layout, fig_facecolor='w', font_color='k', title=title) # %% # To plot image maps for all EEG sensors, pass an EEG layout as the ``layout`` # parameter of `~mne.Epochs.plot_topo_image`. Note also here the use of # the ``sigma`` parameter, which smooths each image map along the vertical # dimension (across epochs) which can make it easier to see patterns across the # small image maps (by smearing noisy epochs onto their neighbors, while # reinforcing parts of the image where adjacent epochs are similar). However, # ``sigma`` can also disguise epochs that have persistent extreme values and # maybe should have been excluded, so it should be used with caution. layout = mne.channels.find_layout(epochs.info, ch_type='eeg') epochs['auditory/left'].plot_topo_image(layout=layout, fig_facecolor='w', font_color='k', sigma=1) # %% # .. LINKS # # .. _spectral density: https://en.wikipedia.org/wiki/Spectral_density
bsd-3-clause
nwiizo/workspace_2017
keras_ex/example/lstm_text_generation.py
2
3300
'''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' from __future__ import print_function from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np import random import sys path = get_file('nietzsche.txt', origin="https://s3.amazonaws.com/text-datasets/nietzsche.txt") text = open(path).read().lower() print('corpus length:', len(text)) chars = sorted(list(set(text))) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 40 step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(128, input_shape=(maxlen, len(chars)))) model.add(Dense(len(chars))) model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) # train the model, output generated text after each iteration for iteration in range(1, 60): print() print('-' * 50) print('Iteration', iteration) model.fit(X, y, batch_size=128, nb_epoch=1) start_index = random.randint(0, len(text) - maxlen - 1) for diversity in [0.2, 0.5, 1.0, 1.2]: print() print('----- diversity:', diversity) generated = '' sentence = text[start_index: start_index + maxlen] generated += sentence print('----- Generating with seed: "' + sentence + '"') sys.stdout.write(generated) for i in range(400): x = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sentence): x[0, t, char_indices[char]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char sys.stdout.write(next_char) sys.stdout.flush() print()
mit
cbick/gps2gtfs
postprocessing/src/ExcelPrint.py
1
6823
from scipy import array,sort from pylab import find,hist,figure,repeat import subprocess def copy(txt): """ Copies txt to the clipboard (OSX only) """ p=subprocess.Popen(['pbcopy'],stdin=subprocess.PIPE) p.stdin.write(txt) p.stdin.close() def print_QE_tables(Qs,Es,qs,delim="\t"): """ Returns string of 'delim'-delimited printout. Assumes that Qs,Es are of the form returned by the Stats.QEPlot method, and that qs is the list of quantile percentages that were supplied to the same method. """ ret = "" rows = array(Qs.keys()) rows.sort() # we want 3 values for each Q and also the E qs = map(str,repeat(qs,3)) for i in range(len(qs)/3): qs[i*3+0] += " lower CI" qs[i*3+1] += " upper CI" cols = qs+["E","E-moe","E+moe"] ret += delim + delim.join(cols) + "\n" for row in rows: Q = Qs[row] E,moe = Es[row] ret += str(row) + delim for qlh in Q: #excel wants low,high,middle ret += delim.join(map(str,(qlh[1],qlh[2],qlh[0]))) + delim ret += str(E) + delim + str(E-moe) + delim + str(E+moe) ret += "\n" return ret def print_ecdf_annotations(ecdf,data,minx=-2000,weighted=True,delim="\t"): """ Returns string of 'delim'-delimited printout. Assumes that ecdf is of the form (x,p,a_n) as returned by the Stats.ecdf() method, and that data is the (optionally weighted) data provided to the same. """ import Stats ret = "" x,p,a_n = ecdf E_bar,E_moe = Stats.E(data,weighted=weighted,alpha=0.05); E_x,E_p,i = Stats.evaluate_ecdf(E_bar,x,p) zero_x,zero_p,j = Stats.evaluate_ecdf(0.0,x,p) x_q,p_q,i = Stats.find_quantile(0.05,x,p) ret += "x"+delim+"Expected Value\n" ret += str(minx) + delim + str(E_p) + "\n" ret += str(E_bar) + delim + str(E_p) + "\n" ret += str(E_bar) + delim + str(0) + "\n" ret += "\n" ret += "x"+delim+"On Time\n" ret += str(minx) + delim + str(zero_p) + "\n" ret += str(0) + delim + str(zero_p) + "\n" ret += str(0) + delim + str(0) + "\n" ret += "\n" ret += "x"+delim+"5% Quantile\n" ret += str(minx) + delim + str(p_q) + "\n" ret += str(x_q) + delim + str(p_q) + "\n" ret += str(x_q) + delim + str(0) + "\n" ret += "\n" return ret def print_ecdfs(ecdfs,delim="\t"): """ Returns string of 'delim'-delimited printout. Assumes the result provided is of the form { label : (x,p,a_n) } where each (x,p,a_n) are as returned by the Stats.ecdf() method. """ ret = "" cols = array(ecdfs.keys()) cols.sort() cols_per_series = 2 # Header ret += (delim*(cols_per_series-1)) ret += (delim*cols_per_series).join(map(str,cols)) + "\n" still_printing = list(cols) i = 0 while still_printing: for k in cols: x,p,a_n = ecdfs[k] if i >= len(x): if k in still_printing: still_printing.remove(k) ret += delim+delim else: ret += str(x[i]) + delim + str(p[i]) + delim ret += "\n" i += 1 return ret def print_expected_wait_vs_arrival(result,delim="\t"): """ Returns string of 'delim'-delimited printout. Assumes the result provided is of the format { headway : (arrivals, expected_waits, expected_wait_random) } """ ret = "" rows = set() for arrs,ews,ewr in result.values(): rows = rows.union(arrs) rows = array(list(rows)) rows.sort() cols = array(result.keys()) cols.sort() # Header; note the blank first entry ret += delim + delim.join(map(str,cols)) + "\n" for r in rows: ret += str(r) + delim for c in cols: arrs,ews,ewr = result[c] ri = find(arrs==r) if len(ri)==1: ret += str(ews[ri[0]]) elif len(ri) > 1: print "INSANITY" ret += delim ret += "\n" ret += "Random" + delim for c in cols: ret += str(result[c][2]) + delim ret += "\n" return ret def print_prob_transfer(result,delim="\t"): """ Returns string of 'delim'-delimited printout. Assumes the result provided is of the format { label : winprobs } where winprobs is a Nx2 array where the first column is window size and the second column is the probability. """ ret = "" rows = set() for winprobs in result.values(): rows = rows.union(winprobs[:,0]) rows = array(list(rows)) rows.sort() cols = array(result.keys()) cols.sort() # Header; note the blank first entry ret += delim + delim.join(map(str,cols)) + "\n" for r in rows: ret += str(r) + delim for c in cols: winprobs = result[c] wins,probs=winprobs[:,0],winprobs[:,1] ri = find(wins==r) if len(ri)==1: ret += str(probs[ri[0]]) elif len(ri) > 1: print "INSANITY" ret += delim ret += "\n" return ret def print_histogram(result,delim="\t",weighted=True,bins=10,normed=False): """ Returns string of 'delim'-delimited printout. Assumes the result provided is of the format { label : values } where values is a 1D list or array of values, if weighted is False, or a 2D array of values (1st column values, 2nd column weight) if weighted is True. Note that this function takes care of all the binning and histogramming for you, you just need to provide the data. """ ret = "" figure() #to avoid clobbering someone else's figure ## Since the pylab.hist() method doesn't actually implement ## barstacking with different-lengthed datasets, we have to ## first merge all data sets into one big histogram in order ## to determine the bin divisions; afterwards we can use that ## bin division to separately get each dataset's hist. if weighted: all_values = reduce( lambda accum,next: accum + list(next[:,0]), result.values(), [] ) all_weights = reduce( lambda accum,next: accum + list(next[:,1]), result.values(), [] ) else: all_values = reduce( lambda accum,next: concatenate(accum,next), result.values() ) all_weights = None # Note we are overriding bins here ns,bins,patches = hist(all_values,normed=normed,bins=bins,weights=all_weights) figure() ns = [] # Keeps the keys consistently ordered keys = list(result.keys()) for k in keys: v = result[k] if weighted: v,w = v[:,0],v[:,1] else: w = None n,b,p = hist(v,normed=normed,bins=bins,weights=w,label=str(k)) ns.append(n) rows = bins cols = array(keys) cols.sort() # Note space for two columns ret += delim + delim + delim.join(map(str,cols)) + "\n" for i in range(len(rows)-1): ret += str(rows[i]) + delim ret += str((rows[i]+rows[i+1])/2.0) + delim for n in ns: # Each n is a list of "how many" per bin ret += str(n[i]) + delim ret += "\n" ret += str(rows[-1]) + "\n" return ret
mit
pravsripad/mne-python
mne/utils/docs.py
1
147407
# -*- coding: utf-8 -*- """The documentation functions.""" # Authors: Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause from copy import deepcopy import inspect import os import os.path as op import re import sys import warnings import webbrowser from decorator import FunctionMaker from ._bunch import BunchConst from ..defaults import HEAD_SIZE_DEFAULT def _reflow_param_docstring(docstring, has_first_line=True, width=75): """Reflow text to a nice width for terminals. WARNING: does not handle gracefully things like .. versionadded:: """ maxsplit = docstring.count('\n') - 1 if has_first_line else -1 merged = ' '.join(line.strip() for line in docstring.rsplit('\n', maxsplit=maxsplit)) reflowed = '\n '.join(re.findall(fr'.{{1,{width}}}(?:\s+|$)', merged)) if has_first_line: reflowed = reflowed.replace('\n \n', '\n', 1) return reflowed ############################################################################## # Define our standard documentation entries # # To reduce redundancy across functions, please standardize the format to # ``argument_optional_keywords``. For example ``tmin_raw`` for an entry that # is specific to ``raw`` and since ``tmin`` is used other places, needs to # be disambiguated. This way the entries will be easy to find since they # are alphabetized (you can look up by the name of the argument). This way # the same ``docdict`` entries are easier to reuse. docdict = BunchConst() # %% # A docdict['accept'] = """ accept : bool If True (default False), accept the license terms of this dataset. """ docdict['add_ch_type_export_params'] = """ add_ch_type : bool Whether to incorporate the channel type into the signal label (e.g. whether to store channel "Fz" as "EEG Fz"). Only used for EDF format. Default is ``False``. """ docdict['add_data_kwargs'] = """ add_data_kwargs : dict | None Additional arguments to brain.add_data (e.g., ``dict(time_label_size=10)``). """ docdict['add_frames'] = """ add_frames : int | None If int, enable (>=1) or disable (0) the printing of stack frame information using formatting. Default (None) does not change the formatting. This can add overhead so is meant only for debugging. """ docdict['adjacency_clust'] = """ adjacency : scipy.sparse.spmatrix | None | False Defines adjacency between locations in the data, where "locations" can be spatial vertices, frequency bins, time points, etc. For spatial vertices, see: :func:`mne.channels.find_ch_adjacency`. If ``False``, assumes no adjacency (each location is treated as independent and unconnected). If ``None``, a regular lattice adjacency is assumed, connecting each {sp} location to its neighbor(s) along the last dimension of {{eachgrp}} ``{{x}}``{lastdim}. If ``adjacency`` is a matrix, it is assumed to be symmetric (only the upper triangular half is used) and must be square with dimension equal to ``{{x}}.shape[-1]`` {parone} or ``{{x}}.shape[-1] * {{x}}.shape[-2]`` {partwo} or (optionally) ``{{x}}.shape[-1] * {{x}}.shape[-2] * {{x}}.shape[-3]`` {parthree}.{memory} """ mem = (' If spatial adjacency is uniform in time, it is recommended to use ' 'a square matrix with dimension ``{x}.shape[-1]`` (n_vertices) to save ' 'memory and computation, and to use ``max_step`` to define the extent ' 'of temporal adjacency to consider when clustering.') comb = ' The function `mne.stats.combine_adjacency` may be useful for 4D data.' st = dict(sp='spatial', lastdim='', parone='(n_vertices)', partwo='(n_times * n_vertices)', parthree='(n_times * n_freqs * n_vertices)', memory=mem) tf = dict(sp='', lastdim=' (or the last two dimensions if ``{x}`` is 2D)', parone='(for 2D data)', partwo='(for 3D data)', parthree='(for 4D data)', memory=comb) nogroups = dict(eachgrp='', x='X') groups = dict(eachgrp='each group ', x='X[k]') docdict['adjacency_clust_1'] = \ docdict['adjacency_clust'].format(**tf).format(**nogroups) docdict['adjacency_clust_n'] = \ docdict['adjacency_clust'].format(**tf).format(**groups) docdict['adjacency_clust_st1'] = \ docdict['adjacency_clust'].format(**st).format(**nogroups) docdict['adjacency_clust_stn'] = \ docdict['adjacency_clust'].format(**st).format(**groups) docdict['adjust_dig_chpi'] = """ adjust_dig : bool If True, adjust the digitization locations used for fitting based on the positions localized at the start of the file. """ docdict['agg_fun_psd_topo'] = """ agg_fun : callable The function used to aggregate over frequencies. Defaults to :func:`numpy.sum` if ``normalize=True``, else :func:`numpy.mean`. """ docdict['align_view'] = """ align : bool If True, consider view arguments relative to canonical MRI directions (closest to MNI for the subject) rather than native MRI space. This helps when MRIs are not in standard orientation (e.g., have large rotations). """ docdict['allow_empty_eltc'] = """ allow_empty : bool | str ``False`` (default) will emit an error if there are labels that have no vertices in the source estimate. ``True`` and ``'ignore'`` will return all-zero time courses for labels that do not have any vertices in the source estimate, and True will emit a warning while and "ignore" will just log a message. .. versionchanged:: 0.21.0 Support for "ignore". """ docdict['alpha'] = """ alpha : float in [0, 1] Alpha level to control opacity. """ docdict['anonymize_info_notes'] = """ Removes potentially identifying information if it exists in ``info``. Specifically for each of the following we use: - meas_date, file_id, meas_id A default value, or as specified by ``daysback``. - subject_info Default values, except for 'birthday' which is adjusted to maintain the subject age. - experimenter, proj_name, description Default strings. - utc_offset ``None``. - proj_id Zeros. - proc_history Dates use the ``meas_date`` logic, and experimenter a default string. - helium_info, device_info Dates use the ``meas_date`` logic, meta info uses defaults. If ``info['meas_date']`` is ``None``, it will remain ``None`` during processing the above fields. Operates in place. """ # raw/epochs/evoked apply_function method # apply_function method summary applyfun_summary = """\ The function ``fun`` is applied to the channels defined in ``picks``. The {} object's data is modified in-place. If the function returns a different data type (e.g. :py:obj:`numpy.complex128`) it must be specified using the ``dtype`` parameter, which causes the data type of **all** the data to change (even if the function is only applied to channels in ``picks``).{} .. note:: If ``n_jobs`` > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporarily stored in memory. .. note:: If the data type changes (``dtype != None``), more memory is required since the original and the converted data needs to be stored in memory. """ applyfun_preload = (' The object has to have the data loaded e.g. with ' '``preload=True`` or ``self.load_data()``.') docdict['applyfun_summary_epochs'] = \ applyfun_summary.format('epochs', applyfun_preload) docdict['applyfun_summary_evoked'] = \ applyfun_summary.format('evoked', '') docdict['applyfun_summary_raw'] = \ applyfun_summary.format('raw', applyfun_preload) docdict['area_alpha_plot_psd'] = """ area_alpha : float Alpha for the area. """ docdict['area_mode_plot_psd'] = """ area_mode : str | None Mode for plotting area. If 'std', the mean +/- 1 STD (across channels) will be plotted. If 'range', the min and max (across channels) will be plotted. Bad channels will be excluded from these calculations. If None, no area will be plotted. If average=False, no area is plotted. """ docdict['aseg'] = """ aseg : str The anatomical segmentation file. Default ``aparc+aseg``. This may be any anatomical segmentation file in the mri subdirectory of the Freesurfer subject directory. """ docdict['average_plot_psd'] = """ average : bool If False, the PSDs of all channels is displayed. No averaging is done and parameters area_mode and area_alpha are ignored. When False, it is possible to paint an area (hold left mouse button and drag) to plot a topomap. """ docdict['average_psd'] = """ average : str | None How to average the segments. If ``mean`` (default), calculate the arithmetic mean. If ``median``, calculate the median, corrected for its bias relative to the mean. If ``None``, returns the unaggregated segments. """ docdict['average_tfr'] = """ average : bool, default True If ``False`` return an `EpochsTFR` containing separate TFRs for each epoch. If ``True`` return an `AverageTFR` containing the average of all TFRs across epochs. .. note:: Using ``average=True`` is functionally equivalent to using ``average=False`` followed by ``EpochsTFR.average()``, but is more memory efficient. .. versionadded:: 0.13.0 """ docdict['axes_psd_topo'] = """ axes : list of Axes | None List of axes to plot consecutive topographies to. If ``None`` the axes will be created automatically. Defaults to ``None``. """ docdict['axes_topomap'] = """ axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as ``times`` (unless ``times`` is None). If instance of Axes, ``times`` must be a float or a list of one float. Defaults to None. """ docdict['azimuth'] = """ azimuth : float The azimuthal angle of the camera rendering the view in degrees. """ # %% # B docdict['bad_condition_maxwell_cond'] = """ bad_condition : str How to deal with ill-conditioned SSS matrices. Can be "error" (default), "warning", "info", or "ignore". """ docdict['bands_psd_topo'] = """ bands : list of tuple | None The frequencies or frequency ranges to plot. Length-2 tuples specify a single frequency and a subplot title (e.g., ``(6.5, 'presentation rate')``); length-3 tuples specify lower and upper band edges and a subplot title. If ``None`` (the default), expands to:: bands = [(0, 4, 'Delta'), (4, 8, 'Theta'), (8, 12, 'Alpha'), (12, 30, 'Beta'), (30, 45, 'Gamma')] In bands where a single frequency is provided, the topomap will reflect the single frequency bin that is closest to the provided value. """ docdict['base_estimator'] = """ base_estimator : object The base estimator to iteratively fit on a subset of the dataset. """ _baseline_rescale_base = """ baseline : None | tuple of length 2 The time interval to consider as "baseline" when applying baseline correction. If ``None``, do not apply baseline correction. If a tuple ``(a, b)``, the interval is between ``a`` and ``b`` (in seconds), including the endpoints. If ``a`` is ``None``, the **beginning** of the data is used; and if ``b`` is ``None``, it is set to the **end** of the interval. If ``(None, None)``, the entire time interval is used. .. note:: The baseline ``(a, b)`` includes both endpoints, i.e. all timepoints ``t`` such that ``a <= t <= b``. """ docdict['baseline_epochs'] = f"""{_baseline_rescale_base} Correction is applied **to each epoch and channel individually** in the following way: 1. Calculate the mean signal of the baseline period. 2. Subtract this mean from the **entire** epoch. """ docdict['baseline_evoked'] = f"""{_baseline_rescale_base} Correction is applied **to each channel individually** in the following way: 1. Calculate the mean signal of the baseline period. 2. Subtract this mean from the **entire** ``Evoked``. """ docdict['baseline_report'] = f"""{_baseline_rescale_base} Correction is applied in the following way **to each channel:** 1. Calculate the mean signal of the baseline period. 2. Subtract this mean from the **entire** time period. For `~mne.Epochs`, this algorithm is run **on each epoch individually.** """ docdict['baseline_rescale'] = _baseline_rescale_base docdict['baseline_stc'] = f"""{_baseline_rescale_base} Correction is applied **to each source individually** in the following way: 1. Calculate the mean signal of the baseline period. 2. Subtract this mean from the **entire** source estimate data. .. note:: Baseline correction is appropriate when signal and noise are approximately additive, and the noise level can be estimated from the baseline interval. This can be the case for non-normalized source activities (e.g. signed and unsigned MNE), but it is not the case for normalized estimates (e.g. signal-to-noise ratios, dSPM, sLORETA). """ docdict['border_topomap'] = """ border : float | 'mean' Value to extrapolate to on the topomap borders. If ``'mean'`` (default), then each extrapolated point has the average value of its neighbours. .. versionadded:: 0.20 """ docdict['brain_kwargs'] = """ brain_kwargs : dict | None Additional arguments to the :class:`mne.viz.Brain` constructor (e.g., ``dict(silhouette=True)``). """ docdict['browser'] = """ fig : matplotlib.figure.Figure | mne_qt_browser.figure.MNEQtBrowser Browser instance. """ docdict['buffer_size_clust'] = """ buffer_size : int | None Block size to use when computing test statistics. This can significantly reduce memory usage when ``n_jobs > 1`` and memory sharing between processes is enabled (see :func:`mne.set_cache_dir`), because ``X`` will be shared between processes and each process only needs to allocate space for a small block of locations at a time. """ docdict['by_event_type'] = """ by_event_type : bool When ``False`` (the default) all epochs are processed together and a single :class:`~mne.Evoked` object is returned. When ``True``, epochs are first grouped by event type (as specified using the ``event_id`` parameter) and a list is returned containing a separate :class:`~mne.Evoked` object for each event type. The ``.comment`` attribute is set to the label of the event type. .. versionadded:: 0.24.0 """ # %% # C docdict['calibration_maxwell_cal'] = """ calibration : str | None Path to the ``'.dat'`` file with fine calibration coefficients. File can have 1D or 3D gradiometer imbalance correction. This file is machine/site-specific. """ docdict['cbar_fmt_psd_topo'] = """ cbar_fmt : str Format string for the colorbar tick labels. If ``'auto'``, is equivalent to '%0.3f' if ``dB=False`` and '%0.1f' if ``dB=True``. Defaults to ``'auto'``. """ docdict['cbar_fmt_topomap'] = """ cbar_fmt : str String format for colorbar values. """ docdict['center'] = """ center : float or None If not None, center of a divergent colormap, changes the meaning of fmin, fmax and fmid. """ docdict['ch_name_ecg'] = """ ch_name : None | str The name of the channel to use for ECG peak detection. If ``None`` (default), ECG channel is used if present. If ``None`` and **no** ECG channel is present, a synthetic ECG channel is created from the cross-channel average. This synthetic channel can only be created from MEG channels. """ docdict['ch_name_eog'] = """ ch_name : str | list of str | None The name of the channel(s) to use for EOG peak detection. If a string, can be an arbitrary channel. This doesn't have to be a channel of ``eog`` type; it could, for example, also be an ordinary EEG channel that was placed close to the eyes, like ``Fp1`` or ``Fp2``. Multiple channel names can be passed as a list of strings. If ``None`` (default), use the channel(s) in ``raw`` with type ``eog``. """ docdict['ch_names_annot'] = """ ch_names : list | None List of lists of channel names associated with the annotations. Empty entries are assumed to be associated with no specific channel, i.e., with all channels or with the time slice itself. None (default) is the same as passing all empty lists. For example, this creates three annotations, associating the first with the time interval itself, the second with two channels, and the third with a single channel:: Annotations(onset=[0, 3, 10], duration=[1, 0.25, 0.5], description=['Start', 'BAD_flux', 'BAD_noise'], ch_names=[[], ['MEG0111', 'MEG2563'], ['MEG1443']]) """ docdict['ch_type_evoked_topomap'] = """ ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. """ docdict['ch_type_set_eeg_reference'] = """ ch_type : list of str | str The name of the channel type to apply the reference to. Valid channel types are ``'auto'``, ``'eeg'``, ``'ecog'``, ``'seeg'``, ``'dbs'``. If ``'auto'``, the first channel type of eeg, ecog, seeg or dbs that is found (in that order) will be selected. .. versionadded:: 0.19 """ docdict['ch_type_topomap'] = """ ch_type : str The channel type being plotted. Determines the ``'auto'`` extrapolation mode. .. versionadded:: 0.21 """ chwise = """ channel_wise : bool Whether to apply the function to each channel {}individually. If ``False``, the function will be applied to all {}channels at once. Default ``True``. """ docdict['channel_wise_applyfun'] = chwise.format('', '') docdict['channel_wise_applyfun_epo'] = chwise.format( 'in each epoch ', 'epochs and ') docdict['check_disjoint_clust'] = """ check_disjoint : bool Whether to check if the connectivity matrix can be separated into disjoint sets before clustering. This may lead to faster clustering, especially if the second dimension of ``X`` (usually the "time" dimension) is large. """ docdict['chpi_amplitudes'] = """ chpi_amplitudes : dict The time-varying cHPI coil amplitudes, with entries "times", "proj", and "slopes". """ docdict['chpi_locs'] = """ chpi_locs : dict The time-varying cHPI coils locations, with entries "times", "rrs", "moments", and "gofs". """ docdict['clim'] = """ clim : str | dict Colorbar properties specification. If 'auto', set clim automatically based on data percentiles. If dict, should contain: ``kind`` : 'value' | 'percent' Flag to specify type of limits. ``lims`` : list | np.ndarray | tuple of float, 3 elements Lower, middle, and upper bounds for colormap. ``pos_lims`` : list | np.ndarray | tuple of float, 3 elements Lower, middle, and upper bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points. .. note:: Only one of ``lims`` or ``pos_lims`` should be provided. Only sequential colormaps should be used with ``lims``, and only divergent colormaps should be used with ``pos_lims``. """ docdict['clim_onesided'] = """ clim : str | dict Colorbar properties specification. If 'auto', set clim automatically based on data percentiles. If dict, should contain: ``kind`` : 'value' | 'percent' Flag to specify type of limits. ``lims`` : list | np.ndarray | tuple of float, 3 elements Lower, middle, and upper bound for colormap. Unlike :meth:`stc.plot <mne.SourceEstimate.plot>`, it cannot use ``pos_lims``, as the surface plot must show the magnitude. """ docdict['cmap_psd_topo'] = """ cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If :class:`tuple`, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If ``None``, ``'Reds'`` is used for data that is either all-positive or all-negative, and ``'RdBu_r'`` is used otherwise. ``'interactive'`` is equivalent to ``(None, True)``. Defaults to ``None``. """ docdict['cmap_topomap'] = """ cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range (zoom). The mouse scroll can also be used to adjust the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None (default), 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). .. warning:: Interactive mode works smoothly only for a small amount of topomaps. Interactive mode is disabled by default for more than 2 topomaps. """ docdict['cmap_topomap_simple'] = """ cmap : matplotlib colormap | None Colormap to use. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. """ docdict['cnorm'] = """ cnorm : matplotlib.colors.Normalize | None Colormap normalization, default None means linear normalization. If not None, ``vmin`` and ``vmax`` arguments are ignored. See Notes for more details. """ docdict['color_matplotlib'] = """ color : color A list of anything matplotlib accepts: string, RGB, hex, etc. """ docdict['color_plot_psd'] = """ color : str | tuple A matplotlib-compatible color to use. Has no effect when spatial_colors=True. """ docdict['colorbar_topomap'] = """ colorbar : bool Plot a colorbar in the rightmost column of the figure. """ docdict['colormap'] = """ colormap : str | np.ndarray of float, shape(n_colors, 3 | 4) Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255. """ docdict['combine'] = """ combine : None | str | callable How to combine information across channels. If a :class:`str`, must be one of 'mean', 'median', 'std' (standard deviation) or 'gfp' (global field power). """ docdict['compute_proj_ecg'] = """This function will: #. Filter the ECG data channel. #. Find ECG R wave peaks using :func:`mne.preprocessing.find_ecg_events`. #. Filter the raw data. #. Create `~mne.Epochs` around the R wave peaks, capturing the heartbeats. #. Optionally average the `~mne.Epochs` to produce an `~mne.Evoked` if ``average=True`` was passed (default). #. Calculate SSP projection vectors on that data to capture the artifacts.""" docdict['compute_proj_eog'] = """This function will: #. Filter the EOG data channel. #. Find the peaks of eyeblinks in the EOG data using :func:`mne.preprocessing.find_eog_events`. #. Filter the raw data. #. Create `~mne.Epochs` around the eyeblinks. #. Optionally average the `~mne.Epochs` to produce an `~mne.Evoked` if ``average=True`` was passed (default). #. Calculate SSP projection vectors on that data to capture the artifacts.""" docdict['compute_ssp'] = """This function aims to find those SSP vectors that will project out the ``n`` most prominent signals from the data for each specified sensor type. Consequently, if the provided input data contains high levels of noise, the produced SSP vectors can then be used to eliminate that noise from the data. """ docdict['contours_topomap'] = """ contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. The values are in µV for EEG, fT for magnetometers and fT/m for gradiometers. If colorbar=True, the ticks in colorbar correspond to the contour levels. Defaults to 6. """ docdict['coord_frame_maxwell'] = """ coord_frame : str The coordinate frame that the ``origin`` is specified in, either ``'meg'`` or ``'head'``. For empty-room recordings that do not have a head<->meg transform ``info['dev_head_t']``, the MEG coordinate frame should be used. """ docdict['copy_df'] = """ copy : bool If ``True``, data will be copied. Otherwise data may be modified in place. Defaults to ``True``. """ docdict['create_ecg_epochs'] = """This function will: #. Filter the ECG data channel. #. Find ECG R wave peaks using :func:`mne.preprocessing.find_ecg_events`. #. Create `~mne.Epochs` around the R wave peaks, capturing the heartbeats. """ docdict['create_eog_epochs'] = """This function will: #. Filter the EOG data channel. #. Find the peaks of eyeblinks in the EOG data using :func:`mne.preprocessing.find_eog_events`. #. Create `~mne.Epochs` around the eyeblinks. """ docdict['cross_talk_maxwell'] = """ cross_talk : str | None Path to the FIF file with cross-talk correction information. """ # %% # D docdict['dB_plot_psd'] = """ dB : bool Plot Power Spectral Density (PSD), in units (amplitude**2/Hz (dB)) if ``dB=True``, and ``estimate='power'`` or ``estimate='auto'``. Plot PSD in units (amplitude**2/Hz) if ``dB=False`` and, ``estimate='power'``. Plot Amplitude Spectral Density (ASD), in units (amplitude/sqrt(Hz)), if ``dB=False`` and ``estimate='amplitude'`` or ``estimate='auto'``. Plot ASD, in units (amplitude/sqrt(Hz) (db)), if ``dB=True`` and ``estimate='amplitude'``. """ docdict['dB_psd_topo'] = """ dB : bool If ``True``, transform data to decibels (with ``10 * np.log10(data)``) following the application of ``agg_fun``. Ignored if ``normalize=True``. """ docdict['daysback_anonymize_info'] = """ daysback : int | None Number of days to subtract from all dates. If ``None`` (default), the acquisition date, ``info['meas_date']``, will be set to ``January 1ˢᵗ, 2000``. This parameter is ignored if ``info['meas_date']`` is ``None`` (i.e., no acquisition date has been set). """ docdict['dbs'] = """ dbs : bool If True (default), show DBS (deep brain stimulation) electrodes. """ docdict['decim'] = """ decim : int Factor by which to subsample the data. .. warning:: Low-pass filtering is not performed, this simply selects every Nth sample (where N is the value passed to ``decim``), i.e., it compresses the signal (see Notes). If the data are not properly filtered, aliasing artifacts may occur. """ docdict['decim_notes'] = """ For historical reasons, ``decim`` / "decimation" refers to simply subselecting samples from a given signal. This contrasts with the broader signal processing literature, where decimation is defined as (quoting :footcite:`OppenheimEtAl1999`, p. 172; which cites :footcite:`CrochiereRabiner1983`): "... a general system for downsampling by a factor of M is the one shown in Figure 4.23. Such a system is called a decimator, and downsampling by lowpass filtering followed by compression [i.e, subselecting samples] has been termed decimation (Crochiere and Rabiner, 1983)." Hence "decimation" in MNE is what is considered "compression" in the signal processing community. Decimation can be done multiple times. For example, ``inst.decimate(2).decimate(2)`` will be the same as ``inst.decimate(4)``. """ docdict['depth'] = """ depth : None | float | dict How to weight (or normalize) the forward using a depth prior. If float (default 0.8), it acts as the depth weighting exponent (``exp``) to use None is equivalent to 0, meaning no depth weighting is performed. It can also be a :class:`dict` containing keyword arguments to pass to :func:`mne.forward.compute_depth_prior` (see docstring for details and defaults). This is effectively ignored when ``method='eLORETA'``. .. versionchanged:: 0.20 Depth bias ignored for ``method='eLORETA'``. """ docdict['destination_maxwell_dest'] = """ destination : str | array-like, shape (3,) | None The destination location for the head. Can be ``None``, which will not change the head position, or a string path to a FIF file containing a MEG device<->head transformation, or a 3-element array giving the coordinates to translate to (with no rotations). For example, ``destination=(0, 0, 0.04)`` would translate the bases as ``--trans default`` would in MaxFilter™ (i.e., to the default head location). """ docdict['detrend_epochs'] = """ detrend : int | None If 0 or 1, the data channels (MEG and EEG) will be detrended when loaded. 0 is a constant (DC) detrend, 1 is a linear detrend. None is no detrending. Note that detrending is performed before baseline correction. If no DC offset is preferred (zeroth order detrending), either turn off baseline correction, as this may introduce a DC shift, or set baseline correction to use the entire time interval (will yield equivalent results but be slower). """ docdict['df_return'] = """ df : instance of pandas.DataFrame A dataframe suitable for usage with other statistical/plotting/analysis packages. """ docdict['dig_kinds'] = """ dig_kinds : list of str | str Kind of digitization points to use in the fitting. These can be any combination of ('cardinal', 'hpi', 'eeg', 'extra'). Can also be 'auto' (default), which will use only the 'extra' points if enough (more than 4) are available, and if not, uses 'extra' and 'eeg' points. """ docdict['dipole'] = """ dipole : instance of Dipole | list of Dipole Dipole object containing position, orientation and amplitude of one or more dipoles. Multiple simultaneous dipoles may be defined by assigning them identical times. Alternatively, multiple simultaneous dipoles may also be specified as a list of Dipole objects. .. versionchanged:: 1.1 Added support for a list of :class:`mne.Dipole` instances. """ docdict['distance'] = """ distance : float | None The distance from the camera rendering the view to the focalpoint in plot units (either m or mm). """ docdict['dtype_applyfun'] = """ dtype : numpy.dtype Data type to use after applying the function. If None (default) the data type is not modified. """ # %% # E docdict['ecog'] = """ ecog : bool If True (default), show ECoG sensors. """ docdict['eeg'] = """ eeg : bool | str | list String options are: - "original" (default; equivalent to ``True``) Shows EEG sensors using their digitized locations (after transformation to the chosen ``coord_frame``) - "projected" The EEG locations projected onto the scalp, as is done in forward modeling Can also be a list of these options, or an empty list (``[]``, equivalent of ``False``). """ docdict['elevation'] = """ elevation : float The The zenith angle of the camera rendering the view in degrees. """ docdict['eltc_mode_notes'] = """ Valid values for ``mode`` are: - ``'max'`` Maximum value across vertices at each time point within each label. - ``'mean'`` Average across vertices at each time point within each label. Ignores orientation of sources for standard source estimates, which varies across the cortical surface, which can lead to cancellation. Vector source estimates are always in XYZ / RAS orientation, and are thus already geometrically aligned. - ``'mean_flip'`` Finds the dominant direction of source space normal vector orientations within each label, applies a sign-flip to time series at vertices whose orientation is more than 180° different from the dominant direction, and then averages across vertices at each time point within each label. - ``'pca_flip'`` Applies singular value decomposition to the time courses within each label, and uses the first right-singular vector as the representative label time course. This signal is scaled so that its power matches the average (per-vertex) power within the label, and sign-flipped by multiplying by ``np.sign(u @ flip)``, where ``u`` is the first left-singular vector and ``flip`` is the same sign-flip vector used when ``mode='mean_flip'``. This sign-flip ensures that extracting time courses from the same label in similar STCs does not result in 180° direction/phase changes. - ``'auto'`` (default) Uses ``'mean_flip'`` when a standard source estimate is applied, and ``'mean'`` when a vector source estimate is supplied. .. versionadded:: 0.21 Support for ``'auto'``, vector, and volume source estimates. The only modes that work for vector and volume source estimates are ``'mean'``, ``'max'``, and ``'auto'``. """ docdict['emit_warning'] = """ emit_warning : bool Whether to emit warnings when cropping or omitting annotations. """ docdict['epochs_preload'] = """ Load all epochs from disk when creating the object or wait before accessing each epoch (more memory efficient but can be slower). """ docdict['epochs_reject_tmin_tmax'] = """ reject_tmin, reject_tmax : float | None Start and end of the time window used to reject epochs based on peak-to-peak (PTP) amplitudes as specified via ``reject`` and ``flat``. The default ``None`` corresponds to the first and last time points of the epochs, respectively. .. note:: This parameter controls the time period used in conjunction with both, ``reject`` and ``flat``. """ docdict['epochs_tmin_tmax'] = """ tmin, tmax : float Start and end time of the epochs in seconds, relative to the time-locked event. The closest or matching samples corresponding to the start and end time are included. Defaults to ``-0.2`` and ``0.5``, respectively. """ docdict['estimate_plot_psd'] = """ estimate : str, {'auto', 'power', 'amplitude'} Can be "power" for power spectral density (PSD), "amplitude" for amplitude spectrum density (ASD), or "auto" (default), which uses "power" when dB is True and "amplitude" otherwise. """ docdict['event_color'] = """ event_color : color object | dict | None Color(s) to use for :term:`events`. To show all :term:`events` in the same color, pass any matplotlib-compatible color. To color events differently, pass a `dict` that maps event names or integer event numbers to colors (must include entries for *all* events, or include a "fallback" entry with key ``-1``). If ``None``, colors are chosen from the current Matplotlib color cycle. """ docdict['event_id'] = """ event_id : int | list of int | dict | None The id of the :term:`events` to consider. If dict, the keys can later be used to access associated :term:`events`. Example: dict(auditory=1, visual=3). If int, a dict will be created with the id as string. If a list, all :term:`events` with the IDs specified in the list are used. If None, all :term:`events` will be used and a dict is created with string integer names corresponding to the event id integers.""" docdict['event_id_ecg'] = """ event_id : int The index to assign to found ECG events. """ docdict['event_repeated_epochs'] = """ event_repeated : str How to handle duplicates in ``events[:, 0]``. Can be ``'error'`` (default), to raise an error, 'drop' to only retain the row occurring first in the :term:`events`, or ``'merge'`` to combine the coinciding events (=duplicates) into a new event (see Notes for details). .. versionadded:: 0.19 """ docdict['events'] = """ events : array of int, shape (n_events, 3) The array of :term:`events`. The first column contains the event time in samples, with :term:`first_samp` included. The third column contains the event id.""" docdict['events_epochs'] = """ events : array of int, shape (n_events, 3) The array of :term:`events`. The first column contains the event time in samples, with :term:`first_samp` included. The third column contains the event id. If some events don't match the events of interest as specified by event_id, they will be marked as ``IGNORED`` in the drop log.""" docdict['evoked_by_event_type_returns'] = """ evoked : instance of Evoked | list of Evoked The averaged epochs. When ``by_event_type=True`` was specified, a list is returned containing a separate :class:`~mne.Evoked` object for each event type. The list has the same order as the event types as specified in the ``event_id`` dictionary. """ docdict['exclude_clust'] = """ exclude : bool array or None Mask to apply to the data to exclude certain points from clustering (e.g., medial wall vertices). Should be the same shape as ``X``. If ``None``, no points are excluded. """ docdict['exclude_frontal'] = """ exclude_frontal : bool If True, exclude points that have both negative Z values (below the nasion) and positivy Y values (in front of the LPA/RPA). """ docdict['export_edf_note'] = """ For EDF exports, only channels measured in Volts are allowed; in MNE-Python this means channel types 'eeg', 'ecog', 'seeg', 'emg', 'eog', 'ecg', 'dbs', 'bio', and 'misc'. 'stim' channels are dropped. Although this function supports storing channel types in the signal label (e.g. ``EEG Fz`` or ``MISC E``), other software may not support this (optional) feature of the EDF standard. If ``add_ch_type`` is True, then channel types are written based on what they are currently set in MNE-Python. One should double check that all their channels are set correctly. You can call :attr:`raw.set_channel_types <mne.io.Raw.set_channel_types>` to set channel types. In addition, EDF does not support storing a montage. You will need to store the montage separately and call :attr:`raw.set_montage() <mne.io.Raw.set_montage>`. """ docdict['export_eeglab_note'] = """ For EEGLAB exports, channel locations are expanded to full EEGLAB format. For more details see :func:`eeglabio.utils.cart_to_eeglab`. """ _export_fmt_params_base = """Format of the export. Defaults to ``'auto'``, which will infer the format from the filename extension. See supported formats above for more information.""" docdict['export_fmt_params_epochs'] = """ fmt : 'auto' | 'eeglab' {} """.format(_export_fmt_params_base) docdict['export_fmt_params_evoked'] = """ fmt : 'auto' | 'mff' {} """.format(_export_fmt_params_base) docdict['export_fmt_params_raw'] = """ fmt : 'auto' | 'brainvision' | 'edf' | 'eeglab' {} """.format(_export_fmt_params_base) docdict['export_fmt_support_epochs'] = """\ Supported formats: - EEGLAB (``.set``, uses :mod:`eeglabio`) """ docdict['export_fmt_support_evoked'] = """\ Supported formats: - MFF (``.mff``, uses :func:`mne.export.export_evokeds_mff`) """ docdict['export_fmt_support_raw'] = """\ Supported formats: - BrainVision (``.vhdr``, ``.vmrk``, ``.eeg``, uses `pybv <https://github.com/bids-standard/pybv>`_) - EEGLAB (``.set``, uses :mod:`eeglabio`) - EDF (``.edf``, uses `EDFlib-Python <https://gitlab.com/Teuniz/EDFlib-Python>`_) """ # noqa: E501 docdict['export_warning'] = """\ .. warning:: Since we are exporting to external formats, there's no guarantee that all the info will be preserved in the external format. See Notes for details. """ _export_warning_note_base = """\ Export to external format may not preserve all the information from the instance. To save in native MNE format (``.fif``) without information loss, use :meth:`mne.{0}.save` instead. Export does not apply projector(s). Unapplied projector(s) will be lost. Consider applying projector(s) before exporting with :meth:`mne.{0}.apply_proj`.""" docdict['export_warning_note_epochs'] = \ _export_warning_note_base.format('Epochs') docdict['export_warning_note_evoked'] = \ _export_warning_note_base.format('Evoked') docdict['export_warning_note_raw'] = \ _export_warning_note_base.format('io.Raw') docdict['ext_order_chpi'] = """ ext_order : int The external order for SSS-like interfence suppression. The SSS bases are used as projection vectors during fitting. .. versionchanged:: 0.20 Added ``ext_order=1`` by default, which should improve detection of true HPI signals. """ docdict['ext_order_maxwell'] = """ ext_order : int Order of external component of spherical expansion. """ docdict['extended_proj_maxwell'] = """ extended_proj : list The empty-room projection vectors used to extend the external SSS basis (i.e., use eSSS). .. versionadded:: 0.21 """ docdict['extrapolate_topomap'] = """ extrapolate : str Options: - ``'box'`` Extrapolate to four points placed to form a square encompassing all data points, where each side of the square is three times the range of the data in the respective dimension. - ``'local'`` (default for MEG sensors) Extrapolate only to nearby points (approximately to points closer than median inter-electrode distance). This will also set the mask to be polygonal based on the convex hull of the sensors. - ``'head'`` (default for non-MEG sensors) Extrapolate out to the edges of the clipping circle. This will be on the head circle when the sensors are contained within the head circle, but it can extend beyond the head when sensors are plotted outside the head circle. .. versionchanged:: 0.21 - The default was changed to ``'local'`` for MEG sensors. - ``'local'`` was changed to use a convex hull mask - ``'head'`` was changed to extrapolate out to the clipping circle. """ # %% # F docdict['f_power_clust'] = """ t_power : float Power to raise the statistical values (usually F-values) by before summing (sign will be retained). Note that ``t_power=0`` will give a count of locations in each cluster, ``t_power=1`` will weight each location by its statistical score. """ docdict['fiducials'] = """ fiducials : list | dict | str The fiducials given in the MRI (surface RAS) coordinate system. If a dictionary is provided, it must contain the **keys** ``'lpa'``, ``'rpa'``, and ``'nasion'``, with **values** being the respective coordinates in meters. If a list, it must be a list of ``DigPoint`` instances as returned by the :func:`mne.io.read_fiducials` function. If ``'estimated'``, the fiducials are derived from the ``fsaverage`` template. If ``'auto'`` (default), tries to find the fiducials in a file with the canonical name (``{subjects_dir}/{subject}/bem/{subject}-fiducials.fif``) and if absent, falls back to ``'estimated'``. """ docdict['filter_length'] = """ filter_length : str | int Length of the FIR filter to use (if applicable): * **'auto' (default)**: The filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window='hamming' and fir_design="firwin2", and half that for "firwin"). * **str**: A human-readable time in units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted to that number of samples if ``phase="zero"``, or the shortest power-of-two length at least that duration for ``phase="zero-double"``. * **int**: Specified length in samples. For fir_design="firwin", this should not be used. """ docdict['filter_length_ecg'] = """ filter_length : str | int | None Number of taps to use for filtering. """ docdict['filter_length_notch'] = """ filter_length : str | int Length of the FIR filter to use (if applicable): * **'auto' (default)**: The filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window='hamming' and fir_design="firwin2", and half that for "firwin"). * **str**: A human-readable time in units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted to that number of samples if ``phase="zero"``, or the shortest power-of-two length at least that duration for ``phase="zero-double"``. * **int**: Specified length in samples. For fir_design="firwin", this should not be used. When ``method=='spectrum_fit'``, this sets the effective window duration over which fits are computed. See :func:`mne.filter.create_filter` for options. Longer window lengths will give more stable frequency estimates, but require (potentially much) more processing and are not able to adapt as well to non-stationarities. The default in 0.21 is None, but this will change to ``'10s'`` in 0.22. """ docdict['fir_design'] = """ fir_design : str Can be "firwin" (default) to use :func:`scipy.signal.firwin`, or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses a time-domain design technique that generally gives improved attenuation using fewer samples than "firwin2". .. versionadded:: 0.15 """ docdict['fir_window'] = """ fir_window : str The window to use in FIR design, can be "hamming" (default), "hann" (default in 0.13), or "blackman". .. versionadded:: 0.15 """ _flat_common = """\ Reject epochs based on **minimum** peak-to-peak signal amplitude (PTP). Valid **keys** can be any channel type present in the object. The **values** are floats that set the minimum acceptable PTP. If the PTP is smaller than this threshold, the epoch will be dropped. If ``None`` then no rejection is performed based on flatness of the signal.""" docdict['flat'] = f""" flat : dict | None {_flat_common} .. note:: To constrain the time period used for estimation of signal quality, pass the ``reject_tmin`` and ``reject_tmax`` parameters. """ docdict['flat_drop_bad'] = f""" flat : dict | str | None {_flat_common} If ``'existing'``, then the flat parameters set during epoch creation are used. """ docdict['fmin_fmid_fmax'] = """ fmin : float Minimum value in colormap (uses real fmin if None). fmid : float Intermediate value in colormap (fmid between fmin and fmax if None). fmax : float Maximum value in colormap (uses real max if None). """ docdict['fname_epochs'] = """ fname : path-like | file-like The epochs to load. If a filename, should end with ``-epo.fif`` or ``-epo.fif.gz``. If a file-like object, preloading must be used. """ docdict['fname_export_params'] = """ fname : str Name of the output file. """ docdict['fnirs'] = """ fnirs : str | list | bool | None Can be "channels", "pairs", "detectors", and/or "sources" to show the fNIRS channel locations, optode locations, or line between source-detector pairs, or a combination like ``('pairs', 'channels')``. True translates to ``('pairs',)``. """ docdict['focalpoint'] = """ focalpoint : tuple, shape (3,) | None The focal point of the camera rendering the view: (x, y, z) in plot units (either m or mm). """ docdict['forward_set_eeg_reference'] = """ forward : instance of Forward | None Forward solution to use. Only used with ``ref_channels='REST'``. .. versionadded:: 0.21 """ docdict['fullscreen'] = """ fullscreen : bool Whether to start in fullscreen (``True``) or windowed mode (``False``). """ applyfun_fun_base = """ fun : callable A function to be applied to the channels. The first argument of fun has to be a timeseries (:class:`numpy.ndarray`). The function must operate on an array of shape ``(n_times,)`` {}. The function must return an :class:`~numpy.ndarray` shaped like its input. """ docdict['fun_applyfun'] = applyfun_fun_base .format( ' if ``channel_wise=True`` and ``(len(picks), n_times)`` otherwise') docdict['fun_applyfun_evoked'] = applyfun_fun_base .format( ' because it will apply channel-wise') docdict['fwd'] = """ fwd : instance of Forward The forward solution. If present, the orientations of the dipoles present in the forward solution are displayed. """ # %% # G docdict['get_peak_parameters'] = """ tmin : float | None The minimum point in time to be considered for peak getting. tmax : float | None The maximum point in time to be considered for peak getting. mode : {'pos', 'neg', 'abs'} How to deal with the sign of the data. If 'pos' only positive values will be considered. If 'neg' only negative values will be considered. If 'abs' absolute values will be considered. Defaults to 'abs'. vert_as_index : bool Whether to return the vertex index (True) instead of of its ID (False, default). time_as_index : bool Whether to return the time index (True) instead of the latency (False, default). """ docdict['group_by_browse'] = """ group_by : str How to group channels. ``'type'`` groups by channel type, ``'original'`` plots in the order of ch_names, ``'selection'`` uses Elekta's channel groupings (only works for Neuromag data), ``'position'`` groups the channels by the positions of the sensors. ``'selection'`` and ``'position'`` modes allow custom selections by using a lasso selector on the topomap. In butterfly mode, ``'type'`` and ``'original'`` group the channels by type, whereas ``'selection'`` and ``'position'`` use regional grouping. ``'type'`` and ``'original'`` modes are ignored when ``order`` is not ``None``. Defaults to ``'type'``. """ # %% # H docdict['h_freq'] = """ h_freq : float | None For FIR filters, the upper pass-band edge; for IIR filters, the upper cutoff frequency. If None the data are only high-passed. """ docdict['h_trans_bandwidth'] = """ h_trans_bandwidth : float | str Width of the transition band at the high cut-off frequency in Hz (low pass or cutoff 2 in bandpass). Can be "auto" (default in 0.14) to use a multiple of ``h_freq``:: min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq) Only used for ``method='fir'``. """ docdict['head_pos'] = """ head_pos : None | str | dict | tuple | array Name of the position estimates file. Should be in the format of the files produced by MaxFilter. If dict, keys should be the time points and entries should be 4x4 ``dev_head_t`` matrices. If None, the original head position (from ``info['dev_head_t']``) will be used. If tuple, should have the same format as data returned by ``head_pos_to_trans_rot_t``. If array, should be of the form returned by :func:`mne.chpi.read_head_pos`. """ docdict['head_pos_maxwell'] = """ head_pos : array | None If array, movement compensation will be performed. The array should be of shape (N, 10), holding the position parameters as returned by e.g. ``read_head_pos``. """ docdict['head_source'] = """ head_source : str | list of str Head source(s) to use. See the ``source`` option of :func:`mne.get_head_surf` for more information. """ docdict['hitachi_notes'] = """ Hitachi does not encode their channel positions, so you will need to create a suitable mapping using :func:`mne.channels.make_standard_montage` or :func:`mne.channels.make_dig_montage` like (for a 3x5/ETG-7000 example): >>> mon = mne.channels.make_standard_montage('standard_1020') >>> need = 'S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6 S7 D7 S8'.split() >>> have = 'F3 FC3 C3 CP3 P3 F5 FC5 C5 CP5 P5 F7 FT7 T7 TP7 P7'.split() >>> mon.rename_channels(dict(zip(have, need))) >>> raw.set_montage(mon) # doctest: +SKIP The 3x3 (ETG-100) is laid out as two separate layouts:: S1--D1--S2 S6--D6--S7 | | | | | | D2--S3--D3 D7--S8--D8 | | | | | | S4--D4--S5 S9--D9--S10 The 3x5 (ETG-7000) is laid out as:: S1--D1--S2--D2--S3 | | | | | D3--S4--D4--S5--D5 | | | | | S6--D6--S7--D7--S8 The 4x4 (ETG-7000) is laid out as:: S1--D1--S2--D2 | | | | D3--S3--D4--S4 | | | | S5--D5--S6--D6 | | | | D7--S7--D8--S8 The 3x11 (ETG-4000) is laid out as:: S1--D1--S2--D2--S3--D3--S4--D4--S5--D5--S6 | | | | | | | | | | | D6--S7--D7--S8--D8--S9--D9--S10-D10-S11-D11 | | | | | | | | | | | S12-D12-S13-D13-S14-D14-S16-D16-S17-D17-S18 For each layout, the channels come from the (left-to-right) neighboring source-detector pairs in the first row, then between the first and second row, then the second row, etc. .. versionadded:: 0.24 """ # %% # I docdict['idx_pctf'] = """ idx : list of int | list of Label Source for indices for which to compute PSFs or CTFs. If mode is None, PSFs/CTFs will be returned for all indices. If mode is not None, the corresponding summary measure will be computed across all PSFs/CTFs available from idx. Can be: * list of integers : Compute PSFs/CTFs for all indices to source space vertices specified in idx. * list of Label : Compute PSFs/CTFs for source space vertices in specified labels. """ docdict['ignore_ref_maxwell'] = """ ignore_ref : bool If True, do not include reference channels in compensation. This option should be True for KIT files, since Maxwell filtering with reference channels is not currently supported. """ docdict['iir_params'] = """ iir_params : dict | None Dictionary of parameters to use for IIR filtering. If iir_params is None and method="iir", 4th order Butterworth will be used. For more information, see :func:`mne.filter.construct_iir_filter`. """ docdict['image_format_report'] = """ image_format : 'png' | 'svg' | 'gif' | None The image format to be used for the report, can be ``'png'``, ``'svg'``, or ``'gif'``. None (default) will use the default specified during `~mne.Report` instantiation. """ docdict['image_interp_topomap'] = """ image_interp : str The image interpolation to be used. Options are ``'cubic'`` (default) to use :class:`scipy.interpolate.CloughTocher2DInterpolator`, ``'nearest'`` to use :class:`scipy.spatial.Voronoi` or ``'linear'`` to use :class:`scipy.interpolate.LinearNDInterpolator`. """ docdict['include_tmax'] = """ include_tmax : bool If True (default), include tmax. If False, exclude tmax (similar to how Python indexing typically works). .. versionadded:: 0.19 """ _index_df_base = """ index : {} | None Kind of index to use for the DataFrame. If ``None``, a sequential integer index (:class:`pandas.RangeIndex`) will be used. If ``'time'``, a :class:`pandas.Float64Index`, :class:`pandas.Int64Index`, {}or :class:`pandas.TimedeltaIndex` will be used (depending on the value of ``time_format``). {} """ docdict['index_df'] = _index_df_base datetime = ':class:`pandas.DatetimeIndex`, ' multiindex = ('If a list of two or more string values, a ' ':class:`pandas.MultiIndex` will be created. ') raw = ("'time'", datetime, '') epo = ('str | list of str', '', multiindex) evk = ("'time'", '', '') docdict['index_df_epo'] = _index_df_base.format(*epo) docdict['index_df_evk'] = _index_df_base.format(*evk) docdict['index_df_raw'] = _index_df_base.format(*raw) _info_base = ('The :class:`mne.Info` object with information about the ' 'sensors and methods of measurement.') docdict['info'] = f""" info : mne.Info | None {_info_base} """ docdict['info_not_none'] = f""" info : mne.Info {_info_base} """ docdict['info_str'] = f""" info : mne.Info | path-like {_info_base} If ``path-like``, it should be a :class:`str` or :class:`pathlib.Path` to a file with measurement information (e.g. :class:`mne.io.Raw`). """ docdict['int_order_maxwell'] = """ int_order : int Order of internal component of spherical expansion. """ docdict['interaction_scene'] = """ interaction : 'trackball' | 'terrain' How interactions with the scene via an input device (e.g., mouse or trackpad) modify the camera position. If ``'terrain'``, one axis is fixed, enabling "turntable-style" rotations. If ``'trackball'``, movement along all axes is possible, which provides more freedom of movement, but you may incidentally perform unintentional rotations along some axes. """ docdict['interaction_scene_none'] = """ interaction : 'trackball' | 'terrain' | None How interactions with the scene via an input device (e.g., mouse or trackpad) modify the camera position. If ``'terrain'``, one axis is fixed, enabling "turntable-style" rotations. If ``'trackball'``, movement along all axes is possible, which provides more freedom of movement, but you may incidentally perform unintentional rotations along some axes. If ``None``, the setting stored in the MNE-Python configuration file is used. """ docdict['interp'] = """ interp : str Either 'hann', 'cos2' (default), 'linear', or 'zero', the type of forward-solution interpolation to use between forward solutions at different head positions. """ docdict['interpolation_brain_time'] = """ interpolation : str | None Interpolation method (:class:`scipy.interpolate.interp1d` parameter). Must be one of 'linear', 'nearest', 'zero', 'slinear', 'quadratic', or 'cubic'. """ docdict['inversion_bf'] = """ inversion : 'single' | 'matrix' This determines how the beamformer deals with source spaces in "free" orientation. Such source spaces define three orthogonal dipoles at each source point. When ``inversion='single'``, each dipole is considered as an individual source and the corresponding spatial filter is computed for each dipole separately. When ``inversion='matrix'``, all three dipoles at a source vertex are considered as a group and the spatial filters are computed jointly using a matrix inversion. While ``inversion='single'`` is more stable, ``inversion='matrix'`` is more precise. See section 5 of :footcite:`vanVlietEtAl2018`. Defaults to ``'matrix'``. """ # %% # K docdict['keep_his_anonymize_info'] = """ keep_his : bool If ``True``, ``his_id`` of ``subject_info`` will **not** be overwritten. Defaults to ``False``. .. warning:: This could mean that ``info`` is not fully anonymized. Use with caution. """ docdict['kwargs_fun'] = """ **kwargs : dict Additional keyword arguments to pass to ``fun``. """ # %% # L docdict['l_freq'] = """ l_freq : float | None For FIR filters, the lower pass-band edge; for IIR filters, the lower cutoff frequency. If None the data are only low-passed. """ docdict['l_freq_ecg_filter'] = """ l_freq : float Low pass frequency to apply to the ECG channel while finding events. h_freq : float High pass frequency to apply to the ECG channel while finding events. """ docdict['l_trans_bandwidth'] = """ l_trans_bandwidth : float | str Width of the transition band at the low cut-off frequency in Hz (high pass or cutoff 1 in bandpass). Can be "auto" (default) to use a multiple of ``l_freq``:: min(max(l_freq * 0.25, 2), l_freq) Only used for ``method='fir'``. """ docdict['label_tc_el_returns'] = """ label_tc : array | list (or generator) of array, shape (n_labels[, n_orient], n_times) Extracted time course for each label and source estimate. """ # noqa: E501 docdict['labels_eltc'] = """ labels : Label | BiHemiLabel | list | tuple | str If using a surface or mixed source space, this should be the :class:`~mne.Label`'s for which to extract the time course. If working with whole-brain volume source estimates, this must be one of: - a string path to a FreeSurfer atlas for the subject (e.g., their 'aparc.a2009s+aseg.mgz') to extract time courses for all volumes in the atlas - a two-element list or tuple, the first element being a path to an atlas, and the second being a list or dict of ``volume_labels`` to extract (see :func:`mne.setup_volume_source_space` for details). .. versionchanged:: 0.21.0 Support for volume source estimates. """ docdict['line_alpha_plot_psd'] = """ line_alpha : float | None Alpha for the PSD line. Can be None (default) to use 1.0 when ``average=True`` and 0.1 when ``average=False``. """ _long_format_df_base = """ long_format : bool If True, the DataFrame is returned in long format where each row is one observation of the signal at a unique combination of time point{}. {}Defaults to ``False``. """ ch_type = ('For convenience, a ``ch_type`` column is added to facilitate ' 'subsetting the resulting DataFrame. ') raw = (' and channel', ch_type) epo = (', channel, epoch number, and condition', ch_type) stc = (' and vertex', '') docdict['long_format_df_epo'] = _long_format_df_base.format(*epo) docdict['long_format_df_raw'] = _long_format_df_base.format(*raw) docdict['long_format_df_stc'] = _long_format_df_base.format(*stc) docdict['loose'] = """ loose : float | 'auto' | dict Value that weights the source variances of the dipole components that are parallel (tangential) to the cortical surface. Can be: - float between 0 and 1 (inclusive) If 0, then the solution is computed with fixed orientation. If 1, it corresponds to free orientations. - ``'auto'`` (default) Uses 0.2 for surface source spaces (unless ``fixed`` is True) and 1.0 for other source spaces (volume or mixed). - dict Mapping from the key for a given source space type (surface, volume, discrete) to the loose value. Useful mostly for mixed source spaces. """ # %% # M docdict['mag_scale_maxwell'] = """ mag_scale : float | str The magenetometer scale-factor used to bring the magnetometers to approximately the same order of magnitude as the gradiometers (default 100.), as they have different units (T vs T/m). Can be ``'auto'`` to use the reciprocal of the physical distance between the gradiometer pickup loops (e.g., 0.0168 m yields 59.5 for VectorView). """ docdict['mapping_rename_channels_duplicates'] = """ mapping : dict | callable A dictionary mapping the old channel to a new channel name e.g. {'EEG061' : 'EEG161'}. Can also be a callable function that takes and returns a string. .. versionchanged:: 0.10.0 Support for a callable function. allow_duplicates : bool If True (default False), allow duplicates, which will automatically be renamed with ``-N`` at the end. .. versionadded:: 0.22.0 """ _mask_base = """ mask : ndarray of bool, shape {shape} | None Array indicating channel{shape_appendix} to highlight with a distinct plotting style{example}. Array elements set to ``True`` will be plotted with the parameters given in ``mask_params``. Defaults to ``None``, equivalent to an array of all ``False`` elements. """ docdict['mask_evoked_topomap'] = _mask_base.format( shape='(n_channels, n_times)', shape_appendix='-time combinations', example=' (useful for, e.g. marking which channels at which times a ' 'statistical test of the data reaches significance)') docdict['mask_params_topomap'] = """ mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) """ docdict['mask_patterns_topomap'] = _mask_base.format( shape='(n_channels, n_patterns)', shape_appendix='-pattern combinations', example='') docdict['mask_topomap'] = _mask_base.format( shape='(n_channels,)', shape_appendix='(s)', example='') docdict['match_alias'] = """ match_alias : bool | dict Whether to use a lookup table to match unrecognized channel location names to their known aliases. If True, uses the mapping in ``mne.io.constants.CHANNEL_LOC_ALIASES``. If a :class:`dict` is passed, it will be used instead, and should map from non-standard channel names to names in the specified ``montage``. Default is ``False``. .. versionadded:: 0.23 """ docdict['match_case'] = """ match_case : bool If True (default), channel name matching will be case sensitive. .. versionadded:: 0.20 """ docdict['max_step_clust'] = """ max_step : int Maximum distance between samples along the second axis of ``X`` to be considered adjacent (typically the second axis is the "time" dimension). Only used when ``adjacency`` has shape (n_vertices, n_vertices), that is, when adjacency is only specified for sensors (e.g., via :func:`mne.channels.find_ch_adjacency`), and not via sensors **and** further dimensions such as time points (e.g., via an additional call of :func:`mne.stats.combine_adjacency`). """ docdict['measure'] = """ measure : 'zscore' | 'correlation' Which method to use for finding outliers among the components: - ``'zscore'`` (default) is the iterative z-scoring method. This method computes the z-score of the component's scores and masks the components with a z-score above threshold. This process is repeated until no supra-threshold component remains. - ``'correlation'`` is an absolute raw correlation threshold ranging from 0 to 1. .. versionadded:: 0.21""" docdict['meg'] = """ meg : str | list | bool | None Can be "helmet", "sensors" or "ref" to show the MEG helmet, sensors or reference sensors respectively, or a combination like ``('helmet', 'sensors')`` (same as None, default). True translates to ``('helmet', 'sensors', 'ref')``. """ docdict['metadata_epochs'] = """ metadata : instance of pandas.DataFrame | None A :class:`pandas.DataFrame` specifying metadata about each epoch. If given, ``len(metadata)`` must equal ``len(events)``. The DataFrame may only contain values of type (str | int | float | bool). If metadata is given, then pandas-style queries may be used to select subsets of data, see :meth:`mne.Epochs.__getitem__`. When a subset of the epochs is created in this (or any other supported) manner, the metadata object is subsetted accordingly, and the row indices will be modified to match ``epochs.selection``. .. versionadded:: 0.16 """ docdict['method_fir'] = """ method : str 'fir' will use overlap-add FIR filtering, 'iir' will use IIR forward-backward filtering (via filtfilt). """ docdict['mode_eltc'] = """ mode : str Extraction mode, see Notes. """ docdict['mode_pctf'] = """ mode : None | 'mean' | 'max' | 'svd' Compute summary of PSFs/CTFs across all indices specified in 'idx'. Can be: * None : Output individual PSFs/CTFs for each specific vertex (Default). * 'mean' : Mean of PSFs/CTFs across vertices. * 'max' : PSFs/CTFs with maximum norm across vertices. Returns the n_comp largest PSFs/CTFs. * 'svd' : SVD components across PSFs/CTFs across vertices. Returns the n_comp first SVD components. """ docdict['montage'] = """ montage : None | str | DigMontage A montage containing channel positions. If a string or :class:`~mne.channels.DigMontage` is specified, the existing channel information will be updated with the channel positions from the montage. Valid strings are the names of the built-in montages that ship with MNE-Python; you can list those via :func:`mne.channels.get_builtin_montages`. If ``None`` (default), the channel positions will be removed from the :class:`~mne.Info`. """ docdict['montage_types'] = """EEG/sEEG/ECoG/DBS/fNIRS""" docdict['moving'] = """ moving : instance of SpatialImage The image to morph ("from" volume). """ docdict['mri_resolution_eltc'] = """ mri_resolution : bool If True (default), the volume source space will be upsampled to the original MRI resolution via trilinear interpolation before the atlas values are extracted. This ensnures that each atlas label will contain source activations. When False, only the original source space points are used, and some atlas labels thus may not contain any source space vertices. .. versionadded:: 0.21.0 """ # %% # N docdict['n_comp_pctf_n'] = """ n_comp : int Number of PSF/CTF components to return for mode='max' or mode='svd'. Default n_comp=1. """ docdict['n_jobs'] = """ n_jobs : int | None The number of jobs to run in parallel. If ``-1``, it is set to the number of CPU cores. Requires the :mod:`joblib` package. ``None`` (default) is a marker for 'unset' that will be interpreted as ``n_jobs=1`` (sequential execution) unless the call is performed under a :func:`joblib:joblib.parallel_backend` context manager that sets another value for ``n_jobs``. """ docdict['n_jobs_cuda'] = """ n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if ``cupy`` is installed properly. """ docdict['n_jobs_fir'] = """ n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if ``cupy`` is installed properly and method='fir'. """ docdict['n_pca_components_apply'] = """ n_pca_components : int | float | None The number of PCA components to be kept, either absolute (int) or fraction of the explained variance (float). If None (default), the ``ica.n_pca_components`` from initialization will be used in 0.22; in 0.23 all components will be used. """ docdict['n_permutations_clust_all'] = """ n_permutations : int | 'all' The number of permutations to compute. Can be 'all' to perform an exact test. """ docdict['n_permutations_clust_int'] = """ n_permutations : int The number of permutations to compute. """ docdict['nirx_notes'] = """ This function has only been tested with NIRScout and NIRSport devices, and with the NIRStar software version 15 and above and Aurora software 2021 and above. The NIRSport device can detect if the amplifier is saturated. Starting from NIRStar 14.2, those saturated values are replaced by NaNs in the standard .wlX files. The raw unmodified measured values are stored in another file called .nosatflags_wlX. As NaN values can cause unexpected behaviour with mathematical functions the default behaviour is to return the saturated data. """ docdict['niter'] = """ niter : dict | tuple | None For each phase of the volume registration, ``niter`` is the number of iterations per successive stage of optimization. If a tuple is provided, it will be used for all steps (except center of mass, which does not iterate). It should have length 3 to correspond to ``sigmas=[3.0, 1.0, 0.0]`` and ``factors=[4, 2, 1]`` in the pipeline (see :func:`dipy.align.affine_registration <dipy.align._public.affine_registration>` for details). If a dictionary is provided, number of iterations can be set for each step as a key. Steps not in the dictionary will use the default value. The default (None) is equivalent to: niter=dict(translation=(100, 100, 10), rigid=(100, 100, 10), affine=(100, 100, 10), sdr=(5, 5, 3)) """ docdict['norm_pctf'] = """ norm : None | 'max' | 'norm' Whether and how to normalise the PSFs and CTFs. This will be applied before computing summaries as specified in 'mode'. Can be: * None : Use un-normalized PSFs/CTFs (Default). * 'max' : Normalize to maximum absolute value across all PSFs/CTFs. * 'norm' : Normalize to maximum norm across all PSFs/CTFs. """ docdict['normalization'] = """normalization : 'full' | 'length' Normalization strategy. If "full", the PSD will be normalized by the sampling rate as well as the length of the signal (as in :ref:`Nitime <nitime:users-guide>`). Default is ``'length'``.""" docdict['normalize_psd_topo'] = """ normalize : bool If True, each band will be divided by the total power. Defaults to False. """ docdict['notes_tmax_included_by_default'] = """ Unlike Python slices, MNE time intervals by default include **both** their end points; ``crop(tmin, tmax)`` returns the interval ``tmin <= t <= tmax``. Pass ``include_tmax=False`` to specify the half-open interval ``tmin <= t < tmax`` instead. """ docdict['npad'] = """ npad : int | str Amount to pad the start and end of the data. Can also be "auto" to use a padding that will result in a power-of-two size (can be much faster). """ # %% # O docdict['offset_decim'] = """ offset : int Apply an offset to where the decimation starts relative to the sample corresponding to t=0. The offset is in samples at the current sampling rate. .. versionadded:: 0.12 """ docdict['on_defects'] = """ on_defects : 'raise' | 'warn' | 'ignore' What to do if the surface is found to have topological defects. Can be ``'raise'`` (default) to raise an error, ``'warn'`` to emit a warning, or ``'ignore'`` to ignore when one or more defects are found. Note that a lot of computations in MNE-Python assume the surfaces to be topologically correct, topological defects may still make other computations (e.g., `mne.make_bem_model` and `mne.make_bem_solution`) fail irrespective of this parameter. """ docdict['on_header_missing'] = """ on_header_missing : str Can be ``'raise'`` (default) to raise an error, ``'warn'`` to emit a warning, or ``'ignore'`` to ignore when the FastSCAN header is missing. .. versionadded:: 0.22 """ _on_missing_base = """\ Can be ``'raise'`` (default) to raise an error, ``'warn'`` to emit a warning, or ``'ignore'`` to ignore when""" docdict['on_mismatch_info'] = f""" on_mismatch : 'raise' | 'warn' | 'ignore' {_on_missing_base} the device-to-head transformation differs between instances. .. versionadded:: 0.24 """ docdict['on_missing_ch_names'] = f""" on_missing : 'raise' | 'warn' | 'ignore' {_on_missing_base} entries in ch_names are not present in the raw instance. .. versionadded:: 0.23.0 """ docdict['on_missing_chpi'] = f""" on_missing : 'raise' | 'warn' | 'ignore' {_on_missing_base} no cHPI information can be found. If ``'ignore'`` or ``'warn'``, all return values will be empty arrays or ``None``. If ``'raise'``, an exception will be raised. """ docdict['on_missing_epochs'] = """ on_missing : 'raise' | 'warn' | 'ignore' What to do if one or several event ids are not found in the recording. Valid keys are 'raise' | 'warn' | 'ignore' Default is ``'raise'``. If ``'warn'``, it will proceed but warn; if ``'ignore'``, it will proceed silently. .. note:: If none of the event ids are found in the data, an error will be automatically generated irrespective of this parameter. """ docdict['on_missing_events'] = f""" on_missing : 'raise' | 'warn' | 'ignore' {_on_missing_base} event numbers from ``event_id`` are missing from :term:`events`. When numbers from :term:`events` are missing from ``event_id`` they will be ignored and a warning emitted; consider using ``verbose='error'`` in this case. .. versionadded:: 0.21 """ docdict['on_missing_fwd'] = f""" on_missing : 'raise' | 'warn' | 'ignore' {_on_missing_base} ``stc`` has vertices that are not in ``fwd``. """ docdict['on_missing_montage'] = f""" on_missing : 'raise' | 'warn' | 'ignore' {_on_missing_base} channels have missing coordinates. .. versionadded:: 0.20.1 """ docdict['on_rank_mismatch'] = """ on_rank_mismatch : str If an explicit MEG value is passed, what to do when it does not match an empirically computed rank (only used for covariances). Can be 'raise' to raise an error, 'warn' (default) to emit a warning, or 'ignore' to ignore. .. versionadded:: 0.23 """ docdict['on_split_missing'] = f""" on_split_missing : str {_on_missing_base} split file is missing. .. versionadded:: 0.22 """ docdict['origin_maxwell'] = """ origin : array-like, shape (3,) | str Origin of internal and external multipolar moment space in meters. The default is ``'auto'``, which means ``(0., 0., 0.)`` when ``coord_frame='meg'``, and a head-digitization-based origin fit using :func:`~mne.bem.fit_sphere_to_headshape` when ``coord_frame='head'``. If automatic fitting fails (e.g., due to having too few digitization points), consider separately calling the fitting function with different options or specifying the origin manually. """ docdict['out_type_clust'] = """ out_type : 'mask' | 'indices' Output format of clusters within a list. If ``'mask'``, returns a list of boolean arrays, each with the same shape as the input data (or slices if the shape is 1D and adjacency is None), with ``True`` values indicating locations that are part of a cluster. If ``'indices'``, returns a list of tuple of ndarray, where each ndarray contains the indices of locations that together form the given cluster along the given dimension. Note that for large datasets, ``'indices'`` may use far less memory than ``'mask'``. Default is ``'indices'``. """ docdict['outlines_topomap'] = """ outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. """ docdict['overview_mode'] = """ overview_mode : str | None Can be "channels", "empty", or "hidden" to set the overview bar mode for the ``'qt'`` backend. If None (default), the config option ``MNE_BROWSER_OVERVIEW_MODE`` will be used, defaulting to "channels" if it's not found. """ docdict['overwrite'] = """ overwrite : bool If True (default False), overwrite the destination file if it exists. """ # %% # P _pad_base = """ pad : str The type of padding to use. Supports all :func:`numpy.pad` ``mode`` options. Can also be ``"reflect_limited"``, which pads with a reflected version of each vector mirrored on the first and last values of the vector, followed by zeros. """ docdict['pad'] = _pad_base docdict['pad_fir'] = _pad_base + """ Only used for ``method='fir'``. """ docdict['pca_vars_pctf'] = """ pca_vars : array, shape (n_comp,) | list of array The explained variances of the first n_comp SVD components across the PSFs/CTFs for the specified vertices. Arrays for multiple labels are returned as list. Only returned if mode='svd' and return_pca_vars=True. """ docdict['phase'] = """ phase : str Phase of the filter, only used if ``method='fir'``. Symmetric linear-phase FIR filters are constructed, and if ``phase='zero'`` (default), the delay of this filter is compensated for, making it non-causal. If ``phase='zero-double'``, then this filter is applied twice, once forward, and once backward (also making it non-causal). If ``'minimum'``, then a minimum-phase filter will be constricted and applied, which is causal but has weaker stop-band suppression. .. versionadded:: 0.13 """ docdict['physical_range_export_params'] = """ physical_range : str | tuple The physical range of the data. If 'auto' (default), then it will infer the physical min and max from the data itself, taking the minimum and maximum values per channel type. If it is a 2-tuple of minimum and maximum limit, then those physical ranges will be used. Only used for exporting EDF files. """ _pick_ori_novec = """ Options: - ``None`` Pooling is performed by taking the norm of loose/free orientations. In case of a fixed source space no norm is computed leading to signed source activity. - ``"normal"`` Only the normal to the cortical surface is kept. This is only implemented when working with loose orientations. """ docdict['pick_ori'] = """ pick_ori : None | "normal" | "vector" """ + _pick_ori_novec + """ - ``"vector"`` No pooling of the orientations is done, and the vector result will be returned in the form of a :class:`mne.VectorSourceEstimate` object. """ docdict['pick_ori_bf'] = """ pick_ori : None | str For forward solutions with fixed orientation, None (default) must be used and a scalar beamformer is computed. For free-orientation forward solutions, a vector beamformer is computed and: - ``None`` Orientations are pooled after computing a vector beamformer (Default). - ``'normal'`` Filters are computed for the orientation tangential to the cortical surface. - ``'max-power'`` Filters are computed for the orientation that maximizes power. """ docdict['pick_ori_novec'] = """ pick_ori : None | "normal" """ + _pick_ori_novec _picks_types = 'str | list | slice | None' _picks_header = f'picks : {_picks_types}' _picks_desc = 'Channels to include.' _picks_int = ('Slices and lists of integers will be interpreted as channel ' 'indices.') _picks_str = """In lists, channel *type* strings (e.g., ``['meg', 'eeg']``) will pick channels of those types, channel *name* strings (e.g., ``['MEG0111', 'MEG2623']`` will pick the given channels. Can also be the string values "all" to pick all channels, or "data" to pick :term:`data channels`. None (default) will pick""" _reminder = ("Note that channels in ``info['bads']`` *will be included* if " "their {}indices are explicitly provided.") reminder = _reminder.format('names or ') reminder_nostr = _reminder.format('') noref = f'(excluding reference MEG channels). {reminder}' picks_base = f"""{_picks_header} {_picks_desc} {_picks_int} {_picks_str}""" docdict['picks_all'] = _reflow_param_docstring( f'{picks_base} all channels. {reminder}') docdict['picks_all_data'] = _reflow_param_docstring( f'{picks_base} all data channels. {reminder}') docdict['picks_all_data_noref'] = _reflow_param_docstring( f'{picks_base} all data channels {noref}') docdict['picks_base'] = _reflow_param_docstring(picks_base) docdict['picks_good_data'] = _reflow_param_docstring( f'{picks_base} good data channels. {reminder}') docdict['picks_good_data_noref'] = _reflow_param_docstring( f'{picks_base} good data channels {noref}') docdict['picks_header'] = _picks_header docdict['picks_ica'] = """ picks : int | list of int | slice | None Indices of the independent components (ICs) to visualize. If an integer, represents the index of the IC to pick. Multiple ICs can be selected using a list of int or a slice. The indices are 0-indexed, so ``picks=1`` will pick the second IC: ``ICA001``. """ docdict['picks_nostr'] = f"""picks : list | slice | None {_picks_desc} {_picks_int} None (default) will pick all channels. {reminder_nostr}""" docdict['picks_plot_projs_joint_trace'] = f"""\ picks_trace : {_picks_types} Channels to show alongside the projected time courses. Typically these are the ground-truth channels for an artifact (e.g., ``'eog'`` or ``'ecg'``). {_picks_int} {_picks_str} no channels. """ docdict['picks_plot_psd_good_data'] = \ f'{picks_base} good data channels. {reminder}'[:-2] + """ Cannot be None if ``ax`` is supplied.If both ``picks`` and ``ax`` are None separate subplots will be created for each standard channel type (``mag``, ``grad``, and ``eeg``). """ docdict['pipeline'] = """ pipeline : str | tuple The volume registration steps to perform (a ``str`` for a single step, or ``tuple`` for a set of sequential steps). The following steps can be performed, and do so by matching mutual information between the images (unless otherwise noted): ``'translation'`` Translation. ``'rigid'`` Rigid-body, i.e., rotation and translation. ``'affine'`` A full affine transformation, which includes translation, rotation, scaling, and shear. ``'sdr'`` Symmetric diffeomorphic registration :footcite:`AvantsEtAl2008`, a non-linear similarity-matching algorithm. The following string shortcuts can also be used: ``'all'`` (default) All steps will be performed above in the order above, i.e., ``('translation', 'rigid', 'affine', 'sdr')``. ``'rigids'`` The rigid steps (first two) will be performed, which registers the volume without distorting its underlying structure, i.e., ``('translation', 'rigid')``. This is useful for example when registering images from the same subject, such as CT and MR images. ``'affines'`` The affine steps (first three) will be performed, i.e., omitting the SDR step. """ docdict['plot_psd_doc'] = """ Plot the power spectral density across channels. Different channel types are drawn in sub-plots. When the data have been processed with a bandpass, lowpass or highpass filter, dashed lines (╎) indicate the boundaries of the filter. The line noise frequency is also indicated with a dashed line (⋮) """ docdict['precompute'] = """ precompute : bool | str Whether to load all data (not just the visible portion) into RAM and apply preprocessing (e.g., projectors) to the full data array in a separate processor thread, instead of window-by-window during scrolling. The default None uses the ``MNE_BROWSER_PRECOMPUTE`` variable, which defaults to ``'auto'``. ``'auto'`` compares available RAM space to the expected size of the precomputed data, and precomputes only if enough RAM is available. This is only used with the Qt backend. .. versionadded:: 0.24 .. versionchanged:: 1.0 Support for the MNE_BROWSER_PRECOMPUTE config variable. """ docdict['preload'] = """ preload : bool or str (default False) Preload data into memory for data manipulation and faster indexing. If True, the data will be preloaded into memory (fast, requires large amount of memory). If preload is a string, preload is the file name of a memory-mapped file which is used to store the data on the hard drive (slower, requires less memory).""" docdict['preload_concatenate'] = """ preload : bool, str, or None (default None) Preload data into memory for data manipulation and faster indexing. If True, the data will be preloaded into memory (fast, requires large amount of memory). If preload is a string, preload is the file name of a memory-mapped file which is used to store the data on the hard drive (slower, requires less memory). If preload is None, preload=True or False is inferred using the preload status of the instances passed in. """ docdict['proj_epochs'] = """ proj : bool | 'delayed' Apply SSP projection vectors. If proj is 'delayed' and reject is not None the single epochs will be projected before the rejection decision, but used in unprojected state if they are kept. This way deciding which projection vectors are good can be postponed to the evoked stage without resulting in lower epoch counts and without producing results different from early SSP application given comparable parameters. Note that in this case baselining, detrending and temporal decimation will be postponed. If proj is False no projections will be applied which is the recommended value if SSPs are not used for cleaning the data. """ docdict['proj_plot'] = """ proj : bool | 'interactive' | 'reconstruct' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be shown. If 'reconstruct', projection vectors will be applied and then M/EEG data will be reconstructed via field mapping to reduce the signal bias caused by projection. .. versionchanged:: 0.21 Support for 'reconstruct' was added. """ docdict['proj_topomap_kwargs'] = """ cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode (only works if ``colorbar=True``) the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None (default), 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. res : int The resolution of the topomap image (n pixels along each side). size : scalar Side length of the topomaps in inches (only applies when plotting multiple topomaps at a time). show : bool Show figure if True. outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. Defaults to 6. """ + docdict['image_interp_topomap'] + """ axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of projectors. If instance of Axes, there must be only one projector. Defaults to None. vlim : tuple of length 2 | 'joint' Colormap limits to use. If :class:`tuple`, specifies the lower and upper bounds of the colormap (in that order); providing ``None`` for either of these will set the corresponding boundary at the min/max of the data (separately for each projector). The keyword value ``'joint'`` will compute the colormap limits jointly across all provided projectors of the same channel type, using the min/max of the projector data. If vlim is ``'joint'``, ``info`` must not be ``None``. Defaults to ``(None, None)``. """ docdict['projection_set_eeg_reference'] = """ projection : bool If ``ref_channels='average'`` this argument specifies if the average reference should be computed as a projection (True) or not (False; default). If ``projection=True``, the average reference is added as a projection and is not applied to the data (it can be applied afterwards with the ``apply_proj`` method). If ``projection=False``, the average reference is directly applied to the data. If ``ref_channels`` is not ``'average'``, ``projection`` must be set to ``False`` (the default in this case). """ docdict['projs_report'] = """ projs : bool | None Whether to add SSP projector plots if projectors are present in the data. If ``None``, use ``projs`` from `~mne.Report` creation. """ # %% # R docdict['random_state'] = """ random_state : None | int | instance of ~numpy.random.RandomState A seed for the NumPy random number generator (RNG). If ``None`` (default), the seed will be obtained from the operating system (see :class:`~numpy.random.RandomState` for details), meaning it will most likely produce different output every time this function or method is run. To achieve reproducible results, pass a value here to explicitly initialize the RNG with a defined state. """ _rank_base = """ rank : None | 'info' | 'full' | dict This controls the rank computation that can be read from the measurement info or estimated from the data. When a noise covariance is used for whitening, this should reflect the rank of that covariance, otherwise amplification of noise components can occur in whitening (e.g., often during source localization). :data:`python:None` The rank will be estimated from the data after proper scaling of different channel types. ``'info'`` The rank is inferred from ``info``. If data have been processed with Maxwell filtering, the Maxwell filtering header is used. Otherwise, the channel counts themselves are used. In both cases, the number of projectors is subtracted from the (effective) number of channels in the data. For example, if Maxwell filtering reduces the rank to 68, with two projectors the returned value will be 66. ``'full'`` The rank is assumed to be full, i.e. equal to the number of good channels. If a `~mne.Covariance` is passed, this can make sense if it has been (possibly improperly) regularized without taking into account the true data rank. :class:`dict` Calculate the rank only for a subset of channel types, and explicitly specify the rank for the remaining channel types. This can be extremely useful if you already **know** the rank of (part of) your data, for instance in case you have calculated it earlier. This parameter must be a dictionary whose **keys** correspond to channel types in the data (e.g. ``'meg'``, ``'mag'``, ``'grad'``, ``'eeg'``), and whose **values** are integers representing the respective ranks. For example, ``{'mag': 90, 'eeg': 45}`` will assume a rank of ``90`` and ``45`` for magnetometer data and EEG data, respectively. The ranks for all channel types present in the data, but **not** specified in the dictionary will be estimated empirically. That is, if you passed a dataset containing magnetometer, gradiometer, and EEG data together with the dictionary from the previous example, only the gradiometer rank would be determined, while the specified magnetometer and EEG ranks would be taken for granted. """ docdict['rank'] = _rank_base docdict['rank_info'] = _rank_base + "\n The default is ``'info'``." docdict['rank_none'] = _rank_base + "\n The default is ``None``." docdict['raw_epochs'] = """ raw : Raw object An instance of `~mne.io.Raw`. """ docdict['reduce_rank'] = """ reduce_rank : bool If True, the rank of the denominator of the beamformer formula (i.e., during pseudo-inversion) will be reduced by one for each spatial location. Setting ``reduce_rank=True`` is typically necessary if you use a single sphere model with MEG data. .. versionchanged:: 0.20 Support for reducing rank in all modes (previously only supported ``pick='max_power'`` with weight normalization). """ docdict['ref_channels'] = """ ref_channels : str | list of str Name of the electrode(s) which served as the reference in the recording. If a name is provided, a corresponding channel is added and its data is set to 0. This is useful for later re-referencing. """ docdict['ref_channels_set_eeg_reference'] = """ ref_channels : list of str | str Can be: - The name(s) of the channel(s) used to construct the reference. - ``'average'`` to apply an average reference (default) - ``'REST'`` to use the Reference Electrode Standardization Technique infinity reference :footcite:`Yao2001`. - An empty list, in which case MNE will not attempt any re-referencing of the data """ docdict['reg_affine'] = """ reg_affine : ndarray of float, shape (4, 4) The affine that registers one volume to another. """ docdict['regularize_maxwell_reg'] = """ regularize : str | None Basis regularization type, must be "in" or None. "in" is the same algorithm as the "-regularize in" option in MaxFilter™. """ _reject_by_annotation_base = """ reject_by_annotation : bool Whether to omit bad segments from the data before fitting. If ``True`` (default), annotated segments whose description begins with ``'bad'`` are omitted. If ``False``, no rejection based on annotations is performed. """ docdict['reject_by_annotation_all'] = _reject_by_annotation_base docdict['reject_by_annotation_epochs'] = """ reject_by_annotation : bool Whether to reject based on annotations. If ``True`` (default), epochs overlapping with segments whose description begins with ``'bad'`` are rejected. If ``False``, no rejection based on annotations is performed. """ docdict['reject_by_annotation_raw'] = _reject_by_annotation_base + """ Has no effect if ``inst`` is not a :class:`mne.io.Raw` object. """ _reject_common = """\ Reject epochs based on **maximum** peak-to-peak signal amplitude (PTP), i.e. the absolute difference between the lowest and the highest signal value. In each individual epoch, the PTP is calculated for every channel. If the PTP of any one channel exceeds the rejection threshold, the respective epoch will be dropped. The dictionary keys correspond to the different channel types; valid **keys** can be any channel type present in the object. Example:: reject = dict(grad=4000e-13, # unit: T / m (gradiometers) mag=4e-12, # unit: T (magnetometers) eeg=40e-6, # unit: V (EEG channels) eog=250e-6 # unit: V (EOG channels) ) .. note:: Since rejection is based on a signal **difference** calculated for each channel separately, applying baseline correction does not affect the rejection procedure, as the difference will be preserved. """ docdict['reject_drop_bad'] = f""" reject : dict | str | None {_reject_common} If ``reject`` is ``None``, no rejection is performed. If ``'existing'`` (default), then the rejection parameters set at instantiation are used. """ docdict['reject_epochs'] = f""" reject : dict | None {_reject_common} .. note:: To constrain the time period used for estimation of signal quality, pass the ``reject_tmin`` and ``reject_tmax`` parameters. If ``reject`` is ``None`` (default), no rejection is performed. """ docdict['replace_report'] = """ replace : bool If ``True``, content already present that has the same ``title`` will be replaced. Defaults to ``False``, which will cause duplicate entries in the table of contents if an entry for ``title`` already exists. """ docdict['res_topomap'] = """ res : int The resolution of the topomap image (n pixels along each side). """ docdict['return_pca_vars_pctf'] = """ return_pca_vars : bool Whether or not to return the explained variances across the specified vertices for individual SVD components. This is only valid if mode='svd'. Default return_pca_vars=False. """ docdict['roll'] = """ roll : float | None The roll of the camera rendering the view in degrees. """ # %% # S docdict['saturated'] = """saturated : str Replace saturated segments of data with NaNs, can be: ``"ignore"`` The measured data is returned, even if it contains measurements while the amplifier was saturated. ``"nan"`` The returned data will contain NaNs during time segments when the amplifier was saturated. ``"annotate"`` (default) The returned data will contain annotations specifying sections the saturate segments. This argument will only be used if there is no .nosatflags file (only if a NIRSport device is used and saturation occurred). .. versionadded:: 0.24 """ docdict['scalings'] = """ scalings : 'auto' | dict | None Scaling factors for the traces. If a dictionary where any value is ``'auto'``, the scaling factor is set to match the 99.5th percentile of the respective data. If ``'auto'``, all scalings (for all channel types) are set to ``'auto'``. If any values are ``'auto'`` and the data is not preloaded, a subset up to 100 MB will be loaded. If ``None``, defaults to:: dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4, whitened=1e2) .. note:: A particular scaling value ``s`` corresponds to half of the visualized signal range around zero (i.e. from ``0`` to ``+s`` or from ``0`` to ``-s``). For example, the default scaling of ``20e-6`` (20µV) for EEG signals means that the visualized range will be 40 µV (20 µV in the positive direction and 20 µV in the negative direction). """ docdict['scalings_df'] = """ scalings : dict | None Scaling factor applied to the channels picked. If ``None``, defaults to ``dict(eeg=1e6, mag=1e15, grad=1e13)`` — i.e., converts EEG to µV, magnetometers to fT, and gradiometers to fT/cm. """ docdict['scalings_topomap'] = """ scalings : dict | float | None The scalings of the channel types to be applied for plotting. If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``. """ docdict['scoring'] = """ scoring : callable | str | None Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. Note that the "predict" method is automatically identified if scoring is a string (e.g. ``scoring='roc_auc'`` calls ``predict_proba``), but is **not** automatically set if ``scoring`` is a callable (e.g. ``scoring=sklearn.metrics.roc_auc_score``). """ docdict['sdr_morph'] = """ sdr_morph : instance of dipy.align.DiffeomorphicMap The class that applies the the symmetric diffeomorphic registration (SDR) morph. """ docdict['section_report'] = """ section : str | None The name of the section (or content block) to add the content to. This feature is useful for grouping multiple related content elements together under a single, collapsible section. Each content element will retain its own title and functionality, but not appear separately in the table of contents. Hence, using sections is a way to declutter the table of contents, and to easy navigation of the report. .. versionadded:: 1.1 """ docdict['seed'] = """ seed : None | int | instance of ~numpy.random.RandomState A seed for the NumPy random number generator (RNG). If ``None`` (default), the seed will be obtained from the operating system (see :class:`~numpy.random.RandomState` for details), meaning it will most likely produce different output every time this function or method is run. To achieve reproducible results, pass a value here to explicitly initialize the RNG with a defined state. """ docdict['seeg'] = """ seeg : bool If True (default), show sEEG electrodes. """ docdict['sensors_topomap'] = """ sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True (default), circles will be used. """ docdict['set_eeg_reference_see_also_notes'] = """ See Also -------- mne.set_bipolar_reference : Convenience function for creating bipolar references. Notes ----- Some common referencing schemes and the corresponding value for the ``ref_channels`` parameter: - Average reference: A new virtual reference electrode is created by averaging the current EEG signal by setting ``ref_channels='average'``. Bad EEG channels are automatically excluded if they are properly set in ``info['bads']``. - A single electrode: Set ``ref_channels`` to a list containing the name of the channel that will act as the new reference, for example ``ref_channels=['Cz']``. - The mean of multiple electrodes: A new virtual reference electrode is created by computing the average of the current EEG signal recorded from two or more selected channels. Set ``ref_channels`` to a list of channel names, indicating which channels to use. For example, to apply an average mastoid reference, when using the 10-20 naming scheme, set ``ref_channels=['M1', 'M2']``. - REST The given EEG electrodes are referenced to a point at infinity using the lead fields in ``forward``, which helps standardize the signals. 1. If a reference is requested that is not the average reference, this function removes any pre-existing average reference projections. 2. During source localization, the EEG signal should have an average reference. 3. In order to apply a reference, the data must be preloaded. This is not necessary if ``ref_channels='average'`` and ``projection=True``. 4. For an average or REST reference, bad EEG channels are automatically excluded if they are properly set in ``info['bads']``. .. versionadded:: 0.9.0 References ---------- .. footbibliography:: """ docdict['show'] = """ show : bool Show the figure if ``True``. """ docdict['show_names_topomap'] = """ show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function ``lambda x: x.replace('MEG ', '')``. If ``mask`` is not None, only significant sensors will be shown. """ docdict['show_scalebars'] = """ show_scalebars : bool Whether to show scale bars when the plot is initialized. Can be toggled after initialization by pressing :kbd:`s` while the plot window is focused. Default is ``True``. """ docdict['show_scrollbars'] = """ show_scrollbars : bool Whether to show scrollbars when the plot is initialized. Can be toggled after initialization by pressing :kbd:`z` ("zen mode") while the plot window is focused. Default is ``True``. .. versionadded:: 0.19.0 """ docdict['show_traces'] = """ show_traces : bool | str | float If True, enable interactive picking of a point on the surface of the brain and plot its time course. This feature is only available with the PyVista 3d backend, and requires ``time_viewer=True``. Defaults to 'auto', which will use True if and only if ``time_viewer=True``, the backend is PyVista, and there is more than one time point. If float (between zero and one), it specifies what proportion of the total window should be devoted to traces (True is equivalent to 0.25, i.e., it will occupy the bottom 1/4 of the figure). .. versionadded:: 0.20.0 """ docdict['size_topomap'] = """ size : float Side length per topomap in inches. """ docdict['skip_by_annotation_maxwell'] = """ skip_by_annotation : str | list of str If a string (or list of str), any annotation segment that begins with the given string will not be included in filtering, and segments on either side of the given excluded annotated segment will be filtered separately (i.e., as independent signals). The default ``('edge', 'bad_acq_skip')`` will separately filter any segments that were concatenated by :func:`mne.concatenate_raws` or :meth:`mne.io.Raw.append`, or separated during acquisition. To disable, provide an empty list. """ docdict['smooth'] = """ smooth : float in [0, 1) The smoothing factor to be applied. Default 0 is no smoothing. """ docdict['spatial_colors_plot_psd'] = """ spatial_colors : bool Whether to use spatial colors. Only used when ``average=False``. """ _sphere_header = ( 'sphere : float | array-like | instance of ConductorModel | None') _sphere_desc = ( 'The sphere parameters to use for the head outline. Can be array-like of ' 'shape (4,) to give the X/Y/Z origin and radius in meters, or a single ' 'float to give just the radius (origin assumed 0, 0, 0). Can also be an ' 'instance of a spherical :class:`~mne.bem.ConductorModel` to use the ' 'origin and radius from that object.' ) _sphere_topo = _reflow_param_docstring( f"""{_sphere_desc} ``None`` (the default) is equivalent to (0, 0, 0, {HEAD_SIZE_DEFAULT}). Currently the head radius does not affect plotting.""", has_first_line=False) _sphere_topo_auto = _reflow_param_docstring( f"""{_sphere_desc} If ``'auto'`` the sphere is fit to digitization points. If ``'eeglab'`` the head circle is defined by EEG electrodes ``'Fpz'``, ``'Oz'``, ``'T7'``, and ``'T8'`` (if ``'Fpz'`` is not present, it will be approximated from the coordinates of ``'Oz'``). ``None`` (the default) is equivalent to ``'auto'`` when enough extra digitization points are available, and (0, 0, 0, {HEAD_SIZE_DEFAULT}) otherwise. Currently the head radius does not affect plotting.""", has_first_line=False) docdict['sphere_topomap'] = f""" {_sphere_header} {_sphere_topo} .. versionadded:: 0.20 """ docdict['sphere_topomap_auto'] = f"""\ {_sphere_header} | 'auto' | 'eeglab' {_sphere_topo_auto} .. versionadded:: 0.20 .. versionchanged:: 1.1 Added ``'eeglab'`` option. """ docdict['split_naming'] = """ split_naming : 'neuromag' | 'bids' When splitting files, append a filename partition with the appropriate naming schema: for ``'neuromag'``, a split file ``fname.fif`` will be named ``fname.fif``, ``fname-1.fif``, ``fname-2.fif`` etc.; while for ``'bids'``, it will be named ``fname_split-01.fif``, ``fname_split-02.fif``, etc. """ docdict['src_eltc'] = """ src : instance of SourceSpaces The source spaces for the source time courses. """ docdict['src_volume_options'] = """ src : instance of SourceSpaces | None The source space corresponding to the source estimate. Only necessary if the STC is a volume or mixed source estimate. volume_options : float | dict | None Options for volumetric source estimate plotting, with key/value pairs: - ``'resolution'`` : float | None Resolution (in mm) of volume rendering. Smaller (e.g., 1.) looks better at the cost of speed. None (default) uses the volume source space resolution, which is often something like 7 or 5 mm, without resampling. - ``'blending'`` : str Can be "mip" (default) for :term:`maximum intensity projection` or "composite" for composite blending using alpha values. - ``'alpha'`` : float | None Alpha for the volumetric rendering. Defaults are 0.4 for vector source estimates and 1.0 for scalar source estimates. - ``'surface_alpha'`` : float | None Alpha for the surface enclosing the volume(s). None (default) will use half the volume alpha. Set to zero to avoid plotting the surface. - ``'silhouette_alpha'`` : float | None Alpha for a silhouette along the outside of the volume. None (default) will use ``0.25 * surface_alpha``. - ``'silhouette_linewidth'`` : float The line width to use for the silhouette. Default is 2. A float input (default 1.) or None will be used for the ``'resolution'`` entry. """ docdict['st_fixed_maxwell_only'] = """ st_fixed : bool If True (default), do tSSS using the median head position during the ``st_duration`` window. This is the default behavior of MaxFilter and has been most extensively tested. .. versionadded:: 0.12 st_only : bool If True, only tSSS (temporal) projection of MEG data will be performed on the output data. The non-tSSS parameters (e.g., ``int_order``, ``calibration``, ``head_pos``, etc.) will still be used to form the SSS bases used to calculate temporal projectors, but the output MEG data will *only* have temporal projections performed. Noise reduction from SSS basis multiplication, cross-talk cancellation, movement compensation, and so forth will not be applied to the data. This is useful, for example, when evoked movement compensation will be performed with :func:`~mne.epochs.average_movements`. .. versionadded:: 0.12 """ docdict['standardize_names'] = """ standardize_names : bool If True, standardize MEG and EEG channel names to be ``"MEG ###"`` and ``"EEG ###"``. If False (default), native channel names in the file will be used when possible. """ _stat_fun_clust_base = """ stat_fun : callable | None Function called to calculate the test statistic. Must accept 1D-array as input and return a 1D array. If ``None`` (the default), uses `mne.stats.{}`. """ docdict['stat_fun_clust_f'] = _stat_fun_clust_base.format('f_oneway') docdict['stat_fun_clust_t'] = _stat_fun_clust_base.format('ttest_1samp_no_p') docdict['static'] = """ static : instance of SpatialImage The image to align with ("to" volume). """ docdict['stc_plot_kwargs_report'] = """ stc_plot_kwargs : dict Dictionary of keyword arguments to pass to :class:`mne.SourceEstimate.plot`. Only used when plotting in 3D mode. """ docdict['stcs_pctf'] = """ stcs : instance of SourceEstimate | list of instances of SourceEstimate PSFs or CTFs as STC objects. All PSFs/CTFs will be returned as successive samples in STC objects, in the order they are specified in idx. STCs for different labels will be returned as a list. """ docdict['std_err_by_event_type_returns'] = """ std_err : instance of Evoked | list of Evoked The standard error over epochs. When ``by_event_type=True`` was specified, a list is returned containing a separate :class:`~mne.Evoked` object for each event type. The list has the same order as the event types as specified in the ``event_id`` dictionary. """ docdict['step_down_p_clust'] = """ step_down_p : float To perform a step-down-in-jumps test, pass a p-value for clusters to exclude from each successive iteration. Default is zero, perform no step-down test (since no clusters will be smaller than this value). Setting this to a reasonable value, e.g. 0.05, can increase sensitivity but costs computation time. """ docdict['subject'] = """ subject : str The FreeSurfer subject name. """ docdict['subject_label'] = """ subject : str | None Subject which this label belongs to. Should only be specified if it is not specified in the label. """ docdict['subject_none'] = """ subject : str | None The FreeSurfer subject name. """ docdict['subject_optional'] = """ subject : str The FreeSurfer subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors. """ docdict['subjects_dir'] = """ subjects_dir : path-like | None The path to the directory containing the FreeSurfer subjects reconstructions. If ``None``, defaults to the ``SUBJECTS_DIR`` environment variable. """ docdict['surface'] = """surface : str The surface along which to do the computations, defaults to ``'white'`` (the gray-white matter boundary). """ # %% # T docdict['t_power_clust'] = """ t_power : float Power to raise the statistical values (usually t-values) by before summing (sign will be retained). Note that ``t_power=0`` will give a count of locations in each cluster, ``t_power=1`` will weight each location by its statistical score. """ docdict['t_window_chpi_t'] = """ t_window : float Time window to use to estimate the amplitudes, default is 0.2 (200 ms). """ docdict['tags_report'] = """ tags : array-like of str | str Tags to add for later interactive filtering. Must not contain spaces. """ docdict['tail_clust'] = """ tail : int If tail is 1, the statistic is thresholded above threshold. If tail is -1, the statistic is thresholded below threshold. If tail is 0, the statistic is thresholded on both sides of the distribution. """ _theme = """\ theme : str | path-like Can be "auto", "light", or "dark" or a path-like to a custom stylesheet. For Dark-Mode and automatic Dark-Mode-Detection, :mod:`qdarkstyle` and `darkdetect <https://github.com/albertosottile/darkdetect>`__, respectively, are required.\ If None (default), the config option {config_option} will be used, defaulting to "auto" if it's not found.\ """ docdict['theme_3d'] = """ {theme} """.format(theme=_theme.format(config_option='MNE_3D_OPTION_THEME')) docdict['theme_pg'] = """ {theme} Only supported by the ``'qt'`` backend. """.format(theme=_theme.format(config_option='MNE_BROWSER_THEME')) docdict['thresh'] = """ thresh : None or float Not supported yet. If not None, values below thresh will not be visible. """ _threshold_clust_base = """ threshold : float | dict | None The so-called "cluster forming threshold" in the form of a test statistic (note: this is not an alpha level / "p-value"). If numeric, vertices with data values more extreme than ``threshold`` will be used to form clusters. If ``None``, {} will be chosen automatically that corresponds to a p-value of 0.05 for the given number of observations (only valid when using {}). If ``threshold`` is a :class:`dict` (with keys ``'start'`` and ``'step'``) then threshold-free cluster enhancement (TFCE) will be used (see the :ref:`TFCE example <tfce_example>` and :footcite:`SmithNichols2009`). See Notes for an example on how to compute a threshold based on a particular p-value for one-tailed or two-tailed tests. """ f_test = ('an F-threshold', 'an F-statistic') docdict['threshold_clust_f'] = _threshold_clust_base.format(*f_test) docdict['threshold_clust_f_notes'] = """ For computing a ``threshold`` based on a p-value, use the conversion from :meth:`scipy.stats.rv_continuous.ppf`:: pval = 0.001 # arbitrary dfn = n_conditions - 1 # degrees of freedom numerator dfd = n_observations - n_conditions # degrees of freedom denominator thresh = scipy.stats.f.ppf(1 - pval, dfn=dfn, dfd=dfd) # F distribution """ t_test = ('a t-threshold', 'a t-statistic') docdict['threshold_clust_t'] = _threshold_clust_base.format(*t_test) docdict['threshold_clust_t_notes'] = """ For computing a ``threshold`` based on a p-value, use the conversion from :meth:`scipy.stats.rv_continuous.ppf`:: pval = 0.001 # arbitrary df = n_observations - 1 # degrees of freedom for the test thresh = scipy.stats.t.ppf(1 - pval / 2, df) # two-tailed, t distribution For a one-tailed test (``tail=1``), don't divide the p-value by 2. For testing the lower tail (``tail=-1``), don't subtract ``pval`` from 1. """ docdict['time_format'] = """ time_format : 'float' | 'clock' Style of time labels on the horizontal axis. If ``'float'``, labels will be number of seconds from the start of the recording. If ``'clock'``, labels will show "clock time" (hours/minutes/seconds) inferred from ``raw.info['meas_date']``. Default is ``'float'``. .. versionadded:: 0.24 """ _time_format_df_base = """ time_format : str | None Desired time format. If ``None``, no conversion is applied, and time values remain as float values in seconds. If ``'ms'``, time values will be rounded to the nearest millisecond and converted to integers. If ``'timedelta'``, time values will be converted to :class:`pandas.Timedelta` values. {} Default is ``None``. """ docdict['time_format_df'] = _time_format_df_base.format('') _raw_tf = ("If ``'datetime'``, time values will be converted to " ":class:`pandas.Timestamp` values, relative to " "``raw.info['meas_date']`` and offset by ``raw.first_samp``. ") docdict['time_format_df_raw'] = _time_format_df_base.format(_raw_tf) docdict['time_label'] = """ time_label : str | callable | None Format of the time label (a format string, a function that maps floating point time values to strings, or None for no label). The default is ``'auto'``, which will use ``time=%0.2f ms`` if there is more than one time point. """ docdict['time_viewer_brain_screenshot'] = """ time_viewer : bool If True, include time viewer traces. Only used if ``time_viewer=True`` and ``separate_canvas=False``. """ docdict['title_none'] = """ title : str | None The title of the generated figure. If ``None`` (default), no title is displayed. """ docdict['tmax_raw'] = """ tmax : float End time of the raw data to use in seconds (cannot exceed data duration). """ docdict['tmin'] = """ tmin : scalar Time point of the first sample in data. """ docdict['tmin_raw'] = """ tmin : float Start time of the raw data to use in seconds (must be >= 0). """ docdict['tol_kind_rank'] = """ tol_kind : str Can be: "absolute" (default) or "relative". Only used if ``tol`` is a float, because when ``tol`` is a string the mode is implicitly relative. After applying the chosen scale factors / normalization to the data, the singular values are computed, and the rank is then taken as: - ``'absolute'`` The number of singular values ``s`` greater than ``tol``. This mode can fail if your data do not adhere to typical data scalings. - ``'relative'`` The number of singular values ``s`` greater than ``tol * s.max()``. This mode can fail if you have one or more large components in the data (e.g., artifacts). .. versionadded:: 0.21.0 """ docdict['tol_rank'] = """ tol : float | 'auto' Tolerance for singular values to consider non-zero in calculating the rank. The singular values are calculated in this method such that independent data are expected to have singular value around one. Can be 'auto' to use the same thresholding as :func:`scipy.linalg.orth`. """ docdict['topomap_kwargs'] = """ topomap_kwargs : dict | None Keyword arguments to pass to the topomap-generating functions. """ _trans_base = """\ If str, the path to the head<->MRI transform ``*-trans.fif`` file produced during coregistration. Can also be ``'fsaverage'`` to use the built-in fsaverage transformation.""" docdict['trans'] = f""" trans : path-like | dict | instance of Transform | None {_trans_base} If trans is None, an identity matrix is assumed. .. versionchanged:: 0.19 Support for 'fsaverage' argument. """ docdict['trans_not_none'] = """ trans : str | dict | instance of Transform %s """ % (_trans_base,) docdict['transparent'] = """ transparent : bool | None If True: use a linear transparency between fmin and fmid and make values below fmin fully transparent (symmetrically for divergent colormaps). None will choose automatically based on colormap type. """ docdict['tstart_ecg'] = """ tstart : float Start ECG detection after ``tstart`` seconds. Useful when the beginning of the run is noisy. """ docdict['tstep'] = """ tstep : scalar Time step between successive samples in data. """ # %% # U docdict['units'] = """ units : str | dict | None Specify the unit(s) that the data should be returned in. If ``None`` (default), the data is returned in the channel-type-specific default units, which are SI units (see :ref:`units` and :term:`data channels`). If a string, must be a sub-multiple of SI units that will be used to scale the data from all channels of the type associated with that unit. This only works if the data contains one channel type that has a unit (unitless channel types are left unchanged). For example if there are only EEG and STIM channels, ``units='uV'`` will scale EEG channels to micro-Volts while STIM channels will be unchanged. Finally, if a dictionary is provided, keys must be channel types, and values must be units to scale the data of that channel type to. For example ``dict(grad='fT/cm', mag='fT')`` will scale the corresponding types accordingly, but all other channel types will remain in their channel-type-specific default unit. """ docdict['units_topomap'] = """ units : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. """ docdict['use_cps'] = """ use_cps : bool Whether to use cortical patch statistics to define normal orientations for surfaces (default True). """ docdict['use_cps_restricted'] = """ use_cps : bool Whether to use cortical patch statistics to define normal orientations for surfaces (default True). Only used when the inverse is free orientation (``loose=1.``), not in surface orientation, and ``pick_ori='normal'``. """ docdict['use_opengl'] = """ use_opengl : bool | None Whether to use OpenGL when rendering the plot (requires ``pyopengl``). May increase performance, but effect is dependent on system CPU and graphics hardware. Only works if using the Qt backend. Default is None, which will use False unless the user configuration variable ``MNE_BROWSER_USE_OPENGL`` is set to ``'true'``, see :func:`mne.set_config`. .. versionadded:: 0.24 """ # %% # V docdict['verbose'] = """ verbose : bool | str | int | None Control verbosity of the logging output. If ``None``, use the default verbosity level. See the :ref:`logging documentation <tut-logging>` and :func:`mne.verbose` for details. Should only be passed as a keyword argument.""" docdict['vertices_volume'] = """ vertices : list of array of int The indices of the dipoles in the source space. Should be a single array of shape (n_dipoles,) unless there are subvolumes. """ docdict['view'] = """ view : str | None The name of the view to show (e.g. "lateral"). Other arguments take precedence and modify the camera starting from the ``view``. See :meth:`Brain.show_view <mne.viz.Brain.show_view>` for valid string shortcut options. """ docdict['view_layout'] = """ view_layout : str Can be "vertical" (default) or "horizontal". When using "horizontal" mode, the PyVista backend must be used and hemi cannot be "split". """ docdict['views'] = """ views : str | list View to use. Using multiple views (list) is not supported for mpl backend. See :meth:`Brain.show_view <mne.viz.Brain.show_view>` for valid string options. """ docdict['vlim_psd_topo_joint'] = """ vlim : tuple of length 2 | 'joint' Colormap limits to use. If a :class:`tuple` of floats, specifies the lower and upper bounds of the colormap (in that order); providing ``None`` for either entry will set the corresponding boundary at the min/max of the data (separately for each topomap). Elements of the :class:`tuple` may also be callable functions which take in a :class:`NumPy array <numpy.ndarray>` and return a scalar. If ``vlim='joint'``, will compute the colormap limits jointly across all topomaps of the same channel type, using the min/max of the data. Defaults to ``(None, None)``. .. versionadded:: 0.21 """ docdict['vmin_vmax_topomap'] = """ vmin, vmax : float | callable | None Lower and upper bounds of the colormap, in the same units as the data. If ``vmin`` and ``vmax`` are both ``None``, they are set at ± the maximum absolute value of the data (yielding a colormap with midpoint at 0). If only one of ``vmin``, ``vmax`` is ``None``, will use ``min(data)`` or ``max(data)``, respectively. If callable, should accept a :class:`NumPy array <numpy.ndarray>` of data and return a float. """ # %% # W docdict['weight_norm'] = """ weight_norm : str | None Can be: - ``None`` The unit-gain LCMV beamformer :footcite:`SekiharaNagarajan2008` will be computed. - ``'unit-noise-gain'`` The unit-noise gain minimum variance beamformer will be computed (Borgiotti-Kaplan beamformer) :footcite:`SekiharaNagarajan2008`, which is not rotation invariant when ``pick_ori='vector'``. This should be combined with :meth:`stc.project('pca') <mne.VectorSourceEstimate.project>` to follow the definition in :footcite:`SekiharaNagarajan2008`. - ``'nai'`` The Neural Activity Index :footcite:`VanVeenEtAl1997` will be computed, which simply scales all values from ``'unit-noise-gain'`` by a fixed value. - ``'unit-noise-gain-invariant'`` Compute a rotation-invariant normalization using the matrix square root. This differs from ``'unit-noise-gain'`` only when ``pick_ori='vector'``, creating a solution that: 1. Is rotation invariant (``'unit-noise-gain'`` is not); 2. Satisfies the first requirement from :footcite:`SekiharaNagarajan2008` that ``w @ w.conj().T == I``, whereas ``'unit-noise-gain'`` has non-zero off-diagonals; but 3. Does not satisfy the second requirement that ``w @ G.T = θI``, which arguably does not make sense for a rotation-invariant solution. """ docdict['window_psd'] = """ window : str | float | tuple Windowing function to use. See :func:`scipy.signal.get_window`. """ docdict['window_resample'] = """ window : str | tuple Frequency-domain window to use in resampling. See :func:`scipy.signal.resample`. """ # %% # X docdict['xscale_plot_psd'] = """ xscale : str Can be 'linear' (default) or 'log'. """ # %% # Y # %% # Z docdict_indented = {} def fill_doc(f): """Fill a docstring with docdict entries. Parameters ---------- f : callable The function to fill the docstring of. Will be modified in place. Returns ------- f : callable The function, potentially with an updated ``__doc__``. """ docstring = f.__doc__ if not docstring: return f lines = docstring.splitlines() # Find the minimum indent of the main docstring, after first line if len(lines) < 2: icount = 0 else: icount = _indentcount_lines(lines[1:]) # Insert this indent to dictionary docstrings try: indented = docdict_indented[icount] except KeyError: indent = ' ' * icount docdict_indented[icount] = indented = {} for name, dstr in docdict.items(): lines = dstr.splitlines() try: newlines = [lines[0]] for line in lines[1:]: newlines.append(indent + line) indented[name] = '\n'.join(newlines) except IndexError: indented[name] = dstr try: f.__doc__ = docstring % indented except (TypeError, ValueError, KeyError) as exp: funcname = f.__name__ funcname = docstring.split('\n')[0] if funcname is None else funcname raise RuntimeError('Error documenting %s:\n%s' % (funcname, str(exp))) return f ############################################################################## # Utilities for docstring manipulation. def copy_doc(source): """Copy the docstring from another function (decorator). The docstring of the source function is prepepended to the docstring of the function wrapped by this decorator. This is useful when inheriting from a class and overloading a method. This decorator can be used to copy the docstring of the original method. Parameters ---------- source : function Function to copy the docstring from Returns ------- wrapper : function The decorated function Examples -------- >>> class A: ... def m1(): ... '''Docstring for m1''' ... pass >>> class B (A): ... @copy_doc(A.m1) ... def m1(): ... ''' this gets appended''' ... pass >>> print(B.m1.__doc__) Docstring for m1 this gets appended """ def wrapper(func): if source.__doc__ is None or len(source.__doc__) == 0: raise ValueError('Cannot copy docstring: docstring was empty.') doc = source.__doc__ if func.__doc__ is not None: doc += func.__doc__ func.__doc__ = doc return func return wrapper def copy_function_doc_to_method_doc(source): """Use the docstring from a function as docstring for a method. The docstring of the source function is prepepended to the docstring of the function wrapped by this decorator. Additionally, the first parameter specified in the docstring of the source function is removed in the new docstring. This decorator is useful when implementing a method that just calls a function. This pattern is prevalent in for example the plotting functions of MNE. Parameters ---------- source : function Function to copy the docstring from. Returns ------- wrapper : function The decorated method. Notes ----- The parsing performed is very basic and will break easily on docstrings that are not formatted exactly according to the ``numpydoc`` standard. Always inspect the resulting docstring when using this decorator. Examples -------- >>> def plot_function(object, a, b): ... '''Docstring for plotting function. ... ... Parameters ... ---------- ... object : instance of object ... The object to plot ... a : int ... Some parameter ... b : int ... Some parameter ... ''' ... pass ... >>> class A: ... @copy_function_doc_to_method_doc(plot_function) ... def plot(self, a, b): ... ''' ... Notes ... ----- ... .. versionadded:: 0.13.0 ... ''' ... plot_function(self, a, b) >>> print(A.plot.__doc__) Docstring for plotting function. <BLANKLINE> Parameters ---------- a : int Some parameter b : int Some parameter <BLANKLINE> Notes ----- .. versionadded:: 0.13.0 <BLANKLINE> """ def wrapper(func): doc = source.__doc__.split('\n') if len(doc) == 1: doc = doc[0] if func.__doc__ is not None: doc += func.__doc__ func.__doc__ = doc return func # Find parameter block for line, text in enumerate(doc[:-2]): if (text.strip() == 'Parameters' and doc[line + 1].strip() == '----------'): parameter_block = line break else: # No parameter block found raise ValueError('Cannot copy function docstring: no parameter ' 'block found. To simply copy the docstring, use ' 'the @copy_doc decorator instead.') # Find first parameter for line, text in enumerate(doc[parameter_block:], parameter_block): if ':' in text: first_parameter = line parameter_indentation = len(text) - len(text.lstrip(' ')) break else: raise ValueError('Cannot copy function docstring: no parameters ' 'found. To simply copy the docstring, use the ' '@copy_doc decorator instead.') # Find end of first parameter for line, text in enumerate(doc[first_parameter + 1:], first_parameter + 1): # Ignore empty lines if len(text.strip()) == 0: continue line_indentation = len(text) - len(text.lstrip(' ')) if line_indentation <= parameter_indentation: # Reach end of first parameter first_parameter_end = line # Of only one parameter is defined, remove the Parameters # heading as well if ':' not in text: first_parameter = parameter_block break else: # End of docstring reached first_parameter_end = line first_parameter = parameter_block # Copy the docstring, but remove the first parameter doc = ('\n'.join(doc[:first_parameter]) + '\n' + '\n'.join(doc[first_parameter_end:])) if func.__doc__ is not None: doc += func.__doc__ func.__doc__ = doc return func return wrapper def copy_base_doc_to_subclass_doc(subclass): """Use the docstring from a parent class methods in derived class. The docstring of a parent class method is prepended to the docstring of the method of the class wrapped by this decorator. Parameters ---------- subclass : wrapped class Class to copy the docstring to. Returns ------- subclass : Derived class The decorated class with copied docstrings. """ ancestors = subclass.mro()[1:-1] for source in ancestors: methodList = [method for method in dir(source) if callable(getattr(source, method))] for method_name in methodList: # discard private methods if method_name[0] == '_': continue base_method = getattr(source, method_name) sub_method = getattr(subclass, method_name) if base_method is not None and sub_method is not None: doc = base_method.__doc__ if sub_method.__doc__ is not None: doc += '\n' + sub_method.__doc__ sub_method.__doc__ = doc return subclass def linkcode_resolve(domain, info): """Determine the URL corresponding to a Python object. Parameters ---------- domain : str Only useful when 'py'. info : dict With keys "module" and "fullname". Returns ------- url : str The code URL. Notes ----- This has been adapted to deal with our "verbose" decorator. Adapted from SciPy (doc/source/conf.py). """ import mne if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return None # deal with our decorators properly while hasattr(obj, '__wrapped__'): obj = obj.__wrapped__ try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except Exception: fn = None if not fn: return None fn = op.relpath(fn, start=op.dirname(mne.__file__)) fn = '/'.join(op.normpath(fn).split(os.sep)) # in case on Windows try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" if 'dev' in mne.__version__: kind = 'main' else: kind = 'maint/%s' % ('.'.join(mne.__version__.split('.')[:2])) return "http://github.com/mne-tools/mne-python/blob/%s/mne/%s%s" % ( kind, fn, linespec) def open_docs(kind=None, version=None): """Launch a new web browser tab with the MNE documentation. Parameters ---------- kind : str | None Can be "api" (default), "tutorials", or "examples". The default can be changed by setting the configuration value MNE_DOCS_KIND. version : str | None Can be "stable" (default) or "dev". The default can be changed by setting the configuration value MNE_DOCS_VERSION. """ from .check import _check_option from .config import get_config if kind is None: kind = get_config('MNE_DOCS_KIND', 'api') help_dict = dict(api='python_reference.html', tutorials='tutorials.html', examples='auto_examples/index.html') _check_option('kind', kind, sorted(help_dict.keys())) kind = help_dict[kind] if version is None: version = get_config('MNE_DOCS_VERSION', 'stable') _check_option('version', version, ['stable', 'dev']) webbrowser.open_new_tab('https://mne.tools/%s/%s' % (version, kind)) # Following deprecated class copied from scikit-learn # force show of DeprecationWarning even on python 2.7 warnings.filterwarnings('always', category=DeprecationWarning, module='mne') class deprecated: """Mark a function, class, or method as deprecated (decorator). Originally adapted from sklearn and http://wiki.python.org/moin/PythonDecoratorLibrary, then modified to make arguments populate properly following our verbose decorator methods based on decorator. Parameters ---------- extra : str Extra information beyond just saying the class/function/method is deprecated. """ def __init__(self, extra=''): # noqa: D102 self.extra = extra def __call__(self, obj): # noqa: D105 """Call. Parameters ---------- obj : object Object to call. Returns ------- obj : object The modified object. """ if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = f"Class {cls.__name__} is deprecated" cls.__init__ = self._make_fun(cls.__init__, msg) return cls def _decorate_fun(self, fun): """Decorate function fun.""" msg = f"Function {fun.__name__} is deprecated" return self._make_fun(fun, msg) def _make_fun(self, function, msg): if self.extra: msg += "; %s" % self.extra body = f"""\ def %(name)s(%(signature)s):\n import warnings warnings.warn({repr(msg)}, category=DeprecationWarning) return _function_(%(shortsignature)s)""" evaldict = dict(_function_=function) fm = FunctionMaker( function, None, None, None, None, function.__module__) attrs = dict(__wrapped__=function, __qualname__=function.__qualname__, __globals__=function.__globals__) dep = fm.make(body, evaldict, addsource=True, **attrs) dep.__doc__ = self._update_doc(dep.__doc__) dep._deprecated_original = function return dep def _update_doc(self, olddoc): newdoc = ".. warning:: DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) newdoc += '.' if olddoc: # Get the spacing right to avoid sphinx warnings n_space = 4 for li, line in enumerate(olddoc.split('\n')): if li > 0 and len(line.strip()): n_space = len(line) - len(line.lstrip()) break newdoc = "%s\n\n%s%s" % (newdoc, ' ' * n_space, olddoc) return newdoc def deprecated_alias(dep_name, func, removed_in=None): """Inject a deprecated alias into the namespace.""" if removed_in is None: from .._version import __version__ removed_in = __version__.split('.')[:2] removed_in[1] = str(int(removed_in[1]) + 1) removed_in = '.'.join(removed_in) # Inject a deprecated version into the namespace inspect.currentframe().f_back.f_globals[dep_name] = deprecated( f'{dep_name} has been deprecated in favor of {func.__name__} and will ' f'be removed in {removed_in}.' )(deepcopy(func)) ############################################################################### # The following tools were adapted (mostly trimmed) from SciPy's doccer.py def _docformat(docstring, docdict=None, funcname=None): """Fill a function docstring from variables in dictionary. Adapt the indent of the inserted docs Parameters ---------- docstring : string docstring from function, possibly with dict formatting strings docdict : dict, optional dictionary with keys that match the dict formatting strings and values that are docstring fragments to be inserted. The indentation of the inserted docstrings is set to match the minimum indentation of the ``docstring`` by adding this indentation to all lines of the inserted string, except the first Returns ------- outstring : string string with requested ``docdict`` strings inserted """ if not docstring: return docstring if docdict is None: docdict = {} if not docdict: return docstring lines = docstring.expandtabs().splitlines() # Find the minimum indent of the main docstring, after first line if len(lines) < 2: icount = 0 else: icount = _indentcount_lines(lines[1:]) indent = ' ' * icount # Insert this indent to dictionary docstrings indented = {} for name, dstr in docdict.items(): lines = dstr.expandtabs().splitlines() try: newlines = [lines[0]] for line in lines[1:]: newlines.append(indent + line) indented[name] = '\n'.join(newlines) except IndexError: indented[name] = dstr funcname = docstring.split('\n')[0] if funcname is None else funcname try: return docstring % indented except (TypeError, ValueError, KeyError) as exp: raise RuntimeError('Error documenting %s:\n%s' % (funcname, str(exp))) def _indentcount_lines(lines): """Compute minimum indent for all lines in line list.""" indentno = sys.maxsize for line in lines: stripped = line.lstrip() if stripped: indentno = min(indentno, len(line) - len(stripped)) if indentno == sys.maxsize: return 0 return indentno
bsd-3-clause
matheuszaglia/opensearchgeo
opensearch.py
1
7247
from flask import Flask, request, make_response, render_template, abort, jsonify, send_file import inpe_data import os import io import logging app = Flask(__name__) app.config['PROPAGATE_EXCEPTIONS'] = True app.logger_name = "opensearch" handler = logging.FileHandler('errors.log') handler.setFormatter(logging.Formatter( '[%(asctime)s] %(levelname)s in %(module)s: %(message)s' )) app.logger.addHandler(handler) app.jinja_env.trim_blocks = True app.jinja_env.lstrip_blocks = True app.jinja_env.keep_trailing_newline = True @app.route('/granule.<string:output>', methods=['GET']) def os_granule(output): data = [] total_results = 0 start_index = request.args.get('startIndex', 1) count = request.args.get('count', 10) if start_index == "": start_index = 0 elif int(start_index) == 0: abort(400, 'Invalid startIndex') else: start_index = int(start_index) - 1 if count == "": count = 10 elif int(count) < 0: abort(400, 'Invalid count') else: count = int(count) try: data = inpe_data.get_bbox(request.args.get('bbox', None), request.args.get('uid', None), request.args.get('path', None), request.args.get('row', None), request.args.get('start', None), request.args.get('end', None), request.args.get('radiometricProcessing', None), request.args.get('type', None), request.args.get('band', None), request.args.get('dataset', None), request.args.get('cloud', None), start_index, count) except inpe_data.InvalidBoundingBoxError: abort(400, 'Invalid bounding box') except IOError: abort(503) if output == 'json': resp = jsonify(data) resp.headers.add('Access-Control-Allow-Origin', '*') return resp resp = make_response(render_template('granule.{}'.format(output), url=request.url.replace('&', '&amp;'), data=data, start_index=start_index, count=count, url_root=os.environ.get('BASE_URL'))) if output == 'atom': resp.content_type = 'application/atom+xml' + output resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.route('/collections.<string:output>') def os_dataset(output): abort(503) # disabled at the moment total_results = 0 data = None start_index = request.args.get('startIndex', 1) count = request.args.get('count', 10) if start_index == "": start_index = 0 elif int(start_index) == 0: abort(400, 'Invalid startIndex') else: start_index = int(start_index) - 1 if count == "": count = 10 elif int(count) < 0: abort(400, 'Invalid count') else: count = int(count) try: result = inpe_data.get_datasets(request.args.get('bbox', None), request.args.get('searchTerms', None), request.args.get('uid', None), request.args.get('start', None), request.args.get('end', None), start_index, count) data = result except IOError: abort(503) resp = make_response(render_template('collections.' + output, url=request.url.replace('&', '&amp;'), data=data, total_results=len(result), start_index=start_index, count=count, url_root=request.url_root, updated=inpe_data.get_updated() )) if output == 'atom': output = 'atom+xml' resp.content_type = 'application/' + output resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.route('/') @app.route('/osdd') @app.route('/osdd/granule') def os_osdd_granule(): resp = make_response(render_template('osdd_granule.xml', url=os.environ.get('BASE_URL'), datasets=inpe_data.get_datasets(), bands=inpe_data.get_bands(), rps=inpe_data.get_radiometricProcessing(), types=inpe_data.get_types())) resp.content_type = 'application/xml' resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.route('/osdd/collection') def os_osdd_collection(): resp = make_response(render_template('osdd_collection.xml', url=request.url_root)) resp.content_type = 'application/xml' resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.route('/browseimage/<string:sceneid>') def browse_image(sceneid): try: image = inpe_data.get_browse_image(sceneid) except IndexError: abort(400, 'There is no browse image with the provided Scene ID.') except Exception as e: abort(503, str(e)) return send_file(io.BytesIO(image), mimetype='image/jpeg') @app.route('/metadata/<string:sceneid>') def scene(sceneid): try: data, result_len = inpe_data.get_bbox(uid=sceneid) data[0]['browseURL'] = request.url_root + data[0]['browseURL'] except Exception as e: abort(503, str(e)) return jsonify(data) @app.errorhandler(400) def handle_bad_request(e): resp = jsonify({'code': 400, 'message': 'Bad Request - {}'.format(e.description)}) resp.status_code = 400 resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.errorhandler(404) def handle_page_not_found(e): resp = jsonify({'code': 404, 'message': 'Page not found'}) resp.status_code = 404 resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.errorhandler(500) def handle_api_error(e): resp = jsonify({'code': 500, 'message': 'Internal Server Error'}) resp.status_code = 500 resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.errorhandler(502) def handle_bad_gateway_error(e): resp = jsonify({'code': 502, 'message': 'Bad Gateway'}) resp.status_code = 502 resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.errorhandler(503) def handle_service_unavailable_error(e): resp = jsonify({'code': 503, 'message': 'Service Unavailable'}) resp.status_code = 503 resp.headers.add('Access-Control-Allow-Origin', '*') return resp @app.errorhandler(Exception) def handle_exception(e): app.logger.exception(e) resp = jsonify({'code': 500, 'message': 'Internal Server Error'}) resp.status_code = 500 resp.headers.add('Access-Control-Allow-Origin', '*') return resp
gpl-3.0
herilalaina/scikit-learn
benchmarks/bench_lof.py
28
3492
""" ============================ LocalOutlierFactor benchmark ============================ A test of LocalOutlierFactor on classical anomaly detection datasets. Note that LocalOutlierFactor is not meant to predict on a test set and its performance is assessed in an outlier detection context: 1. The model is trained on the whole dataset which is assumed to contain outliers. 2. The ROC curve is computed on the same dataset using the knowledge of the labels. In this context there is no need to shuffle the dataset because the model is trained and tested on the whole dataset. The randomness of this benchmark is only caused by the random selection of anomalies in the SA dataset. """ from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor from sklearn.metrics import roc_curve, auc from sklearn.datasets import fetch_kddcup99, fetch_covtype, fetch_mldata from sklearn.preprocessing import LabelBinarizer print(__doc__) random_state = 2 # to control the random selection of anomalies in SA # datasets available: ['http', 'smtp', 'SA', 'SF', 'shuttle', 'forestcover'] datasets = ['http', 'smtp', 'SA', 'SF', 'shuttle', 'forestcover'] plt.figure() for dataset_name in datasets: # loading and vectorization print('loading data') if dataset_name in ['http', 'smtp', 'SA', 'SF']: dataset = fetch_kddcup99(subset=dataset_name, percent10=True, random_state=random_state) X = dataset.data y = dataset.target if dataset_name == 'shuttle': dataset = fetch_mldata('shuttle') X = dataset.data y = dataset.target # we remove data with label 4 # normal data are then those of class 1 s = (y != 4) X = X[s, :] y = y[s] y = (y != 1).astype(int) if dataset_name == 'forestcover': dataset = fetch_covtype() X = dataset.data y = dataset.target # normal data are those with attribute 2 # abnormal those with attribute 4 s = (y == 2) + (y == 4) X = X[s, :] y = y[s] y = (y != 2).astype(int) print('vectorizing data') if dataset_name == 'SF': lb = LabelBinarizer() x1 = lb.fit_transform(X[:, 1].astype(str)) X = np.c_[X[:, :1], x1, X[:, 2:]] y = (y != b'normal.').astype(int) if dataset_name == 'SA': lb = LabelBinarizer() x1 = lb.fit_transform(X[:, 1].astype(str)) x2 = lb.fit_transform(X[:, 2].astype(str)) x3 = lb.fit_transform(X[:, 3].astype(str)) X = np.c_[X[:, :1], x1, x2, x3, X[:, 4:]] y = (y != b'normal.').astype(int) if dataset_name == 'http' or dataset_name == 'smtp': y = (y != b'normal.').astype(int) X = X.astype(float) print('LocalOutlierFactor processing...') model = LocalOutlierFactor(n_neighbors=20) tstart = time() model.fit(X) fit_time = time() - tstart scoring = -model.negative_outlier_factor_ # the lower, the more normal fpr, tpr, thresholds = roc_curve(y, scoring) AUC = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label=('ROC for %s (area = %0.3f, train-time: %0.2fs)' % (dataset_name, AUC, fit_time))) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show()
bsd-3-clause
pravsripad/mne-python
mne/io/artemis123/tests/test_artemis123.py
10
4658
# Author: Luke Bloy <bloyl@chop.edu> # # License: BSD-3-Clause import os.path as op import numpy as np from numpy.testing import assert_allclose, assert_equal import pytest from mne.io import read_raw_artemis123 from mne.io.tests.test_raw import _test_raw_reader from mne.datasets import testing from mne.io.artemis123.utils import _generate_mne_locs_file, _load_mne_locs from mne import pick_types from mne.transforms import rot_to_quat, _angle_between_quats from mne.io.constants import FIFF artemis123_dir = op.join(testing.data_path(download=False), 'ARTEMIS123') short_HPI_dip_fname = op.join(artemis123_dir, 'Artemis_Data_2017-04-04-15h-44m-' + '22s_Motion_Translation-z.bin') dig_fname = op.join(artemis123_dir, 'Phantom_040417_dig.pos') short_hpi_1kz_fname = op.join(artemis123_dir, 'Artemis_Data_2017-04-14-10h' + '-38m-59s_Phantom_1k_HPI_1s.bin') # XXX this tol is way too high, but it's not clear which is correct # (old or new) def _assert_trans(actual, desired, dist_tol=0.017, angle_tol=5.): __tracebackhide__ = True trans_est = actual[0:3, 3] quat_est = rot_to_quat(actual[0:3, 0:3]) trans = desired[0:3, 3] quat = rot_to_quat(desired[0:3, 0:3]) angle = np.rad2deg(_angle_between_quats(quat_est, quat)) dist = np.linalg.norm(trans - trans_est) assert dist <= dist_tol, \ '%0.3f > %0.3f mm translation' % (1000 * dist, 1000 * dist_tol) assert angle <= angle_tol, \ '%0.3f > %0.3f° rotation' % (angle, angle_tol) @pytest.mark.timeout(60) # ~25 sec on Travis Linux OpenBLAS @testing.requires_testing_data def test_artemis_reader(): """Test reading raw Artemis123 files.""" _test_raw_reader(read_raw_artemis123, input_fname=short_hpi_1kz_fname, pos_fname=dig_fname, verbose='error') @pytest.mark.timeout(60) @testing.requires_testing_data def test_dev_head_t(): """Test dev_head_t computation for Artemis123.""" # test a random selected point raw = read_raw_artemis123(short_hpi_1kz_fname, preload=True, add_head_trans=False) meg_picks = pick_types(raw.info, meg=True, eeg=False) # checked against matlab reader. assert_allclose(raw[meg_picks[12]][0][0][123], 1.08239606023e-11) dev_head_t_1 = np.array([[9.713e-01, 2.340e-01, -4.164e-02, 1.302e-04], [-2.371e-01, 9.664e-01, -9.890e-02, 1.977e-03], [1.710e-02, 1.059e-01, 9.942e-01, -8.159e-03], [0.0, 0.0, 0.0, 1.0]]) dev_head_t_2 = np.array([[9.890e-01, 1.475e-01, -8.090e-03, 4.997e-04], [-1.476e-01, 9.846e-01, -9.389e-02, 1.962e-03], [-5.888e-03, 9.406e-02, 9.955e-01, -1.610e-02], [0.0, 0.0, 0.0, 1.0]]) expected_dev_hpi_rr = np.array([[-0.01579644, 0.06527367, 0.00152648], [0.06666813, 0.0148956, 0.00545488], [-0.06699212, -0.01732376, 0.0112027]]) # test with head loc no digitization raw = read_raw_artemis123(short_HPI_dip_fname, add_head_trans=True) _assert_trans(raw.info['dev_head_t']['trans'], dev_head_t_1) assert_equal(raw.info['sfreq'], 5000.0) # test with head loc and digitization with pytest.warns(RuntimeWarning, match='Large difference'): raw = read_raw_artemis123(short_HPI_dip_fname, add_head_trans=True, pos_fname=dig_fname) _assert_trans(raw.info['dev_head_t']['trans'], dev_head_t_1) # test cHPI localization.. dev_hpi_rr = np.array([p['r'] for p in raw.info['dig'] if p['coord_frame'] == FIFF.FIFFV_COORD_DEVICE]) # points should be within 0.1 mm (1e-4m) and within 1% assert_allclose(dev_hpi_rr, expected_dev_hpi_rr, atol=1e-4, rtol=0.01) # test 1kz hpi head loc (different freq) raw = read_raw_artemis123(short_hpi_1kz_fname, add_head_trans=True) _assert_trans(raw.info['dev_head_t']['trans'], dev_head_t_2) assert_equal(raw.info['sfreq'], 1000.0) def test_utils(tmp_path): """Test artemis123 utils.""" # make a tempfile tmp_dir = str(tmp_path) tmp_fname = op.join(tmp_dir, 'test_gen_mne_locs.csv') _generate_mne_locs_file(tmp_fname) installed_locs = _load_mne_locs() generated_locs = _load_mne_locs(tmp_fname) assert_equal(set(installed_locs.keys()), set(generated_locs.keys())) for key in installed_locs.keys(): assert_allclose(installed_locs[key], generated_locs[key], atol=1e-7)
bsd-3-clause
schets/scikit-learn
examples/ensemble/plot_forest_iris.py
332
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
schets/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
37
7136
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.grid_search import GridSearchCV from sklearn import datasets from sklearn import cross_validation from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target) expect = [0.953, 0.960, 0.960, 0.953] scores = [mean_score for params, mean_score, scores in grid.grid_scores_] for e, s in zip(expect, scores): assert_almost_equal(e, s, decimal=3)
bsd-3-clause
pravsripad/mne-python
mne/gui/tests/test_ieeg_locate_gui.py
2
7792
# -*- coding: utf-8 -*- # Authors: Alex Rockhill <aprockhill@mailbox.org> # # License: BSD-3-clause import os.path as op import numpy as np from numpy.testing import assert_allclose import pytest import mne from mne.datasets import testing from mne.transforms import apply_trans from mne.utils import requires_nibabel, requires_version, use_log_level from mne.viz.utils import _fake_click data_path = testing.data_path(download=False) subject = 'sample' subjects_dir = op.join(data_path, 'subjects') sample_dir = op.join(data_path, 'MEG', subject) raw_path = op.join(sample_dir, 'sample_audvis_trunc_raw.fif') fname_trans = op.join(sample_dir, 'sample_audvis_trunc-trans.fif') @requires_nibabel() @pytest.fixture def _fake_CT_coords(skull_size=5, contact_size=2): """Make somewhat realistic CT data with contacts.""" import nibabel as nib brain = nib.load( op.join(subjects_dir, subject, 'mri', 'brain.mgz')) verts = mne.read_surface( op.join(subjects_dir, subject, 'bem', 'outer_skull.surf'))[0] verts = apply_trans(np.linalg.inv(brain.header.get_vox2ras_tkr()), verts) x, y, z = np.array(brain.shape).astype(int) // 2 coords = [(x, y - 14, z), (x - 10, y - 15, z), (x - 20, y - 16, z + 1), (x - 30, y - 16, z + 1)] center = np.array(brain.shape) / 2 # make image np.random.seed(99) ct_data = np.random.random(brain.shape).astype(np.float32) * 100 # make skull for vert in verts: x, y, z = np.round(vert).astype(int) ct_data[slice(x - skull_size, x + skull_size + 1), slice(y - skull_size, y + skull_size + 1), slice(z - skull_size, z + skull_size + 1)] = 1000 # add electrode with contacts for (x, y, z) in coords: # make sure not in skull assert np.linalg.norm(center - np.array((x, y, z))) < 50 ct_data[slice(x - contact_size, x + contact_size + 1), slice(y - contact_size, y + contact_size + 1), slice(z - contact_size, z + contact_size + 1)] = \ 1000 - np.linalg.norm(np.array(np.meshgrid( *[range(-contact_size, contact_size + 1)] * 3)), axis=0) ct = nib.MGHImage(ct_data, brain.affine) coords = apply_trans(ct.header.get_vox2ras_tkr(), np.array(coords)) return ct, coords @pytest.fixture def _locate_ieeg(renderer_interactive_pyvistaqt): # Use a fixture to create these classes so we can ensure that they # are closed at the end of the test guis = list() def fun(*args, **kwargs): guis.append(mne.gui.locate_ieeg(*args, **kwargs)) return guis[-1] yield fun for gui in guis: try: gui.close() except Exception: pass def test_ieeg_elec_locate_gui_io(_locate_ieeg): """Test the input/output of the intracranial location GUI.""" import nibabel as nib info = mne.create_info([], 1000) aligned_ct = nib.MGHImage(np.zeros((256, 256, 256), dtype=np.float32), np.eye(4)) trans = mne.transforms.Transform('head', 'mri') with pytest.raises(ValueError, match='No channels found in `info` to locate'): _locate_ieeg(info, trans, aligned_ct, subject, subjects_dir) @requires_version('sphinx_gallery') @testing.requires_testing_data def test_locate_scraper(_locate_ieeg, _fake_CT_coords, tmp_path): """Test sphinx-gallery scraping of the GUI.""" raw = mne.io.read_raw_fif(raw_path) raw.pick_types(eeg=True) ch_dict = {'EEG 001': 'LAMY 1', 'EEG 002': 'LAMY 2', 'EEG 003': 'LSTN 1', 'EEG 004': 'LSTN 2'} raw.pick_channels(list(ch_dict.keys())) raw.rename_channels(ch_dict) raw.set_montage(None) aligned_ct, _ = _fake_CT_coords trans = mne.read_trans(fname_trans) with pytest.warns(RuntimeWarning, match='`pial` surface not found'): gui = _locate_ieeg(raw.info, trans, aligned_ct, subject=subject, subjects_dir=subjects_dir) (tmp_path / '_images').mkdir() image_path = str(tmp_path / '_images' / 'temp.png') gallery_conf = dict(builder_name='html', src_dir=str(tmp_path)) block_vars = dict( example_globals=dict(gui=gui), image_path_iterator=iter([image_path])) assert not op.isfile(image_path) assert not getattr(gui, '_scraped', False) mne.gui._GUIScraper()(None, block_vars, gallery_conf) assert op.isfile(image_path) assert gui._scraped @testing.requires_testing_data def test_ieeg_elec_locate_gui_display(_locate_ieeg, _fake_CT_coords): """Test that the intracranial location GUI displays properly.""" raw = mne.io.read_raw_fif(raw_path, preload=True) raw.pick_types(eeg=True) ch_dict = {'EEG 001': 'LAMY 1', 'EEG 002': 'LAMY 2', 'EEG 003': 'LSTN 1', 'EEG 004': 'LSTN 2'} raw.pick_channels(list(ch_dict.keys())) raw.rename_channels(ch_dict) raw.set_eeg_reference('average') raw.set_channel_types({name: 'seeg' for name in raw.ch_names}) raw.set_montage(None) aligned_ct, coords = _fake_CT_coords trans = mne.read_trans(fname_trans) with pytest.warns(RuntimeWarning, match='`pial` surface not found'): gui = _locate_ieeg(raw.info, trans, aligned_ct, subject=subject, subjects_dir=subjects_dir, verbose=True) with pytest.raises(ValueError, match='read-only'): gui._ras[:] = coords[0] # start in the right position gui._set_ras(coords[0]) gui._mark_ch() assert not gui._lines and not gui._lines_2D # no lines for one contact for ci, coord in enumerate(coords[1:], 1): coord_vox = apply_trans(gui._ras_vox_t, coord) with use_log_level('debug'): _fake_click(gui._figs[2], gui._figs[2].axes[0], coord_vox[:-1], xform='data', kind='release') assert_allclose(coord[:2], gui._ras[:2], atol=0.1, err_msg=f'coords[{ci}][:2]') assert_allclose(coord[2], gui._ras[2], atol=2, err_msg=f'coords[{ci}][2]') gui._mark_ch() # ensure a 3D line was made for each group assert len(gui._lines) == 2 # test snap to center gui._ch_index = 0 gui._set_ras(coords[0]) # move to first position gui._mark_ch() assert_allclose(coords[0], gui._chs['LAMY 1'], atol=0.2) gui._snap_button.click() assert gui._snap_button.text() == 'Off' # now make sure no snap happens gui._ch_index = 0 gui._set_ras(coords[1] + 1) gui._mark_ch() assert_allclose(coords[1] + 1, gui._chs['LAMY 1'], atol=0.01) # check that it turns back on gui._snap_button.click() assert gui._snap_button.text() == 'On' # test remove gui._ch_index = 1 gui._update_ch_selection() gui._remove_ch() assert np.isnan(gui._chs['LAMY 2']).all() # check that raw object saved assert not np.isnan(raw.info['chs'][0]['loc'][:3]).any() # LAMY 1 assert np.isnan(raw.info['chs'][1]['loc'][:3]).all() # LAMY 2 (removed) # move sliders gui._alpha_slider.setValue(75) assert gui._ch_alpha == 0.75 gui._radius_slider.setValue(5) assert gui._radius == 5 ct_sum_before = np.nansum(gui._images['ct'][0].get_array().data) gui._ct_min_slider.setValue(500) assert np.nansum(gui._images['ct'][0].get_array().data) < ct_sum_before # test buttons gui._toggle_show_brain() assert 'mri' in gui._images assert 'local_max' not in gui._images gui._toggle_show_max() assert 'local_max' in gui._images assert 'mip' not in gui._images gui._toggle_show_mip() assert 'mip' in gui._images assert 'mip_chs' in gui._images assert len(gui._lines_2D) == 1 # LAMY only has one contact
bsd-3-clause
schets/scikit-learn
examples/svm/plot_oneclass.py
248
2302
""" ========================================== One-class SVM with non-linear kernel (RBF) ========================================== An example using a one-class SVM for novelty detection. :ref:`One-class SVM <svm_outlier_detection>` is an unsupervised algorithm that learns a decision function for novelty detection: classifying new data as similar or different to the training set. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500)) # Generate train data X = 0.3 * np.random.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * np.random.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) n_error_train = y_pred_train[y_pred_train == -1].size n_error_test = y_pred_test[y_pred_test == -1].size n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size # plot the line, the points, and the nearest vectors to the plane Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("Novelty Detection") plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r) a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red') plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange') b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([a.collections[0], b1, b2, c], ["learned frontier", "training observations", "new regular observations", "new abnormal observations"], loc="upper left", prop=matplotlib.font_manager.FontProperties(size=11)) plt.xlabel( "error train: %d/200 ; errors novel regular: %d/40 ; " "errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)) plt.show()
bsd-3-clause
diyclassics/cltk
src/cltk/alphabet/fro.py
4
2481
"""The normalizer aims to maximally reduce the variation between the orthography of texts written in the Anglo-Norman dialect to bring it in line with “orthographe commune”. It is heavily inspired by Pope (1956). Spelling variation is not consistent enough to ensure the highest accuracy; the normalizer in its current format should therefore be used as a last resort. The normalizer, word tokenizer, stemmer, lemmatizer, and list of stopwords for OF/MF were developed as part of Google Summer of Code 2017. A full write-up of this work can be found at : https://gist.github.com/nat1881/6f134617805e2efbe5d275770e26d350 **References :** Pope, M.K. 1956. From Latin to Modern French with Especial Consideration of Anglo-Norman. Manchester: MUP. Anglo-French spelling variants normalized to "orthographe commune", from M. K. Pope (1956) - word-final d - e.g. vertud vs vertu - use of <u> over <ou> - <eaus> for <eus>, <ceaus> for <ceus> - triphtongs: - <iu> for <ieu> - <u> for <eu> - <ie> for <iee> - <ue> for <uee> - <ure> for <eure> - "epenthetic vowels" - e.g. averai for avrai - <eo> for <o> - <iw>, <ew> for <ieux> - final <a> for <e> """ import re from typing import List FRO_PATTERNS = [ ("eaus$", "eus"), ("ceaus$", "ceus"), ("iu", "ieu"), ("((?<!^)|(?<!(e)))u(?!$)", "eu"), ("ie$", "iee"), ("ue$", "uee"), ("ure$", "eure"), ("eo$", "o"), ("iw$", "ieux"), ("ew$", "ieux"), ("a$", "e"), ("^en", "an"), ("d$", ""), ] def build_match_and_apply_functions(pattern, replace): """Assemble regex patterns.""" def matches_rule(word): return re.search(pattern, word) def apply_rule(word): return re.sub(pattern, replace, word) return matches_rule, apply_rule def normalize_fr(tokens: List[str]) -> List[str]: """Normalize Old and Middle French tokens. TODO: Make work work again with a tokenizer. """ # from cltk.tokenizers.word import WordTokenizer # string = string.lower() # word_tokenizer = WordTokenizer("fro") # tokens = word_tokenizer.tokenize(string) rules = [ build_match_and_apply_functions(pattern, replace) for (pattern, replace) in FRO_PATTERNS ] normalized_text = [] for token in tokens: for matches_rule, apply_rule in rules: if matches_rule(token): normalized = apply_rule(token) normalized_text.append(normalized) return normalized_text
mit
rflamary/POT
test/test_dr.py
1
1328
"""Tests for module dr on Dimensionality Reduction """ # Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License import numpy as np import ot import pytest try: # test if autograd and pymanopt are installed import ot.dr nogo = False except ImportError: nogo = True @pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)") def test_fda(): n_samples = 90 # nb samples in source and target datasets np.random.seed(0) # generate gaussian dataset xs, ys = ot.datasets.make_data_classif('gaussrot', n_samples) n_features_noise = 8 xs = np.hstack((xs, np.random.randn(n_samples, n_features_noise))) p = 1 Pfda, projfda = ot.dr.fda(xs, ys, p) projfda(xs) np.testing.assert_allclose(np.sum(Pfda**2, 0), np.ones(p)) @pytest.mark.skipif(nogo, reason="Missing modules (autograd or pymanopt)") def test_wda(): n_samples = 100 # nb samples in source and target datasets np.random.seed(0) # generate gaussian dataset xs, ys = ot.datasets.make_data_classif('gaussrot', n_samples) n_features_noise = 8 xs = np.hstack((xs, np.random.randn(n_samples, n_features_noise))) p = 2 Pwda, projwda = ot.dr.wda(xs, ys, p, maxiter=10) projwda(xs) np.testing.assert_allclose(np.sum(Pwda**2, 0), np.ones(p))
mit
marctc/django
tests/generic_views/test_list.py
306
12129
# -*- coding: utf-8 -*- from __future__ import unicode_literals import datetime from django.core.exceptions import ImproperlyConfigured from django.test import TestCase, override_settings from django.utils.encoding import force_str from django.views.generic.base import View from .models import Artist, Author, Book, Page @override_settings(ROOT_URLCONF='generic_views.urls') class ListViewTests(TestCase): @classmethod def setUpTestData(cls): cls.artist1 = Artist.objects.create(name='Rene Magritte') cls.author1 = Author.objects.create(name='Roberto Bolaño', slug='roberto-bolano') cls.author2 = Author.objects.create(name='Scott Rosenberg', slug='scott-rosenberg') cls.book1 = Book.objects.create(name='2066', slug='2066', pages=800, pubdate=datetime.date(2008, 10, 1)) cls.book1.authors.add(cls.author1) cls.book2 = Book.objects.create( name='Dreaming in Code', slug='dreaming-in-code', pages=300, pubdate=datetime.date(2006, 5, 1) ) cls.page1 = Page.objects.create( content='I was once bitten by a moose.', template='generic_views/page_template.html' ) def test_items(self): res = self.client.get('/list/dict/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/list.html') self.assertEqual(res.context['object_list'][0]['first'], 'John') def test_queryset(self): res = self.client.get('/list/authors/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIsInstance(res.context['view'], View) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertIsNone(res.context['paginator']) self.assertIsNone(res.context['page_obj']) self.assertFalse(res.context['is_paginated']) def test_paginated_queryset(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTrue(res.context['is_paginated']) self.assertEqual(res.context['page_obj'].number, 1) self.assertEqual(res.context['paginator'].num_pages, 4) self.assertEqual(res.context['author_list'][0].name, 'Author 00') self.assertEqual(list(res.context['author_list'])[-1].name, 'Author 29') def test_paginated_queryset_shortdata(self): # Test that short datasets ALSO result in a paginated view. res = self.client.get('/list/authors/paginated/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['page_obj'].number, 1) self.assertEqual(res.context['paginator'].num_pages, 1) self.assertFalse(res.context['is_paginated']) def test_paginated_get_page_by_query_string(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/', {'page': '2'}) self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 30') self.assertEqual(res.context['page_obj'].number, 2) def test_paginated_get_last_page_by_query_string(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/', {'page': 'last'}) self.assertEqual(res.status_code, 200) self.assertEqual(len(res.context['object_list']), 10) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 90') self.assertEqual(res.context['page_obj'].number, 4) def test_paginated_get_page_by_urlvar(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/3/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 60') self.assertEqual(res.context['page_obj'].number, 3) def test_paginated_page_out_of_range(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/42/') self.assertEqual(res.status_code, 404) def test_paginated_invalid_page(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/?page=frog') self.assertEqual(res.status_code, 404) def test_paginated_custom_paginator_class(self): self._make_authors(7) res = self.client.get('/list/authors/paginated/custom_class/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['paginator'].num_pages, 1) # Custom pagination allows for 2 orphans on a page size of 5 self.assertEqual(len(res.context['object_list']), 7) def test_paginated_custom_page_kwarg(self): self._make_authors(100) res = self.client.get('/list/authors/paginated/custom_page_kwarg/', {'pagina': '2'}) self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/author_list.html') self.assertEqual(len(res.context['object_list']), 30) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertEqual(res.context['author_list'][0].name, 'Author 30') self.assertEqual(res.context['page_obj'].number, 2) def test_paginated_custom_paginator_constructor(self): self._make_authors(7) res = self.client.get('/list/authors/paginated/custom_constructor/') self.assertEqual(res.status_code, 200) # Custom pagination allows for 2 orphans on a page size of 5 self.assertEqual(len(res.context['object_list']), 7) def test_paginated_orphaned_queryset(self): self._make_authors(92) res = self.client.get('/list/authors/paginated-orphaned/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 1) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': 'last'}) self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 3) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': '3'}) self.assertEqual(res.status_code, 200) self.assertEqual(res.context['page_obj'].number, 3) res = self.client.get( '/list/authors/paginated-orphaned/', {'page': '4'}) self.assertEqual(res.status_code, 404) def test_paginated_non_queryset(self): res = self.client.get('/list/dict/paginated/') self.assertEqual(res.status_code, 200) self.assertEqual(len(res.context['object_list']), 1) def test_verbose_name(self): res = self.client.get('/list/artists/') self.assertEqual(res.status_code, 200) self.assertTemplateUsed(res, 'generic_views/list.html') self.assertEqual(list(res.context['object_list']), list(Artist.objects.all())) self.assertIs(res.context['artist_list'], res.context['object_list']) self.assertIsNone(res.context['paginator']) self.assertIsNone(res.context['page_obj']) self.assertFalse(res.context['is_paginated']) def test_allow_empty_false(self): res = self.client.get('/list/authors/notempty/') self.assertEqual(res.status_code, 200) Author.objects.all().delete() res = self.client.get('/list/authors/notempty/') self.assertEqual(res.status_code, 404) def test_template_name(self): res = self.client.get('/list/authors/template_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/list.html') def test_template_name_suffix(self): res = self.client.get('/list/authors/template_name_suffix/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/author_objects.html') def test_context_object_name(self): res = self.client.get('/list/authors/context_object_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertNotIn('authors', res.context) self.assertIs(res.context['author_list'], res.context['object_list']) self.assertTemplateUsed(res, 'generic_views/author_list.html') def test_duplicate_context_object_name(self): res = self.client.get('/list/authors/dupe_context_object_name/') self.assertEqual(res.status_code, 200) self.assertEqual(list(res.context['object_list']), list(Author.objects.all())) self.assertNotIn('authors', res.context) self.assertNotIn('author_list', res.context) self.assertTemplateUsed(res, 'generic_views/author_list.html') def test_missing_items(self): self.assertRaises(ImproperlyConfigured, self.client.get, '/list/authors/invalid/') def test_paginated_list_view_does_not_load_entire_table(self): # Regression test for #17535 self._make_authors(3) # 1 query for authors with self.assertNumQueries(1): self.client.get('/list/authors/notempty/') # same as above + 1 query to test if authors exist + 1 query for pagination with self.assertNumQueries(3): self.client.get('/list/authors/notempty/paginated/') def test_explicitly_ordered_list_view(self): Book.objects.create(name="Zebras for Dummies", pages=800, pubdate=datetime.date(2006, 9, 1)) res = self.client.get('/list/books/sorted/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['object_list'][0].name, '2066') self.assertEqual(res.context['object_list'][1].name, 'Dreaming in Code') self.assertEqual(res.context['object_list'][2].name, 'Zebras for Dummies') res = self.client.get('/list/books/sortedbypagesandnamedec/') self.assertEqual(res.status_code, 200) self.assertEqual(res.context['object_list'][0].name, 'Dreaming in Code') self.assertEqual(res.context['object_list'][1].name, 'Zebras for Dummies') self.assertEqual(res.context['object_list'][2].name, '2066') @override_settings(DEBUG=True) def test_paginated_list_view_returns_useful_message_on_invalid_page(self): # test for #19240 # tests that source exception's message is included in page self._make_authors(1) res = self.client.get('/list/authors/paginated/2/') self.assertEqual(res.status_code, 404) self.assertEqual(force_str(res.context.get('reason')), "Invalid page (2): That page contains no results") def _make_authors(self, n): Author.objects.all().delete() for i in range(n): Author.objects.create(name='Author %02i' % i, slug='a%s' % i)
bsd-3-clause
herilalaina/scikit-learn
examples/cluster/plot_digits_agglomeration.py
373
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
schets/scikit-learn
sklearn/feature_selection/tests/test_rfe.py
7
11398
""" Testing Recursive feature elimination """ import warnings import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_equal, assert_true from scipy import sparse from sklearn.feature_selection.rfe import RFE, RFECV from sklearn.datasets import load_iris, make_friedman1, make_regression from sklearn.metrics import zero_one_loss from sklearn.svm import SVC, SVR from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.utils import check_random_state from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer class MockClassifier(object): """ Dummy classifier to test recursive feature ellimination """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.coef_ = np.ones(X.shape[1], dtype=np.float64) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=True): return {'foo_param': self.foo_param} def set_params(self, **params): return self def test_rfe_set_params(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) y_pred = rfe.fit(X, y).predict(X) clf = SVC() with warnings.catch_warnings(record=True): # estimator_params is deprecated rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1, estimator_params={'kernel': 'linear'}) y_pred2 = rfe.fit(X, y).predict(X) assert_array_equal(y_pred, y_pred2) def test_rfe_features_importance(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = RandomForestClassifier(n_estimators=20, random_state=generator, max_depth=2) rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) assert_equal(len(rfe.ranking_), X.shape[1]) clf_svc = SVC(kernel="linear") rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1) rfe_svc.fit(X, y) # Check if the supports are equal assert_array_equal(rfe.get_support(), rfe_svc.get_support()) def test_rfe_deprecation_estimator_params(): deprecation_message = ("The parameter 'estimator_params' is deprecated as " "of version 0.16 and will be removed in 0.18. The " "parameter is no longer necessary because the " "value is set via the estimator initialisation or " "set_params method.") generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target assert_warns_message(DeprecationWarning, deprecation_message, RFE(estimator=SVC(), n_features_to_select=4, step=0.1, estimator_params={'kernel': 'linear'}).fit, X=X, y=y) assert_warns_message(DeprecationWarning, deprecation_message, RFECV(estimator=SVC(), step=1, cv=5, estimator_params={'kernel': 'linear'}).fit, X=X, y=y) def test_rfe(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] X_sparse = sparse.csr_matrix(X) y = iris.target # dense model clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) # sparse model clf_sparse = SVC(kernel="linear") rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1) rfe_sparse.fit(X_sparse, y) X_r_sparse = rfe_sparse.transform(X_sparse) assert_equal(X_r.shape, iris.data.shape) assert_array_almost_equal(X_r[:10], iris.data[:10]) assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data)) assert_equal(rfe.score(X, y), clf.score(iris.data, iris.target)) assert_array_almost_equal(X_r, X_r_sparse.toarray()) def test_rfe_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target # dense model clf = MockClassifier() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) assert_equal(X_r.shape, iris.data.shape) def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) rfecv.fit(X, y) assert_equal(len(rfecv.grid_scores_), 6) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) def test_number_of_subsets_of_features(): # In RFE, 'number_of_subsets_of_features' # = the number of iterations in '_fit' # = max(ranking_) # = 1 + (n_features + step - n_features_to_select - 1) // step # After optimization #4534, this number # = 1 + np.ceil((n_features - n_features_to_select) / float(step)) # This test case is to test their equivalence, refer to #4534 and #3824 def formula1(n_features, n_features_to_select, step): return 1 + ((n_features + step - n_features_to_select - 1) // step) def formula2(n_features, n_features_to_select, step): return 1 + np.ceil((n_features - n_features_to_select) / float(step)) # RFE # Case 1, n_features - n_features_to_select is divisible by step # Case 2, n_features - n_features_to_select is not divisible by step n_features_list = [11, 11] n_features_to_select_list = [3, 3] step_list = [2, 3] for n_features, n_features_to_select, step in zip( n_features_list, n_features_to_select_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfe = RFE(estimator=SVC(kernel="linear"), n_features_to_select=n_features_to_select, step=step) rfe.fit(X, y) # this number also equals to the maximum of ranking_ assert_equal(np.max(rfe.ranking_), formula1(n_features, n_features_to_select, step)) assert_equal(np.max(rfe.ranking_), formula2(n_features, n_features_to_select, step)) # In RFECV, 'fit' calls 'RFE._fit' # 'number_of_subsets_of_features' of RFE # = the size of 'grid_scores' of RFECV # = the number of iterations of the for loop before optimization #4534 # RFECV, n_features_to_select = 1 # Case 1, n_features - 1 is divisible by step # Case 2, n_features - 1 is not divisible by step n_features_to_select = 1 n_features_list = [11, 10] step_list = [2, 2] for n_features, step in zip(n_features_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfecv = RFECV(estimator=SVC(kernel="linear"), step=step, cv=5) rfecv.fit(X, y) assert_equal(rfecv.grid_scores_.shape[0], formula1(n_features, n_features_to_select, step)) assert_equal(rfecv.grid_scores_.shape[0], formula2(n_features, n_features_to_select, step))
bsd-3-clause
marmarko/ml101
tensorflow/examples/skflow/iris.py
25
1649
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import metrics import tensorflow as tf from tensorflow.contrib import learn def main(unused_argv): # Load dataset. iris = learn.datasets.load_dataset('iris') x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = learn.infer_real_valued_columns_from_input(x_train) classifier = learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) # Fit and predict. classifier.fit(x_train, y_train, steps=200) predictions = list(classifier.predict(x_test, as_iterable=True)) score = metrics.accuracy_score(y_test, predictions) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
bsd-2-clause
herilalaina/scikit-learn
sklearn/datasets/species_distributions.py
20
8840
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- For an example of using this dataset, see :ref:`examples/applications/plot_species_distribution_modeling.py <sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from io import BytesIO from os import makedirs, remove from os.path import exists import sys import logging import numpy as np from .base import get_data_home from .base import _fetch_remote from .base import RemoteFileMetadata from ..utils import Bunch from sklearn.datasets.base import _pkl_filepath from sklearn.externals import joblib PY3_OR_LATER = sys.version_info[0] >= 3 # The original data can be found at: # http://biodiversityinformatics.amnh.org/open_source/maxent/samples.zip SAMPLES = RemoteFileMetadata( filename='samples.zip', url='https://ndownloader.figshare.com/files/5976075', checksum=('abb07ad284ac50d9e6d20f1c4211e0fd' '3c098f7f85955e89d321ee8efe37ac28')) # The original data can be found at: # http://biodiversityinformatics.amnh.org/open_source/maxent/coverages.zip COVERAGES = RemoteFileMetadata( filename='coverages.zip', url='https://ndownloader.figshare.com/files/5976078', checksum=('4d862674d72e79d6cee77e63b98651ec' '7926043ba7d39dcb31329cf3f6073807')) DATA_ARCHIVE_NAME = "species_coverage.pkz" logger = logging.getLogger(__name__) def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = int(header[b'NODATA_value']) if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY3_OR_LATER: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') else: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. - For an example of using this dataset with scikit-learn, see :ref:`examples/applications/plot_species_distribution_modeling.py <sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 archive_path = _pkl_filepath(data_home, DATA_ARCHIVE_NAME) if not exists(archive_path): if not download_if_missing: raise IOError("Data not found and `download_if_missing` is False") logger.info('Downloading species data from %s to %s' % ( SAMPLES.url, data_home)) samples_path = _fetch_remote(SAMPLES, dirname=data_home) with np.load(samples_path) as X: # samples.zip is a valid npz for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) remove(samples_path) logger.info('Downloading coverage data from %s to %s' % ( COVERAGES.url, data_home)) coverages_path = _fetch_remote(COVERAGES, dirname=data_home) with np.load(coverages_path) as X: # coverages.zip is a valid npz coverages = [] for f in X.files: fhandle = BytesIO(X[f]) logger.debug(' - converting {}'.format(f)) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) remove(coverages_path) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, archive_path, compress=9) else: bunch = joblib.load(archive_path) return bunch
bsd-3-clause
schets/scikit-learn
sklearn/tests/test_isotonic.py
16
11166
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w) if __name__ == "__main__": import nose nose.run(argv=['', __file__])
bsd-3-clause
euirim/maple
maple.py
1
3981
#!/usr/bin/env python """Maple: automatically summarizes given text using a modified version of the TextRank algorithm.""" import sys import codecs import pickle import string import nltk from nltk.corpus import wordnet from nltk.tag import pos_tag from nltk.tokenize.punkt import PunktSentenceTokenizer from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import TfidfVectorizer from tests.tests_visual import test_summarizer, tests_simple, tests_diverse from tests.tests_field import generate_test_files from tests import tests_alpha def field_test(): generate_test_files("~/Documents/summ_test_files/selected") def alpha_test(): tests_alpha.generate_test_files("output") def test(simple=True): if simple: print("********* MAPLE'S SIMPLE TESTS *********\n") tests_simple() else: print("********* MAPLE'S DIVERSE TESTS *********\n") tests_diverse() print("********* TESTS COMPLETED *********") def train(filename, stem=True): """ Given file to use as unsupervised data, train tfidfvectorizer and punkt sentence tokenizer and output to pickle in data directory. """ text = codecs.open(filename, "rb", "utf8").read() abbreviations = [ "u.s.a", "fig", "gov", "sen", "jus", "jdg", "rep", "pres", "mr", "mrs", "ms", "h.r", "s.", "h.b", "s.b", "u.k", "u.n", "u.s.s.r", "u.s", ] print("TRAINING SENTENCE TOKENIZER...") pst = PunktSentenceTokenizer() pst.train(text.replace("\n\n", " ")) # add extra abbreviations pst._params.abbrev_types.update(abbreviations) print("TRAINED ABBREVIATIONS: \n{}".format(pst._params.abbrev_types)) # stemming if stem: wnl = WordNetLemmatizer() print("WORD TOKENIZING TEXT") tokens = nltk.word_tokenize(text) # pos tagging print("POS TAGGING TEXT...") tagged_tokens = pos_tag(tokens) print("STEMMING TRAINING TEXT...") for i, tok in enumerate(tagged_tokens): position = None if tok[1] == "NN" or tok[1] == "NNS" or tok[1] == "NNPS": position = wordnet.NOUN elif "JJ" in tok[1]: position = wordnet.ADJ elif "VB" in tok[1]: position = wordnet.VERB elif "RB" in tok[1]: position = wordnet.ADV if position: tokens[i] = wnl.lemmatize(tok[0], position) if i % 1000000 == 0: print("TOKEN: {}".format(i)) text = "".join([("" if tok in string.punctuation else " ")+tok for tok in tokens]) text = text.strip() print("TRAINING VECTORIZER...") tfv = TfidfVectorizer() tfv.fit(pst.tokenize(text)) # export trained tokenizer + vectorizer print("EXPORTING TRAINED TOKENIZER + VECTORIZER...") if stem: punkt_out_filename = "data/punkt_stem.pk" tfidf_out_filename = "data/tfidf_stem.pk" else: punkt_out_filename = "data/punkt.pk" tfidf_out_filename = "data/tfidf.pk" with open(punkt_out_filename, "wb") as pst_out: pickle.dump(pst, pst_out) with open(tfidf_out_filename, "wb") as tfv_out: pickle.dump(tfv, tfv_out) print("EXPORTING COMPLETED") return def main(argv): if argv[0] == "-t": try: test(bool(int(argv[1]))) return 0 except: print("Enter True or False as second parameter for testing.\n") return 1 elif (len(argv) > 3) or (len(argv) < 3) or (argv[0] == "-h"): print("./maple.py (optional -test true or false) <filename>" " <max_units> <units (-p or -s)>") return 1 if argv[2] == "-p": paragraphs = True else: paragraphs = False test_summarizer(filename) return 0 if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
apache-2.0
schets/scikit-learn
sklearn/svm/base.py
12
33517
from __future__ import print_function import numpy as np import scipy.sparse as sp import warnings from abc import ABCMeta, abstractmethod from . import libsvm, liblinear from . import libsvm_sparse from ..base import BaseEstimator, ClassifierMixin from ..preprocessing import LabelEncoder from ..utils import check_array, check_random_state, column_or_1d from ..utils import ConvergenceWarning, compute_class_weight, deprecated from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..externals import six LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr'] def _one_vs_one_coef(dual_coef, n_support, support_vectors): """Generate primal coefficients from dual coefficients for the one-vs-one multi class LibSVM in the case of a linear kernel.""" # get 1vs1 weights for all n*(n-1) classifiers. # this is somewhat messy. # shape of dual_coef_ is nSV * (n_classes -1) # see docs for details n_class = dual_coef.shape[0] + 1 # XXX we could do preallocation of coef but # would have to take care in the sparse case coef = [] sv_locs = np.cumsum(np.hstack([[0], n_support])) for class1 in range(n_class): # SVs for class1: sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :] for class2 in range(class1 + 1, n_class): # SVs for class1: sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :] # dual coef for class1 SVs: alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]] # dual coef for class2 SVs: alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]] # build weight for class1 vs class2 coef.append(safe_sparse_dot(alpha1, sv1) + safe_sparse_dot(alpha2, sv2)) return coef class BaseLibSVM(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for estimators that use libsvm as backing library This implements support vector machine classification and regression. Parameter documentation is in the derived `SVC` class. """ # The order of these must match the integer values in LibSVM. # XXX These are actually the same in the dense case. Need to factor # this out. _sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"] @abstractmethod def __init__(self, impl, kernel, degree, gamma, coef0, tol, C, nu, epsilon, shrinking, probability, cache_size, class_weight, verbose, max_iter, random_state): if impl not in LIBSVM_IMPL: # pragma: no cover raise ValueError("impl should be one of %s, %s was given" % ( LIBSVM_IMPL, impl)) self._impl = impl self.kernel = kernel self.degree = degree self.gamma = gamma self.coef0 = coef0 self.tol = tol self.C = C self.nu = nu self.epsilon = epsilon self.shrinking = shrinking self.probability = probability self.cache_size = cache_size self.class_weight = class_weight self.verbose = verbose self.max_iter = max_iter self.random_state = random_state @property def _pairwise(self): # Used by cross_val_score. kernel = self.kernel return kernel == "precomputed" or callable(kernel) def fit(self, X, y, sample_weight=None): """Fit the SVM model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel="precomputed", the expected shape of X is (n_samples, n_samples). y : array-like, shape (n_samples,) Target values (class labels in classification, real numbers in regression) sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ------ If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ rnd = check_random_state(self.random_state) sparse = sp.isspmatrix(X) if sparse and self.kernel == "precomputed": raise TypeError("Sparse precomputed kernels are not supported.") self._sparse = sparse and not callable(self.kernel) X = check_array(X, accept_sparse='csr', dtype=np.float64, order='C') y = self._validate_targets(y) sample_weight = np.asarray([] if sample_weight is None else sample_weight, dtype=np.float64) solver_type = LIBSVM_IMPL.index(self._impl) # input validation if solver_type != 2 and X.shape[0] != y.shape[0]: raise ValueError("X and y have incompatible shapes.\n" + "X has %s samples, but y has %s." % (X.shape[0], y.shape[0])) if self.kernel == "precomputed" and X.shape[0] != X.shape[1]: raise ValueError("X.shape[0] should be equal to X.shape[1]") if sample_weight.shape[0] > 0 and sample_weight.shape[0] != X.shape[0]: raise ValueError("sample_weight and X have incompatible shapes: " "%r vs %r\n" "Note: Sparse matrices cannot be indexed w/" "boolean masks (use `indices=True` in CV)." % (sample_weight.shape, X.shape)) if (self.kernel in ['poly', 'rbf']) and (self.gamma == 0): # if custom gamma is not provided ... self._gamma = 1.0 / X.shape[1] else: self._gamma = self.gamma kernel = self.kernel if callable(kernel): kernel = 'precomputed' fit = self._sparse_fit if self._sparse else self._dense_fit if self.verbose: # pragma: no cover print('[LibSVM]', end='') seed = rnd.randint(np.iinfo('i').max) fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) # see comment on the other call to np.iinfo in this file self.shape_fit_ = X.shape # In binary case, we need to flip the sign of coef, intercept and # decision function. Use self._intercept_ and self._dual_coef_ internally. self._intercept_ = self.intercept_.copy() self._dual_coef_ = self.dual_coef_ if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2: self.intercept_ *= -1 self.dual_coef_ = -self.dual_coef_ return self def _validate_targets(self, y): """Validation of y and class_weight. Default implementation for SVR and one-class; overridden in BaseSVC. """ # XXX this is ugly. # Regression models should not have a class_weight_ attribute. self.class_weight_ = np.empty(0) return np.asarray(y, dtype=np.float64, order='C') def _warn_from_fit_status(self): assert self.fit_status_ in (0, 1) if self.fit_status_ == 1: warnings.warn('Solver terminated early (max_iter=%i).' ' Consider pre-processing your data with' ' StandardScaler or MinMaxScaler.' % self.max_iter, ConvergenceWarning) def _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): if callable(self.kernel): # you must store a reference to X to compute the kernel in predict # TODO: add keyword copy to copy on demand self.__Xfit = X X = self._compute_kernel(X) if X.shape[0] != X.shape[1]: raise ValueError("X.shape[0] should be equal to X.shape[1]") libsvm.set_verbosity_wrap(self.verbose) # we don't pass **self.get_params() to allow subclasses to # add other parameters to __init__ self.support_, self.support_vectors_, self.n_support_, \ self.dual_coef_, self.intercept_, self.probA_, \ self.probB_, self.fit_status_ = libsvm.fit( X, y, svm_type=solver_type, sample_weight=sample_weight, class_weight=self.class_weight_, kernel=kernel, C=self.C, nu=self.nu, probability=self.probability, degree=self.degree, shrinking=self.shrinking, tol=self.tol, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma, epsilon=self.epsilon, max_iter=self.max_iter, random_seed=random_seed) self._warn_from_fit_status() def _sparse_fit(self, X, y, sample_weight, solver_type, kernel, random_seed): X.data = np.asarray(X.data, dtype=np.float64, order='C') X.sort_indices() kernel_type = self._sparse_kernels.index(kernel) libsvm_sparse.set_verbosity_wrap(self.verbose) self.support_, self.support_vectors_, dual_coef_data, \ self.intercept_, self.n_support_, \ self.probA_, self.probB_, self.fit_status_ = \ libsvm_sparse.libsvm_sparse_train( X.shape[1], X.data, X.indices, X.indptr, y, solver_type, kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, sample_weight, self.nu, self.cache_size, self.epsilon, int(self.shrinking), int(self.probability), self.max_iter, random_seed) self._warn_from_fit_status() if hasattr(self, "classes_"): n_class = len(self.classes_) - 1 else: # regression n_class = 1 n_SV = self.support_vectors_.shape[0] dual_coef_indices = np.tile(np.arange(n_SV), n_class) dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1, dual_coef_indices.size / n_class) self.dual_coef_ = sp.csr_matrix( (dual_coef_data, dual_coef_indices, dual_coef_indptr), (n_class, n_SV)) def predict(self, X): """Perform regression on samples in X. For an one-class model, +1 or -1 is returned. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is (n_samples_test, n_samples_train). Returns ------- y_pred : array, shape (n_samples,) """ X = self._validate_for_predict(X) predict = self._sparse_predict if self._sparse else self._dense_predict return predict(X) def _dense_predict(self, X): n_samples, n_features = X.shape X = self._compute_kernel(X) if X.ndim == 1: X = check_array(X, order='C') kernel = self.kernel if callable(self.kernel): kernel = 'precomputed' if X.shape[1] != self.shape_fit_[0]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of samples at training time" % (X.shape[1], self.shape_fit_[0])) svm_type = LIBSVM_IMPL.index(self._impl) return libsvm.predict( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=svm_type, kernel=kernel, degree=self.degree, coef0=self.coef0, gamma=self._gamma, cache_size=self.cache_size) def _sparse_predict(self, X): # Precondition: X is a csr_matrix of dtype np.float64. kernel = self.kernel if callable(kernel): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) C = 0.0 # C is not useful here return libsvm_sparse.libsvm_sparse_predict( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _compute_kernel(self, X): """Return the data transformed by a callable kernel""" if callable(self.kernel): # in the case of precomputed kernel given as a function, we # have to compute explicitly the kernel matrix kernel = self.kernel(X, self.__Xfit) if sp.issparse(kernel): kernel = kernel.toarray() X = np.asarray(kernel, dtype=np.float64, order='C') return X @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train]. Returns ------- X : array-like, shape (n_samples, n_class * (n_class-1) / 2) Returns the decision function of the sample for each class in the model. """ return self._decision_function(X) def _decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples, n_class * (n_class-1) / 2) Returns the decision function of the sample for each class in the model. """ # NOTE: _validate_for_predict contains check for is_fitted # hence must be placed before any other attributes are used. X = self._validate_for_predict(X) X = self._compute_kernel(X) if self._sparse: dec_func = self._sparse_decision_function(X) else: dec_func = self._dense_decision_function(X) # In binary case, we need to flip the sign of coef, intercept and # decision function. if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2: return -dec_func.ravel() return dec_func def _dense_decision_function(self, X): X = check_array(X, dtype=np.float64, order="C") kernel = self.kernel if callable(kernel): kernel = 'precomputed' return libsvm.decision_function( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=LIBSVM_IMPL.index(self._impl), kernel=kernel, degree=self.degree, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma) def _sparse_decision_function(self, X): X.data = np.asarray(X.data, dtype=np.float64, order='C') kernel = self.kernel if hasattr(kernel, '__call__'): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) return libsvm_sparse.libsvm_sparse_decision_function( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _validate_for_predict(self, X): check_is_fitted(self, 'support_') X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C") if self._sparse and not sp.isspmatrix(X): X = sp.csr_matrix(X) if self._sparse: X.sort_indices() if sp.issparse(X) and not self._sparse and not callable(self.kernel): raise ValueError( "cannot use sparse input in %r trained on dense data" % type(self).__name__) n_samples, n_features = X.shape if self.kernel == "precomputed": if X.shape[1] != self.shape_fit_[0]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of samples at training time" % (X.shape[1], self.shape_fit_[0])) elif n_features != self.shape_fit_[1]: raise ValueError("X.shape[1] = %d should be equal to %d, " "the number of features at training time" % (n_features, self.shape_fit_[1])) return X @property def coef_(self): if self.kernel != 'linear': raise ValueError('coef_ is only available when using a ' 'linear kernel') coef = self._get_coef() # coef_ being a read-only property, it's better to mark the value as # immutable to avoid hiding potential bugs for the unsuspecting user. if sp.issparse(coef): # sparse matrix do not have global flags coef.data.flags.writeable = False else: # regular dense array coef.flags.writeable = False return coef def _get_coef(self): return safe_sparse_dot(self._dual_coef_, self.support_vectors_) class BaseSVC(BaseLibSVM, ClassifierMixin): """ABC for LibSVM-based classifiers.""" def _validate_targets(self, y): y_ = column_or_1d(y, warn=True) cls, y = np.unique(y_, return_inverse=True) self.class_weight_ = compute_class_weight(self.class_weight, cls, y_) if len(cls) < 2: raise ValueError( "The number of classes has to be greater than one; got %d" % len(cls)) self.classes_ = cls return np.asarray(y, dtype=np.float64, order='C') def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples, n_class * (n_class-1) / 2) Returns the decision function of the sample for each class in the model. """ return self._decision_function(X) def predict(self, X): """Perform classification on samples in X. For an one-class model, +1 or -1 is returned. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- y_pred : array, shape (n_samples,) Class labels for samples in X. """ y = super(BaseSVC, self).predict(X) return self.classes_.take(np.asarray(y, dtype=np.intp)) # Hacky way of getting predict_proba to raise an AttributeError when # probability=False using properties. Do not use this in new code; when # probabilities are not available depending on a setting, introduce two # estimators. def _check_proba(self): if not self.probability: raise AttributeError("predict_proba is not available when" " probability=%r" % self.probability) if self._impl not in ('c_svc', 'nu_svc'): raise AttributeError("predict_proba only implemented for SVC" " and NuSVC") @property def predict_proba(self): """Compute probabilities of possible outcomes for samples in X. The model need to have probability information computed at training time: fit with attribute `probability` set to True. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- T : array-like, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. Notes ----- The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets. """ self._check_proba() return self._predict_proba def _predict_proba(self, X): X = self._validate_for_predict(X) pred_proba = (self._sparse_predict_proba if self._sparse else self._dense_predict_proba) return pred_proba(X) @property def predict_log_proba(self): """Compute log probabilities of possible outcomes for samples in X. The model need to have probability information computed at training time: fit with attribute `probability` set to True. Parameters ---------- X : array-like, shape (n_samples, n_features) For kernel="precomputed", the expected shape of X is [n_samples_test, n_samples_train] Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probabilities of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. Notes ----- The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will produce meaningless results on very small datasets. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) def _dense_predict_proba(self, X): X = self._compute_kernel(X) kernel = self.kernel if callable(kernel): kernel = 'precomputed' svm_type = LIBSVM_IMPL.index(self._impl) pprob = libsvm.predict_proba( X, self.support_, self.support_vectors_, self.n_support_, self._dual_coef_, self._intercept_, self.probA_, self.probB_, svm_type=svm_type, kernel=kernel, degree=self.degree, cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma) return pprob def _sparse_predict_proba(self, X): X.data = np.asarray(X.data, dtype=np.float64, order='C') kernel = self.kernel if callable(kernel): kernel = 'precomputed' kernel_type = self._sparse_kernels.index(kernel) return libsvm_sparse.libsvm_sparse_predict_proba( X.data, X.indices, X.indptr, self.support_vectors_.data, self.support_vectors_.indices, self.support_vectors_.indptr, self._dual_coef_.data, self._intercept_, LIBSVM_IMPL.index(self._impl), kernel_type, self.degree, self._gamma, self.coef0, self.tol, self.C, self.class_weight_, self.nu, self.epsilon, self.shrinking, self.probability, self.n_support_, self.probA_, self.probB_) def _get_coef(self): if self.dual_coef_.shape[0] == 1: # binary classifier coef = safe_sparse_dot(self.dual_coef_, self.support_vectors_) else: # 1vs1 classifier coef = _one_vs_one_coef(self.dual_coef_, self.n_support_, self.support_vectors_) if sp.issparse(coef[0]): coef = sp.vstack(coef).tocsr() else: coef = np.vstack(coef) return coef def _get_liblinear_solver_type(multi_class, penalty, loss, dual): """Find the liblinear magic number for the solver. This number depends on the values of the following attributes: - multi_class - penalty - loss - dual The same number is also internally used by LibLinear to determine which solver to use. """ # nested dicts containing level 1: available loss functions, # level2: available penalties for the given loss functin, # level3: wether the dual solver is available for the specified # combination of loss function and penalty _solver_type_dict = { 'logistic_regression': { 'l1': {False: 6}, 'l2': {False: 0, True: 7}}, 'hinge': { 'l2': {True: 3}}, 'squared_hinge': { 'l1': {False: 5}, 'l2': {False: 2, True: 1}}, 'epsilon_insensitive': { 'l2': {True: 13}}, 'squared_epsilon_insensitive': { 'l2': {False: 11, True: 12}}, 'crammer_singer': 4 } if multi_class == 'crammer_singer': return _solver_type_dict[multi_class] elif multi_class != 'ovr': raise ValueError("`multi_class` must be one of `ovr`, " "`crammer_singer`, got %r" % multi_class) # FIXME loss.lower() --> loss in 0.18 _solver_pen = _solver_type_dict.get(loss.lower(), None) if _solver_pen is None: error_string = ("loss='%s' is not supported" % loss) else: # FIME penalty.lower() --> penalty in 0.18 _solver_dual = _solver_pen.get(penalty.lower(), None) if _solver_dual is None: error_string = ("The combination of penalty='%s'" "and loss='%s' is not supported" % (penalty, loss)) else: solver_num = _solver_dual.get(dual, None) if solver_num is None: error_string = ("loss='%s' and penalty='%s'" "are not supported when dual=%s" % (penalty, loss, dual)) else: return solver_num raise ValueError('Unsupported set of arguments: %s, ' 'Parameters: penalty=%r, loss=%r, dual=%r' % (error_string, penalty, loss, dual)) def _fit_liblinear(X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state=None, multi_class='ovr', loss='logistic_regression', epsilon=0.1): """Used by Logistic Regression (and CV) and LinearSVC. Preprocessing is done in this function before supplying it to liblinear. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X C : float Inverse of cross-validation parameter. Lower the C, the more the penalization. fit_intercept : bool Whether or not to fit the intercept, that is to add a intercept term to the decision function. intercept_scaling : float LibLinear internally penalizes the intercept and this term is subject to regularization just like the other terms of the feature vector. In order to avoid this, one should increase the intercept_scaling. such that the feature vector becomes [x, intercept_scaling]. class_weight : {dict, 'auto'}, optional Weight assigned to each class. If class_weight provided is 'auto', then the weights provided are inverses of the frequency in the target vector. penalty : str, {'l1', 'l2'} The norm of the penalty used in regularization. dual : bool Dual or primal formulation, verbose : int Set verbose to any positive number for verbosity. max_iter : int Number of iterations. tol : float Stopping condition. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. multi_class : str, {'ovr', 'crammer_singer'} `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from an theoretical perspective as it is consistent it is seldom used in practice and rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. loss : str, {'logistic_regression', 'hinge', 'squared_hinge', 'epsilon_insensitive', 'squared_epsilon_insensitive} The loss function used to fit the model. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. Returns ------- coef_ : ndarray, shape (n_features, n_features + 1) The coefficent vector got by minimizing the objective function. intercept_ : float The intercept term added to the vector. n_iter_ : int Maximum number of iterations run across all classes. """ # FIXME Remove case insensitivity in 0.18 --------------------- loss_l, penalty_l = loss.lower(), penalty.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") if (not loss.islower()) and loss_l not in ('l1', 'l2'): warnings.warn(msg % (loss, loss_l, "0.18"), DeprecationWarning) if not penalty.islower(): warnings.warn(msg.replace("loss", "penalty") % (penalty, penalty_l, "0.18"), DeprecationWarning) # ------------------------------------------------------------- # FIXME loss_l --> loss in 0.18 if loss_l not in ['epsilon_insensitive', 'squared_epsilon_insensitive']: enc = LabelEncoder() y_ind = enc.fit_transform(y) classes_ = enc.classes_ if len(classes_) < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) class_weight_ = compute_class_weight(class_weight, classes_, y) else: class_weight_ = np.empty(0, dtype=np.float) y_ind = y liblinear.set_verbosity_wrap(verbose) rnd = check_random_state(random_state) if verbose: print('[LibLinear]', end='') # LinearSVC breaks when intercept_scaling is <= 0 bias = -1.0 if fit_intercept: if intercept_scaling <= 0: raise ValueError("Intercept scaling is %r but needs to be greater than 0." " To disable fitting an intercept," " set fit_intercept=False." % intercept_scaling) else: bias = intercept_scaling libsvm.set_verbosity_wrap(verbose) libsvm_sparse.set_verbosity_wrap(verbose) liblinear.set_verbosity_wrap(verbose) # LibLinear wants targets as doubles, even for classification y_ind = np.asarray(y_ind, dtype=np.float64).ravel() solver_type = _get_liblinear_solver_type(multi_class, penalty, loss, dual) raw_coef_, n_iter_ = liblinear.train_wrap( X, y_ind, sp.isspmatrix(X), solver_type, tol, bias, C, class_weight_, max_iter, rnd.randint(np.iinfo('i').max), epsilon) # Regarding rnd.randint(..) in the above signature: # seed for srand in range [0..INT_MAX); due to limitations in Numpy # on 32-bit platforms, we can't get to the UINT_MAX limit that # srand supports n_iter_ = max(n_iter_) if n_iter_ >= max_iter and verbose > 0: warnings.warn("Liblinear failed to converge, increase " "the number of iterations.", ConvergenceWarning) if fit_intercept: coef_ = raw_coef_[:, :-1] intercept_ = intercept_scaling * raw_coef_[:, -1] else: coef_ = raw_coef_ intercept_ = 0. return coef_, intercept_, n_iter_
bsd-3-clause
herilalaina/scikit-learn
examples/multioutput/plot_classifier_chain_yeast.py
29
4547
""" ============================ Classifier Chain ============================ Example of using classifier chain on a multilabel dataset. For this example we will use the `yeast <http://mldata.org/repository/data/viewslug/yeast>`_ dataset which contains 2417 datapoints each with 103 features and 14 possible labels. Each data point has at least one label. As a baseline we first train a logistic regression classifier for each of the 14 labels. To evaluate the performance of these classifiers we predict on a held-out test set and calculate the :ref:`jaccard similarity score <jaccard_similarity_score>`. Next we create 10 classifier chains. Each classifier chain contains a logistic regression model for each of the 14 labels. The models in each chain are ordered randomly. In addition to the 103 features in the dataset, each model gets the predictions of the preceding models in the chain as features (note that by default at training time each model gets the true labels as features). These additional features allow each chain to exploit correlations among the classes. The Jaccard similarity score for each chain tends to be greater than that of the set independent logistic models. Because the models in each chain are arranged randomly there is significant variation in performance among the chains. Presumably there is an optimal ordering of the classes in a chain that will yield the best performance. However we do not know that ordering a priori. Instead we can construct an voting ensemble of classifier chains by averaging the binary predictions of the chains and apply a threshold of 0.5. The Jaccard similarity score of the ensemble is greater than that of the independent models and tends to exceed the score of each chain in the ensemble (although this is not guaranteed with randomly ordered chains). """ print(__doc__) # Author: Adam Kleczewski # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.multioutput import ClassifierChain from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import jaccard_similarity_score from sklearn.linear_model import LogisticRegression from sklearn.datasets import fetch_mldata # Load a multi-label dataset yeast = fetch_mldata('yeast') X = yeast['data'] Y = yeast['target'].transpose().toarray() X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2, random_state=0) # Fit an independent logistic regression model for each class using the # OneVsRestClassifier wrapper. ovr = OneVsRestClassifier(LogisticRegression()) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) ovr_jaccard_score = jaccard_similarity_score(Y_test, Y_pred_ovr) # Fit an ensemble of logistic regression classifier chains and take the # take the average prediction of all the chains. chains = [ClassifierChain(LogisticRegression(), order='random', random_state=i) for i in range(10)] for chain in chains: chain.fit(X_train, Y_train) Y_pred_chains = np.array([chain.predict(X_test) for chain in chains]) chain_jaccard_scores = [jaccard_similarity_score(Y_test, Y_pred_chain >= .5) for Y_pred_chain in Y_pred_chains] Y_pred_ensemble = Y_pred_chains.mean(axis=0) ensemble_jaccard_score = jaccard_similarity_score(Y_test, Y_pred_ensemble >= .5) model_scores = [ovr_jaccard_score] + chain_jaccard_scores model_scores.append(ensemble_jaccard_score) model_names = ('Independent', 'Chain 1', 'Chain 2', 'Chain 3', 'Chain 4', 'Chain 5', 'Chain 6', 'Chain 7', 'Chain 8', 'Chain 9', 'Chain 10', 'Ensemble') x_pos = np.arange(len(model_names)) # Plot the Jaccard similarity scores for the independent model, each of the # chains, and the ensemble (note that the vertical axis on this plot does # not begin at 0). fig, ax = plt.subplots(figsize=(7, 4)) ax.grid(True) ax.set_title('Classifier Chain Ensemble Performance Comparison') ax.set_xticks(x_pos) ax.set_xticklabels(model_names, rotation='vertical') ax.set_ylabel('Jaccard Similarity Score') ax.set_ylim([min(model_scores) * .9, max(model_scores) * 1.1]) colors = ['r'] + ['b'] * len(chain_jaccard_scores) + ['g'] ax.bar(x_pos, model_scores, alpha=0.5, color=colors) plt.tight_layout() plt.show()
bsd-3-clause
JoaquimPatriarca/senpy-for-gis
gasp/torst/gdal.py
1
4037
""" Feature Class to Raster Dataset """ def shp_to_raster(shp, cellsize, nodata, outRaster, epsg=None): """ Feature Class to Raster """ from osgeo import gdal from osgeo import ogr from gasp.gdal import get_driver_name if not epsg: from gasp.gdal.proj import get_shp_sref srs = get_shp_sref(shp).ExportToWkt() else: from gasp.gdal.proj import epsg_to_wkt srs = epsg_to_wkt(epsg) # Get Extent dtShp = ogr.GetDriverByName( get_driver_name(shp)).Open(shp, 0) lyr = dtShp.GetLayer() x_min, x_max, y_min, y_max = lyr.GetExtent() # Create output x_res = int((x_max - x_min) / cellsize) y_res = int((y_max - y_min) / cellsize) dtRst = gdal.GetDriverByName( get_driver_name(outRaster)).Create( outRaster, x_res, y_res, gdal.GDT_Byte) dtRst.SetGeoTransform((x_min, cellsize, 0, y_max, 0, -cellsize)) dtRst.SetProjection(srs) bnd = dtRst.GetRasterBand(1) bnd.SetNoDataValue(nodata) gdal.RasterizeLayer(dtRst, [1], lyr, burn_values=[1]) return outRaster def array_to_raster(inArray, outRst, template, epsg, data_type, noData=None): """ Send Array to Raster """ from osgeo import gdal from osgeo import osr from gasp.gdal import get_driver_name img_template = gdal.Open(template) geo_transform = img_template.GetGeoTransform() rows, cols = inArray.shape driver = gdal.GetDriverByName(get_driver_name(outRst)) out = driver.Create(outRst, cols, rows, 1, data_type) out.SetGeoTransform(geo_transform) outBand = out.GetRasterBand(1) if noData: outBand.SetNoDataValue(noData) outBand.WriteArray(inArray) if epsg: outRstSRS = osr.SpatialReference() outRstSRS.ImportFromEPSG(epsg) out.SetProjection(outRstSRS.ExportToWkt()) outBand.FlushCache() return outRst """ Change data format """ def gdal_translate(inRst, outRst): """ Convert a raster file to another raster format """ from gasp.gdal import get_driver_name from gasp.oss.shell import execute_cmd outDrv = get_driver_name(outRst) cmd = 'gdal_translate -of {drv} {_in} {_out}'.format( drv=outDrv, _in=inRst, _out=outRst ) cmdout = execute_cmd(cmd) return outRst def folder_nc_to_tif(inFolder, outFolder): """ Convert all nc existing on a folder to GTiff """ import netCDF4 import os from gasp.oss.info import list_files from gasp.gdal.bands import gdal_split_bands # List nc files lst_nc = list_files(inFolder, file_format='.nc') # nc to tiff for nc in lst_nc: # Check the number of images in nc file datasets = [] _nc = netCDF4.Dataset(nc, 'r') for v in _nc.variables: if v == 'lat' or v == 'lon': continue lshape = len(_nc.variables[v].shape) if lshape >= 2: datasets.append(v) # if the nc has any raster if len(datasets) == 0: continue # if the nc has only one raster elif len(datasets) == 1: output = os.path.join( outFolder, os.path.basename(os.path.splitext(nc)[0]) + '.tif' ) gdal_translate(nc, output) gdal_split_bands(output, outFolder) # if the nc has more than one raster else: for dts in datasets: output = os.path.join( outFolder, '{orf}_{v}.tif'.format( orf = os.path.basename(os.path.splitext(nc)[0]), v = dts ) ) gdal_translate( 'NETCDF:"{n}":{v}'.format(n=nc, v=dts), output ) gdal_split_bands(output, outFolder)
gpl-3.0
pravsripad/mne-python
examples/time_frequency/compute_csd.py
6
3598
# -*- coding: utf-8 -*- """ .. _ex-csd-matrix: ============================================= Compute a cross-spectral density (CSD) matrix ============================================= A cross-spectral density (CSD) matrix is similar to a covariance matrix, but in the time-frequency domain. It is the first step towards computing sensor-to-sensor coherence or a DICS beamformer. This script demonstrates the three methods that MNE-Python provides to compute the CSD: 1. Using short-term Fourier transform: :func:`mne.time_frequency.csd_fourier` 2. Using a multitaper approach: :func:`mne.time_frequency.csd_multitaper` 3. Using Morlet wavelets: :func:`mne.time_frequency.csd_morlet` """ # Author: Marijn van Vliet <w.m.vanvliet@gmail.com> # License: BSD-3-Clause # %% from matplotlib import pyplot as plt import mne from mne.datasets import sample from mne.time_frequency import csd_fourier, csd_multitaper, csd_morlet print(__doc__) # %% # In the following example, the computation of the CSD matrices can be # performed using multiple cores. Set ``n_jobs`` to a value >1 to select the # number of cores to use. n_jobs = 1 # %% # Loading the sample dataset. data_path = sample.data_path() meg_path = data_path / 'MEG' / 'sample' fname_raw = meg_path / 'sample_audvis_raw.fif' fname_event = meg_path / 'sample_audvis_raw-eve.fif' raw = mne.io.read_raw_fif(fname_raw) events = mne.read_events(fname_event) # %% # By default, CSD matrices are computed using all MEG/EEG channels. When # interpreting a CSD matrix with mixed sensor types, be aware that the # measurement units, and thus the scalings, differ across sensors. In this # example, for speed and clarity, we select a single channel type: # gradiometers. picks = mne.pick_types(raw.info, meg='grad') # Make some epochs, based on events with trigger code 1 epochs = mne.Epochs(raw, events, event_id=1, tmin=-0.2, tmax=1, picks=picks, baseline=(None, 0), reject=dict(grad=4000e-13), preload=True) # %% # Computing CSD matrices using short-term Fourier transform and (adaptive) # multitapers is straightforward: csd_fft = csd_fourier(epochs, fmin=15, fmax=20, n_jobs=n_jobs) csd_mt = csd_multitaper(epochs, fmin=15, fmax=20, adaptive=True, n_jobs=n_jobs) # %% # When computing the CSD with Morlet wavelets, you specify the exact # frequencies at which to compute it. For each frequency, a corresponding # wavelet will be constructed and convolved with the signal, resulting in a # time-frequency decomposition. # # The CSD is constructed by computing the correlation between the # time-frequency representations between all sensor-to-sensor pairs. The # time-frequency decomposition originally has the same sampling rate as the # signal, in our case ~600Hz. This means the decomposition is over-specified in # time and we may not need to use all samples during our CSD computation, just # enough to get a reliable correlation statistic. By specifying ``decim=10``, # we use every 10th sample, which will greatly speed up the computation and # will have a minimal effect on the CSD. frequencies = [16, 17, 18, 19, 20] csd_wav = csd_morlet(epochs, frequencies, decim=10, n_jobs=n_jobs) # %% # The resulting :class:`mne.time_frequency.CrossSpectralDensity` objects have a # plotting function we can use to compare the results of the different methods. # We're plotting the mean CSD across frequencies. csd_fft.mean().plot() plt.suptitle('short-term Fourier transform') csd_mt.mean().plot() plt.suptitle('adaptive multitapers') csd_wav.mean().plot() plt.suptitle('Morlet wavelet transform')
bsd-3-clause
inonit/wagtail
wagtail/wagtailcore/tests/test_blocks.py
4
62060
# -*- coding: utf-8 -* from __future__ import unicode_literals import unittest from django import forms from django.forms.utils import ErrorList from django.core.exceptions import ValidationError from django.test import TestCase, SimpleTestCase from django.utils.safestring import mark_safe, SafeData from wagtail.wagtailcore import blocks from wagtail.wagtailcore.rich_text import RichText from wagtail.wagtailcore.models import Page from wagtail.tests.testapp.blocks import SectionBlock import base64 class TestFieldBlock(unittest.TestCase): def test_charfield_render(self): block = blocks.CharBlock() html = block.render("Hello world!") self.assertEqual(html, "Hello world!") def test_charfield_render_form(self): block = blocks.CharBlock() html = block.render_form("Hello world!") self.assertIn('<div class="field char_field widget-text_input">', html) self.assertIn('<input id="" name="" placeholder="" type="text" value="Hello world!" />', html) def test_charfield_render_form_with_prefix(self): block = blocks.CharBlock() html = block.render_form("Hello world!", prefix='foo') self.assertIn('<input id="foo" name="foo" placeholder="" type="text" value="Hello world!" />', html) def test_charfield_render_form_with_error(self): block = blocks.CharBlock() html = block.render_form( "Hello world!", errors=ErrorList([ValidationError("This field is required.")])) self.assertIn('This field is required.', html) def test_charfield_searchable_content(self): block = blocks.CharBlock() content = block.get_searchable_content("Hello world!") self.assertEqual(content, ["Hello world!"]) def test_choicefield_render(self): class ChoiceBlock(blocks.FieldBlock): field = forms.ChoiceField(choices=( ('choice-1', "Choice 1"), ('choice-2', "Choice 2"), )) block = ChoiceBlock() html = block.render('choice-2') self.assertEqual(html, "choice-2") def test_choicefield_render_form(self): class ChoiceBlock(blocks.FieldBlock): field = forms.ChoiceField(choices=( ('choice-1', "Choice 1"), ('choice-2', "Choice 2"), )) block = ChoiceBlock() html = block.render_form('choice-2') self.assertIn('<div class="field choice_field widget-select">', html) self.assertIn('<select id="" name="" placeholder="">', html) self.assertIn('<option value="choice-1">Choice 1</option>', html) self.assertIn('<option value="choice-2" selected="selected">Choice 2</option>', html) def test_searchable_content(self): """ FieldBlock should not return anything for `get_searchable_content` by default. Subclasses are free to override it and provide relevant content. """ class CustomBlock(blocks.FieldBlock): field = forms.CharField(required=True) block = CustomBlock() self.assertEqual(block.get_searchable_content("foo bar"), []) def test_form_handling_is_independent_of_serialisation(self): class Base64EncodingCharBlock(blocks.CharBlock): """A CharBlock with a deliberately perverse JSON (de)serialisation format so that it visibly blows up if we call to_python / get_prep_value where we shouldn't""" def to_python(self, jsonish_value): # decode as base64 on the way out of the JSON serialisation return base64.b64decode(jsonish_value) def get_prep_value(self, native_value): # encode as base64 on the way into the JSON serialisation return base64.b64encode(native_value) block = Base64EncodingCharBlock() form_html = block.render_form('hello world', 'title') self.assertIn('value="hello world"', form_html) value_from_form = block.value_from_datadict({'title': 'hello world'}, {}, 'title') self.assertEqual('hello world', value_from_form) class TestRichTextBlock(TestCase): fixtures = ['test.json'] def test_get_default_with_fallback_value(self): default_value = blocks.RichTextBlock().get_default() self.assertIsInstance(default_value, RichText) self.assertEqual(default_value.source, '') def test_get_default_with_default_none(self): default_value = blocks.RichTextBlock(default=None).get_default() self.assertIsInstance(default_value, RichText) self.assertEqual(default_value.source, '') def test_get_default_with_empty_string(self): default_value = blocks.RichTextBlock(default='').get_default() self.assertIsInstance(default_value, RichText) self.assertEqual(default_value.source, '') def test_get_default_with_nonempty_string(self): default_value = blocks.RichTextBlock(default='<p>foo</p>').get_default() self.assertIsInstance(default_value, RichText) self.assertEqual(default_value.source, '<p>foo</p>') def test_get_default_with_richtext_value(self): default_value = blocks.RichTextBlock(default=RichText('<p>foo</p>')).get_default() self.assertIsInstance(default_value, RichText) self.assertEqual(default_value.source, '<p>foo</p>') def test_render(self): block = blocks.RichTextBlock() value = RichText('<p>Merry <a linktype="page" id="4">Christmas</a>!</p>') result = block.render(value) self.assertEqual( result, '<div class="rich-text"><p>Merry <a href="/events/christmas/">Christmas</a>!</p></div>' ) def test_render_form(self): """ render_form should produce the editor-specific rendition of the rich text value (which includes e.g. 'data-linktype' attributes on <a> elements) """ block = blocks.RichTextBlock() value = RichText('<p>Merry <a linktype="page" id="4">Christmas</a>!</p>') result = block.render_form(value, prefix='richtext') self.assertIn( ( '&lt;p&gt;Merry &lt;a data-linktype=&quot;page&quot; data-id=&quot;4&quot;' ' href=&quot;/events/christmas/&quot;&gt;Christmas&lt;/a&gt;!&lt;/p&gt;' ), result ) def test_validate_required_richtext_block(self): block = blocks.RichTextBlock() with self.assertRaises(ValidationError): block.clean(RichText('')) def test_validate_non_required_richtext_block(self): block = blocks.RichTextBlock(required=False) result = block.clean(RichText('')) self.assertIsInstance(result, RichText) self.assertEqual(result.source, '') class TestChoiceBlock(unittest.TestCase): def setUp(self): from django.db.models.fields import BLANK_CHOICE_DASH self.blank_choice_dash_label = BLANK_CHOICE_DASH[0][1] def test_render_required_choice_block(self): block = blocks.ChoiceBlock(choices=[('tea', 'Tea'), ('coffee', 'Coffee')]) html = block.render_form('coffee', prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) # blank option should still be rendered for required fields # (we may want it as an initial value) self.assertIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<option value="tea">Tea</option>', html) self.assertIn('<option value="coffee" selected="selected">Coffee</option>', html) def test_validate_required_choice_block(self): block = blocks.ChoiceBlock(choices=[('tea', 'Tea'), ('coffee', 'Coffee')]) self.assertEqual(block.clean('coffee'), 'coffee') with self.assertRaises(ValidationError): block.clean('whisky') with self.assertRaises(ValidationError): block.clean('') with self.assertRaises(ValidationError): block.clean(None) def test_render_non_required_choice_block(self): block = blocks.ChoiceBlock(choices=[('tea', 'Tea'), ('coffee', 'Coffee')], required=False) html = block.render_form('coffee', prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<option value="tea">Tea</option>', html) self.assertIn('<option value="coffee" selected="selected">Coffee</option>', html) def test_validate_non_required_choice_block(self): block = blocks.ChoiceBlock(choices=[('tea', 'Tea'), ('coffee', 'Coffee')], required=False) self.assertEqual(block.clean('coffee'), 'coffee') with self.assertRaises(ValidationError): block.clean('whisky') self.assertEqual(block.clean(''), '') self.assertEqual(block.clean(None), '') def test_render_choice_block_with_existing_blank_choice(self): block = blocks.ChoiceBlock( choices=[('tea', 'Tea'), ('coffee', 'Coffee'), ('', 'No thanks')], required=False) html = block.render_form(None, prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertNotIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<option value="" selected="selected">No thanks</option>', html) self.assertIn('<option value="tea">Tea</option>', html) self.assertIn('<option value="coffee">Coffee</option>', html) def test_named_groups_without_blank_option(self): block = blocks.ChoiceBlock( choices=[ ('Alcoholic', [ ('gin', 'Gin'), ('whisky', 'Whisky'), ]), ('Non-alcoholic', [ ('tea', 'Tea'), ('coffee', 'Coffee'), ]), ]) # test rendering with the blank option selected html = block.render_form(None, prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertIn('<option value="" selected="selected">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<optgroup label="Alcoholic">', html) self.assertIn('<option value="tea">Tea</option>', html) # test rendering with a non-blank option selected html = block.render_form('tea', prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<optgroup label="Alcoholic">', html) self.assertIn('<option value="tea" selected="selected">Tea</option>', html) def test_named_groups_with_blank_option(self): block = blocks.ChoiceBlock( choices=[ ('Alcoholic', [ ('gin', 'Gin'), ('whisky', 'Whisky'), ]), ('Non-alcoholic', [ ('tea', 'Tea'), ('coffee', 'Coffee'), ]), ('Not thirsty', [ ('', 'No thanks') ]), ], required=False) # test rendering with the blank option selected html = block.render_form(None, prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertNotIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertNotIn('<option value="" selected="selected">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<optgroup label="Alcoholic">', html) self.assertIn('<option value="tea">Tea</option>', html) self.assertIn('<option value="" selected="selected">No thanks</option>', html) # test rendering with a non-blank option selected html = block.render_form('tea', prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertNotIn('<option value="">%s</option>' % self.blank_choice_dash_label, html) self.assertNotIn('<option value="" selected="selected">%s</option>' % self.blank_choice_dash_label, html) self.assertIn('<optgroup label="Alcoholic">', html) self.assertIn('<option value="tea" selected="selected">Tea</option>', html) def test_subclassing(self): class BeverageChoiceBlock(blocks.ChoiceBlock): choices = [ ('tea', 'Tea'), ('coffee', 'Coffee'), ] block = BeverageChoiceBlock(required=False) html = block.render_form('tea', prefix='beverage') self.assertIn('<select id="beverage" name="beverage" placeholder="">', html) self.assertIn('<option value="tea" selected="selected">Tea</option>', html) # subclasses of ChoiceBlock should deconstruct to a basic ChoiceBlock for migrations self.assertEqual( block.deconstruct(), ( 'wagtail.wagtailcore.blocks.ChoiceBlock', [], { 'choices': [('tea', 'Tea'), ('coffee', 'Coffee')], 'required': False, }, ) ) def test_searchable_content(self): block = blocks.ChoiceBlock(choices=[ ('choice-1', "Choice 1"), ('choice-2', "Choice 2"), ]) self.assertEqual(block.get_searchable_content("choice-1"), ["Choice 1"]) def test_optgroup_searchable_content(self): block = blocks.ChoiceBlock(choices=[ ('Section 1', [ ('1-1', "Block 1"), ('1-2', "Block 2"), ]), ('Section 2', [ ('2-1', "Block 1"), ('2-2', "Block 2"), ]), ]) self.assertEqual(block.get_searchable_content("2-2"), ["Section 2", "Block 2"]) def test_invalid_searchable_content(self): block = blocks.ChoiceBlock(choices=[ ('one', 'One'), ('two', 'Two'), ]) self.assertEqual(block.get_searchable_content('three'), []) class TestRawHTMLBlock(unittest.TestCase): def test_get_default_with_fallback_value(self): default_value = blocks.RawHTMLBlock().get_default() self.assertEqual(default_value, '') self.assertIsInstance(default_value, SafeData) def test_get_default_with_none(self): default_value = blocks.RawHTMLBlock(default=None).get_default() self.assertEqual(default_value, '') self.assertIsInstance(default_value, SafeData) def test_get_default_with_empty_string(self): default_value = blocks.RawHTMLBlock(default='').get_default() self.assertEqual(default_value, '') self.assertIsInstance(default_value, SafeData) def test_get_default_with_nonempty_string(self): default_value = blocks.RawHTMLBlock(default='<blink>BÖÖM</blink>').get_default() self.assertEqual(default_value, '<blink>BÖÖM</blink>') self.assertIsInstance(default_value, SafeData) def test_serialize(self): block = blocks.RawHTMLBlock() result = block.get_prep_value(mark_safe('<blink>BÖÖM</blink>')) self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertNotIsInstance(result, SafeData) def test_deserialize(self): block = blocks.RawHTMLBlock() result = block.to_python('<blink>BÖÖM</blink>') self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertIsInstance(result, SafeData) def test_render(self): block = blocks.RawHTMLBlock() result = block.render(mark_safe('<blink>BÖÖM</blink>')) self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertIsInstance(result, SafeData) def test_render_form(self): block = blocks.RawHTMLBlock() result = block.render_form(mark_safe('<blink>BÖÖM</blink>'), prefix='rawhtml') self.assertIn('<textarea ', result) self.assertIn('name="rawhtml"', result) self.assertIn('&lt;blink&gt;BÖÖM&lt;/blink&gt;', result) def test_form_response(self): block = blocks.RawHTMLBlock() result = block.value_from_datadict({'rawhtml': '<blink>BÖÖM</blink>'}, {}, prefix='rawhtml') self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertIsInstance(result, SafeData) def test_clean_required_field(self): block = blocks.RawHTMLBlock() result = block.clean(mark_safe('<blink>BÖÖM</blink>')) self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertIsInstance(result, SafeData) with self.assertRaises(ValidationError): block.clean(mark_safe('')) def test_clean_nonrequired_field(self): block = blocks.RawHTMLBlock(required=False) result = block.clean(mark_safe('<blink>BÖÖM</blink>')) self.assertEqual(result, '<blink>BÖÖM</blink>') self.assertIsInstance(result, SafeData) result = block.clean(mark_safe('')) self.assertEqual(result, '') self.assertIsInstance(result, SafeData) class TestMeta(unittest.TestCase): def test_set_template_with_meta(self): class HeadingBlock(blocks.CharBlock): class Meta: template = 'heading.html' block = HeadingBlock() self.assertEqual(block.meta.template, 'heading.html') def test_set_template_with_constructor(self): block = blocks.CharBlock(template='heading.html') self.assertEqual(block.meta.template, 'heading.html') def test_set_template_with_constructor_overrides_meta(self): class HeadingBlock(blocks.CharBlock): class Meta: template = 'heading.html' block = HeadingBlock(template='subheading.html') self.assertEqual(block.meta.template, 'subheading.html') def test_meta_multiple_inheritance(self): class HeadingBlock(blocks.CharBlock): class Meta: template = 'heading.html' test = 'Foo' class SubHeadingBlock(HeadingBlock): class Meta: template = 'subheading.html' block = SubHeadingBlock() self.assertEqual(block.meta.template, 'subheading.html') self.assertEqual(block.meta.test, 'Foo') class TestStructBlock(SimpleTestCase): def test_initialisation(self): block = blocks.StructBlock([ ('title', blocks.CharBlock()), ('link', blocks.URLBlock()), ]) self.assertEqual(list(block.child_blocks.keys()), ['title', 'link']) def test_initialisation_from_subclass(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() self.assertEqual(list(block.child_blocks.keys()), ['title', 'link']) def test_initialisation_from_subclass_with_extra(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock([ ('classname', blocks.CharBlock()) ]) self.assertEqual(list(block.child_blocks.keys()), ['title', 'link', 'classname']) def test_initialisation_with_multiple_subclassses(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() class StyledLinkBlock(LinkBlock): classname = blocks.CharBlock() block = StyledLinkBlock() self.assertEqual(list(block.child_blocks.keys()), ['title', 'link', 'classname']) def test_initialisation_with_mixins(self): """ The order of fields of classes with multiple parent classes is slightly surprising at first. Child fields are inherited in a bottom-up order, by traversing the MRO in reverse. In the example below, ``StyledLinkBlock`` will have an MRO of:: [StyledLinkBlock, StylingMixin, LinkBlock, StructBlock, ...] This will result in ``classname`` appearing *after* ``title`` and ``link`` in ``StyleLinkBlock`.child_blocks`, even though ``StylingMixin`` appeared before ``LinkBlock``. """ class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() class StylingMixin(blocks.StructBlock): classname = blocks.CharBlock() class StyledLinkBlock(StylingMixin, LinkBlock): source = blocks.CharBlock() block = StyledLinkBlock() self.assertEqual(list(block.child_blocks.keys()), ['title', 'link', 'classname', 'source']) def test_render(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() html = block.render(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', })) expected_html = '\n'.join([ '<dl>', '<dt>title</dt>', '<dd>Wagtail site</dd>', '<dt>link</dt>', '<dd>http://www.wagtail.io</dd>', '</dl>', ]) self.assertHTMLEqual(html, expected_html) def test_render_unknown_field(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() html = block.render(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', 'image': 10, })) self.assertIn('<dt>title</dt>', html) self.assertIn('<dd>Wagtail site</dd>', html) self.assertIn('<dt>link</dt>', html) self.assertIn('<dd>http://www.wagtail.io</dd>', html) # Don't render the extra item self.assertNotIn('<dt>image</dt>', html) def test_render_bound_block(self): # the string representation of a bound block should be the value as rendered by # the associated block class SectionBlock(blocks.StructBlock): title = blocks.CharBlock() body = blocks.RichTextBlock() block = SectionBlock() struct_value = block.to_python({ 'title': 'hello', 'body': '<b>world</b>', }) body_bound_block = struct_value.bound_blocks['body'] expected = '<div class="rich-text"><b>world</b></div>' self.assertEqual(str(body_bound_block), expected) def test_render_form(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() html = block.render_form(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', }), prefix='mylink') self.assertIn('<div class="struct-block">', html) self.assertIn('<div class="field char_field widget-text_input fieldname-title">', html) self.assertIn( '<input id="mylink-title" name="mylink-title" placeholder="Title" type="text" value="Wagtail site" />', html ) self.assertIn('<div class="field url_field widget-url_input fieldname-link">', html) self.assertIn( ( '<input id="mylink-link" name="mylink-link" placeholder="Link"' ' type="url" value="http://www.wagtail.io" />' ), html ) def test_render_form_unknown_field(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() html = block.render_form(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', 'image': 10, }), prefix='mylink') self.assertIn( ( '<input id="mylink-title" name="mylink-title" placeholder="Title"' ' type="text" value="Wagtail site" />' ), html ) self.assertIn( ( '<input id="mylink-link" name="mylink-link" placeholder="Link" type="url"' ' value="http://www.wagtail.io" />' ), html ) # Don't render the extra field self.assertNotIn('mylink-image', html) def test_render_form_uses_default_value(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock(default="Torchbox") link = blocks.URLBlock(default="http://www.torchbox.com") block = LinkBlock() html = block.render_form(block.to_python({}), prefix='mylink') self.assertIn( '<input id="mylink-title" name="mylink-title" placeholder="Title" type="text" value="Torchbox" />', html ) self.assertIn( ( '<input id="mylink-link" name="mylink-link" placeholder="Link"' ' type="url" value="http://www.torchbox.com" />' ), html ) def test_render_form_with_help_text(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() class Meta: help_text = "Self-promotion is encouraged" block = LinkBlock() html = block.render_form(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', }), prefix='mylink') self.assertIn('<div class="object-help help">Self-promotion is encouraged</div>', html) # check it can be overridden in the block constructor block = LinkBlock(help_text="Self-promotion is discouraged") html = block.render_form(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', }), prefix='mylink') self.assertIn('<div class="object-help help">Self-promotion is discouraged</div>', html) def test_media_inheritance(self): class ScriptedCharBlock(blocks.CharBlock): media = forms.Media(js=['scripted_char_block.js']) class LinkBlock(blocks.StructBlock): title = ScriptedCharBlock(default="Torchbox") link = blocks.URLBlock(default="http://www.torchbox.com") block = LinkBlock() self.assertIn('scripted_char_block.js', ''.join(block.all_media().render_js())) def test_html_declaration_inheritance(self): class CharBlockWithDeclarations(blocks.CharBlock): def html_declarations(self): return '<script type="text/x-html-template">hello world</script>' class LinkBlock(blocks.StructBlock): title = CharBlockWithDeclarations(default="Torchbox") link = blocks.URLBlock(default="http://www.torchbox.com") block = LinkBlock() self.assertIn('<script type="text/x-html-template">hello world</script>', block.all_html_declarations()) def test_searchable_content(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = LinkBlock() content = block.get_searchable_content(block.to_python({ 'title': "Wagtail site", 'link': 'http://www.wagtail.io', })) self.assertEqual(content, ["Wagtail site"]) def test_value_from_datadict(self): block = blocks.StructBlock([ ('title', blocks.CharBlock()), ('link', blocks.URLBlock()), ]) struct_val = block.value_from_datadict({ 'mylink-title': "Torchbox", 'mylink-link': "http://www.torchbox.com" }, {}, 'mylink') self.assertEqual(struct_val['title'], "Torchbox") self.assertEqual(struct_val['link'], "http://www.torchbox.com") self.assertTrue(isinstance(struct_val, blocks.StructValue)) self.assertTrue(isinstance(struct_val.bound_blocks['link'].block, blocks.URLBlock)) def test_default_is_returned_as_structvalue(self): """When returning the default value of a StructBlock (e.g. because it's a child of another StructBlock, and the outer value is missing that key) we should receive it as a StructValue, not just a plain dict""" class PersonBlock(blocks.StructBlock): first_name = blocks.CharBlock() surname = blocks.CharBlock() class EventBlock(blocks.StructBlock): title = blocks.CharBlock() guest_speaker = PersonBlock(default={'first_name': 'Ed', 'surname': 'Balls'}) event_block = EventBlock() event = event_block.to_python({'title': 'Birthday party'}) self.assertEqual(event['guest_speaker']['first_name'], 'Ed') self.assertTrue(isinstance(event['guest_speaker'], blocks.StructValue)) def test_clean(self): block = blocks.StructBlock([ ('title', blocks.CharBlock()), ('link', blocks.URLBlock()), ]) value = block.to_python({'title': 'Torchbox', 'link': 'http://www.torchbox.com/'}) clean_value = block.clean(value) self.assertTrue(isinstance(clean_value, blocks.StructValue)) self.assertEqual(clean_value['title'], 'Torchbox') value = block.to_python({'title': 'Torchbox', 'link': 'not a url'}) with self.assertRaises(ValidationError): block.clean(value) def test_bound_blocks_are_available_on_template(self): """ Test that we are able to use value.bound_blocks within templates to access a child block's own HTML rendering """ block = SectionBlock() value = block.to_python({'title': 'Hello', 'body': '<i>italic</i> world'}) result = block.render(value) self.assertEqual(result, """<h1>Hello</h1><div class="rich-text"><i>italic</i> world</div>""") class TestListBlock(unittest.TestCase): def test_initialise_with_class(self): block = blocks.ListBlock(blocks.CharBlock) # Child block should be initialised for us self.assertIsInstance(block.child_block, blocks.CharBlock) def test_initialise_with_instance(self): child_block = blocks.CharBlock() block = blocks.ListBlock(child_block) self.assertEqual(block.child_block, child_block) def render(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = blocks.ListBlock(LinkBlock()) return block.render([ { 'title': "Wagtail", 'link': 'http://www.wagtail.io', }, { 'title': "Django", 'link': 'http://www.djangoproject.com', }, ]) def test_render_uses_ul(self): html = self.render() self.assertIn('<ul>', html) self.assertIn('</ul>', html) def test_render_uses_li(self): html = self.render() self.assertIn('<li>', html) self.assertIn('</li>', html) def render_form(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = blocks.ListBlock(LinkBlock) html = block.render_form([ { 'title': "Wagtail", 'link': 'http://www.wagtail.io', }, { 'title': "Django", 'link': 'http://www.djangoproject.com', }, ], prefix='links') return html def test_render_form_wrapper_class(self): html = self.render_form() self.assertIn('<div class="sequence-container sequence-type-list">', html) def test_render_form_count_field(self): html = self.render_form() self.assertIn('<input type="hidden" name="links-count" id="links-count" value="2">', html) def test_render_form_delete_field(self): html = self.render_form() self.assertIn('<input type="hidden" id="links-0-deleted" name="links-0-deleted" value="">', html) def test_render_form_order_fields(self): html = self.render_form() self.assertIn('<input type="hidden" id="links-0-order" name="links-0-order" value="0">', html) self.assertIn('<input type="hidden" id="links-1-order" name="links-1-order" value="1">', html) def test_render_form_labels(self): html = self.render_form() self.assertIn('<label for="links-0-value-title">Title</label>', html) self.assertIn('<label for="links-0-value-link">Link</label>', html) def test_render_form_values(self): html = self.render_form() self.assertIn( ( '<input id="links-0-value-title" name="links-0-value-title" placeholder="Title"' ' type="text" value="Wagtail" />' ), html ) self.assertIn( ( '<input id="links-0-value-link" name="links-0-value-link" placeholder="Link" type="url"' ' value="http://www.wagtail.io" />' ), html ) self.assertIn( ( '<input id="links-1-value-title" name="links-1-value-title" placeholder="Title" type="text"' ' value="Django" />' ), html ) self.assertIn( ( '<input id="links-1-value-link" name="links-1-value-link" placeholder="Link"' ' type="url" value="http://www.djangoproject.com" />' ), html ) def test_html_declarations(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = blocks.ListBlock(LinkBlock) html = block.html_declarations() self.assertIn( '<input id="__PREFIX__-value-title" name="__PREFIX__-value-title" placeholder="Title" type="text" />', html ) self.assertIn( '<input id="__PREFIX__-value-link" name="__PREFIX__-value-link" placeholder="Link" type="url" />', html ) def test_html_declarations_uses_default(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock(default="Github") link = blocks.URLBlock(default="http://www.github.com") block = blocks.ListBlock(LinkBlock) html = block.html_declarations() self.assertIn( ( '<input id="__PREFIX__-value-title" name="__PREFIX__-value-title" placeholder="Title"' ' type="text" value="Github" />' ), html ) self.assertIn( ( '<input id="__PREFIX__-value-link" name="__PREFIX__-value-link" placeholder="Link"' ' type="url" value="http://www.github.com" />' ), html ) def test_media_inheritance(self): class ScriptedCharBlock(blocks.CharBlock): media = forms.Media(js=['scripted_char_block.js']) block = blocks.ListBlock(ScriptedCharBlock()) self.assertIn('scripted_char_block.js', ''.join(block.all_media().render_js())) def test_html_declaration_inheritance(self): class CharBlockWithDeclarations(blocks.CharBlock): def html_declarations(self): return '<script type="text/x-html-template">hello world</script>' block = blocks.ListBlock(CharBlockWithDeclarations()) self.assertIn('<script type="text/x-html-template">hello world</script>', block.all_html_declarations()) def test_searchable_content(self): class LinkBlock(blocks.StructBlock): title = blocks.CharBlock() link = blocks.URLBlock() block = blocks.ListBlock(LinkBlock()) content = block.get_searchable_content([ { 'title': "Wagtail", 'link': 'http://www.wagtail.io', }, { 'title': "Django", 'link': 'http://www.djangoproject.com', }, ]) self.assertEqual(content, ["Wagtail", "Django"]) def test_ordering_in_form_submission_uses_order_field(self): block = blocks.ListBlock(blocks.CharBlock()) # check that items are ordered by the 'order' field, not the order they appear in the form post_data = {'shoppinglist-count': '3'} for i in range(0, 3): post_data.update({ 'shoppinglist-%d-deleted' % i: '', 'shoppinglist-%d-order' % i: str(2 - i), 'shoppinglist-%d-value' % i: "item %d" % i }) block_value = block.value_from_datadict(post_data, {}, 'shoppinglist') self.assertEqual(block_value[2], "item 0") def test_ordering_in_form_submission_is_numeric(self): block = blocks.ListBlock(blocks.CharBlock()) # check that items are ordered by 'order' numerically, not alphabetically post_data = {'shoppinglist-count': '12'} for i in range(0, 12): post_data.update({ 'shoppinglist-%d-deleted' % i: '', 'shoppinglist-%d-order' % i: str(i), 'shoppinglist-%d-value' % i: "item %d" % i }) block_value = block.value_from_datadict(post_data, {}, 'shoppinglist') self.assertEqual(block_value[2], "item 2") def test_can_specify_default(self): class ShoppingListBlock(blocks.StructBlock): shop = blocks.CharBlock() items = blocks.ListBlock(blocks.CharBlock(), default=['peas', 'beans', 'carrots']) block = ShoppingListBlock() # the value here does not specify an 'items' field, so this should revert to the ListBlock's default form_html = block.render_form(block.to_python({'shop': 'Tesco'}), prefix='shoppinglist') self.assertIn( '<input type="hidden" name="shoppinglist-items-count" id="shoppinglist-items-count" value="3">', form_html ) self.assertIn('value="peas"', form_html) def test_default_default(self): """ if no explicit 'default' is set on the ListBlock, it should fall back on a single instance of the child block in its default state. """ class ShoppingListBlock(blocks.StructBlock): shop = blocks.CharBlock() items = blocks.ListBlock(blocks.CharBlock(default='chocolate')) block = ShoppingListBlock() # the value here does not specify an 'items' field, so this should revert to the ListBlock's default form_html = block.render_form(block.to_python({'shop': 'Tesco'}), prefix='shoppinglist') self.assertIn( '<input type="hidden" name="shoppinglist-items-count" id="shoppinglist-items-count" value="1">', form_html ) self.assertIn('value="chocolate"', form_html) class TestStreamBlock(unittest.TestCase): def test_initialisation(self): block = blocks.StreamBlock([ ('heading', blocks.CharBlock()), ('paragraph', blocks.CharBlock()), ]) self.assertEqual(list(block.child_blocks.keys()), ['heading', 'paragraph']) def test_initialisation_with_binary_string_names(self): # migrations will sometimes write out names as binary strings, just to keep us on our toes block = blocks.StreamBlock([ (b'heading', blocks.CharBlock()), (b'paragraph', blocks.CharBlock()), ]) self.assertEqual(list(block.child_blocks.keys()), [b'heading', b'paragraph']) def test_initialisation_from_subclass(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() self.assertEqual(list(block.child_blocks.keys()), ['heading', 'paragraph']) def test_initialisation_from_subclass_with_extra(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock([ ('intro', blocks.CharBlock()) ]) self.assertEqual(list(block.child_blocks.keys()), ['heading', 'paragraph', 'intro']) def test_initialisation_with_multiple_subclassses(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() class ArticleWithIntroBlock(ArticleBlock): intro = blocks.CharBlock() block = ArticleWithIntroBlock() self.assertEqual(list(block.child_blocks.keys()), ['heading', 'paragraph', 'intro']) def test_initialisation_with_mixins(self): """ The order of child blocks of ``StreamBlock``\s with multiple parent classes is slightly surprising at first. Child blocks are inherited in a bottom-up order, by traversing the MRO in reverse. In the example below, ``ArticleWithIntroBlock`` will have an MRO of:: [ArticleWithIntroBlock, IntroMixin, ArticleBlock, StreamBlock, ...] This will result in ``intro`` appearing *after* ``heading`` and ``paragraph`` in ``ArticleWithIntroBlock.child_blocks``, even though ``IntroMixin`` appeared before ``ArticleBlock``. """ class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() class IntroMixin(blocks.StreamBlock): intro = blocks.CharBlock() class ArticleWithIntroBlock(IntroMixin, ArticleBlock): by_line = blocks.CharBlock() block = ArticleWithIntroBlock() self.assertEqual(list(block.child_blocks.keys()), ['heading', 'paragraph', 'intro', 'by_line']) def render_article(self, data): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.RichTextBlock() block = ArticleBlock() value = block.to_python(data) return block.render(value) def test_render(self): html = self.render_article([ { 'type': 'heading', 'value': "My title", }, { 'type': 'paragraph', 'value': 'My <i>first</i> paragraph', }, { 'type': 'paragraph', 'value': 'My second paragraph', }, ]) self.assertIn('<div class="block-heading">My title</div>', html) self.assertIn('<div class="block-paragraph"><div class="rich-text">My <i>first</i> paragraph</div></div>', html) self.assertIn('<div class="block-paragraph"><div class="rich-text">My second paragraph</div></div>', html) def test_render_unknown_type(self): # This can happen if a developer removes a type from their StreamBlock html = self.render_article([ { 'type': 'foo', 'value': "Hello", }, { 'type': 'paragraph', 'value': 'My first paragraph', }, ]) self.assertNotIn('foo', html) self.assertNotIn('Hello', html) self.assertIn('<div class="block-paragraph"><div class="rich-text">My first paragraph</div></div>', html) def render_form(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() value = block.to_python([ { 'type': 'heading', 'value': "My title", }, { 'type': 'paragraph', 'value': 'My first paragraph', }, { 'type': 'paragraph', 'value': 'My second paragraph', }, ]) return block.render_form(value, prefix='myarticle') def test_render_form_wrapper_class(self): html = self.render_form() self.assertIn('<div class="sequence-container sequence-type-stream">', html) def test_render_form_count_field(self): html = self.render_form() self.assertIn('<input type="hidden" name="myarticle-count" id="myarticle-count" value="3">', html) def test_render_form_delete_field(self): html = self.render_form() self.assertIn('<input type="hidden" id="myarticle-0-deleted" name="myarticle-0-deleted" value="">', html) def test_render_form_order_fields(self): html = self.render_form() self.assertIn('<input type="hidden" id="myarticle-0-order" name="myarticle-0-order" value="0">', html) self.assertIn('<input type="hidden" id="myarticle-1-order" name="myarticle-1-order" value="1">', html) self.assertIn('<input type="hidden" id="myarticle-2-order" name="myarticle-2-order" value="2">', html) def test_render_form_type_fields(self): html = self.render_form() self.assertIn('<input type="hidden" id="myarticle-0-type" name="myarticle-0-type" value="heading">', html) self.assertIn('<input type="hidden" id="myarticle-1-type" name="myarticle-1-type" value="paragraph">', html) self.assertIn('<input type="hidden" id="myarticle-2-type" name="myarticle-2-type" value="paragraph">', html) def test_render_form_value_fields(self): html = self.render_form() self.assertIn( ( '<input id="myarticle-0-value" name="myarticle-0-value" placeholder="Heading"' ' type="text" value="My title" />' ), html ) self.assertIn( ( '<input id="myarticle-1-value" name="myarticle-1-value" placeholder="Paragraph"' ' type="text" value="My first paragraph" />' ), html ) self.assertIn( ( '<input id="myarticle-2-value" name="myarticle-2-value" placeholder="Paragraph"' ' type="text" value="My second paragraph" />' ), html ) def test_validation_errors(self): class ValidatedBlock(blocks.StreamBlock): char = blocks.CharBlock() url = blocks.URLBlock() block = ValidatedBlock() value = [ blocks.BoundBlock( block=block.child_blocks['char'], value='', ), blocks.BoundBlock( block=block.child_blocks['char'], value='foo', ), blocks.BoundBlock( block=block.child_blocks['url'], value='http://example.com/', ), blocks.BoundBlock( block=block.child_blocks['url'], value='not a url', ), ] with self.assertRaises(ValidationError) as catcher: block.clean(value) self.assertEqual(catcher.exception.params, { 0: ['This field is required.'], 3: ['Enter a valid URL.'], }) def test_html_declarations(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() html = block.html_declarations() self.assertIn('<input id="__PREFIX__-value" name="__PREFIX__-value" placeholder="Heading" type="text" />', html) self.assertIn( '<input id="__PREFIX__-value" name="__PREFIX__-value" placeholder="Paragraph" type="text" />', html ) def test_html_declarations_uses_default(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock(default="Fish found on moon") paragraph = blocks.CharBlock(default="Lorem ipsum dolor sit amet") block = ArticleBlock() html = block.html_declarations() self.assertIn( ( '<input id="__PREFIX__-value" name="__PREFIX__-value" placeholder="Heading"' ' type="text" value="Fish found on moon" />' ), html ) self.assertIn( ( '<input id="__PREFIX__-value" name="__PREFIX__-value" placeholder="Paragraph" type="text"' ' value="Lorem ipsum dolor sit amet" />' ), html ) def test_media_inheritance(self): class ScriptedCharBlock(blocks.CharBlock): media = forms.Media(js=['scripted_char_block.js']) class ArticleBlock(blocks.StreamBlock): heading = ScriptedCharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() self.assertIn('scripted_char_block.js', ''.join(block.all_media().render_js())) def test_html_declaration_inheritance(self): class CharBlockWithDeclarations(blocks.CharBlock): def html_declarations(self): return '<script type="text/x-html-template">hello world</script>' class ArticleBlock(blocks.StreamBlock): heading = CharBlockWithDeclarations(default="Torchbox") paragraph = blocks.CharBlock() block = ArticleBlock() self.assertIn('<script type="text/x-html-template">hello world</script>', block.all_html_declarations()) def test_ordering_in_form_submission_uses_order_field(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() # check that items are ordered by the 'order' field, not the order they appear in the form post_data = {'article-count': '3'} for i in range(0, 3): post_data.update({ 'article-%d-deleted' % i: '', 'article-%d-order' % i: str(2 - i), 'article-%d-type' % i: 'heading', 'article-%d-value' % i: "heading %d" % i }) block_value = block.value_from_datadict(post_data, {}, 'article') self.assertEqual(block_value[2].value, "heading 0") def test_ordering_in_form_submission_is_numeric(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() # check that items are ordered by 'order' numerically, not alphabetically post_data = {'article-count': '12'} for i in range(0, 12): post_data.update({ 'article-%d-deleted' % i: '', 'article-%d-order' % i: str(i), 'article-%d-type' % i: 'heading', 'article-%d-value' % i: "heading %d" % i }) block_value = block.value_from_datadict(post_data, {}, 'article') self.assertEqual(block_value[2].value, "heading 2") def test_searchable_content(self): class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() block = ArticleBlock() value = block.to_python([ { 'type': 'heading', 'value': "My title", }, { 'type': 'paragraph', 'value': 'My first paragraph', }, { 'type': 'paragraph', 'value': 'My second paragraph', }, ]) content = block.get_searchable_content(value) self.assertEqual(content, [ "My title", "My first paragraph", "My second paragraph", ]) def test_meta_default(self): """Test that we can specify a default value in the Meta of a StreamBlock""" class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() class Meta: default = [('heading', 'A default heading')] # to access the default value, we retrieve it through a StructBlock # from a struct value that's missing that key class ArticleContainerBlock(blocks.StructBlock): author = blocks.CharBlock() article = ArticleBlock() block = ArticleContainerBlock() struct_value = block.to_python({'author': 'Bob'}) stream_value = struct_value['article'] self.assertTrue(isinstance(stream_value, blocks.StreamValue)) self.assertEqual(len(stream_value), 1) self.assertEqual(stream_value[0].block_type, 'heading') self.assertEqual(stream_value[0].value, 'A default heading') def test_constructor_default(self): """Test that we can specify a default value in the constructor of a StreamBlock""" class ArticleBlock(blocks.StreamBlock): heading = blocks.CharBlock() paragraph = blocks.CharBlock() class Meta: default = [('heading', 'A default heading')] # to access the default value, we retrieve it through a StructBlock # from a struct value that's missing that key class ArticleContainerBlock(blocks.StructBlock): author = blocks.CharBlock() article = ArticleBlock(default=[('heading', 'A different default heading')]) block = ArticleContainerBlock() struct_value = block.to_python({'author': 'Bob'}) stream_value = struct_value['article'] self.assertTrue(isinstance(stream_value, blocks.StreamValue)) self.assertEqual(len(stream_value), 1) self.assertEqual(stream_value[0].block_type, 'heading') self.assertEqual(stream_value[0].value, 'A different default heading') class TestPageChooserBlock(TestCase): fixtures = ['test.json'] def test_serialize(self): """The value of a PageChooserBlock (a Page object) should serialize to an ID""" block = blocks.PageChooserBlock() christmas_page = Page.objects.get(slug='christmas') self.assertEqual(block.get_prep_value(christmas_page), christmas_page.id) # None should serialize to None self.assertEqual(block.get_prep_value(None), None) def test_deserialize(self): """The serialized value of a PageChooserBlock (an ID) should deserialize to a Page object""" block = blocks.PageChooserBlock() christmas_page = Page.objects.get(slug='christmas') self.assertEqual(block.to_python(christmas_page.id), christmas_page) # None should deserialize to None self.assertEqual(block.to_python(None), None) def test_form_render(self): block = blocks.PageChooserBlock(help_text="pick a page, any page") empty_form_html = block.render_form(None, 'page') self.assertIn('<input id="page" name="page" placeholder="" type="hidden" />', empty_form_html) self.assertIn('createPageChooser("page", ["wagtailcore.page"], null, false);', empty_form_html) christmas_page = Page.objects.get(slug='christmas') christmas_form_html = block.render_form(christmas_page, 'page') expected_html = '<input id="page" name="page" placeholder="" type="hidden" value="%d" />' % christmas_page.id self.assertIn(expected_html, christmas_form_html) self.assertIn("pick a page, any page", christmas_form_html) def test_form_render_with_can_choose_root(self): block = blocks.PageChooserBlock(help_text="pick a page, any page", can_choose_root=True) empty_form_html = block.render_form(None, 'page') self.assertIn('createPageChooser("page", ["wagtailcore.page"], null, true);', empty_form_html) def test_form_response(self): block = blocks.PageChooserBlock() christmas_page = Page.objects.get(slug='christmas') value = block.value_from_datadict({'page': str(christmas_page.id)}, {}, 'page') self.assertEqual(value, christmas_page) empty_value = block.value_from_datadict({'page': ''}, {}, 'page') self.assertEqual(empty_value, None) def test_clean(self): required_block = blocks.PageChooserBlock() nonrequired_block = blocks.PageChooserBlock(required=False) christmas_page = Page.objects.get(slug='christmas') self.assertEqual(required_block.clean(christmas_page), christmas_page) with self.assertRaises(ValidationError): required_block.clean(None) self.assertEqual(nonrequired_block.clean(christmas_page), christmas_page) self.assertEqual(nonrequired_block.clean(None), None) class TestSystemCheck(TestCase): def test_name_must_be_nonempty(self): block = blocks.StreamBlock([ ('heading', blocks.CharBlock()), ('', blocks.RichTextBlock()), ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block name cannot be empty") self.assertEqual(errors[0].obj, block.child_blocks['']) def test_name_cannot_contain_spaces(self): block = blocks.StreamBlock([ ('heading', blocks.CharBlock()), ('rich text', blocks.RichTextBlock()), ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot contain spaces") self.assertEqual(errors[0].obj, block.child_blocks['rich text']) def test_name_cannot_contain_dashes(self): block = blocks.StreamBlock([ ('heading', blocks.CharBlock()), ('rich-text', blocks.RichTextBlock()), ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot contain dashes") self.assertEqual(errors[0].obj, block.child_blocks['rich-text']) def test_name_cannot_begin_with_digit(self): block = blocks.StreamBlock([ ('heading', blocks.CharBlock()), ('99richtext', blocks.RichTextBlock()), ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot begin with a digit") self.assertEqual(errors[0].obj, block.child_blocks['99richtext']) def test_system_checks_recurse_into_lists(self): failing_block = blocks.RichTextBlock() block = blocks.StreamBlock([ ('paragraph_list', blocks.ListBlock( blocks.StructBlock([ ('heading', blocks.CharBlock()), ('rich text', failing_block), ]) )) ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot contain spaces") self.assertEqual(errors[0].obj, failing_block) def test_system_checks_recurse_into_streams(self): failing_block = blocks.RichTextBlock() block = blocks.StreamBlock([ ('carousel', blocks.StreamBlock([ ('text', blocks.StructBlock([ ('heading', blocks.CharBlock()), ('rich text', failing_block), ])) ])) ]) errors = block.check() self.assertEqual(len(errors), 1) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot contain spaces") self.assertEqual(errors[0].obj, failing_block) def test_system_checks_recurse_into_structs(self): failing_block_1 = blocks.RichTextBlock() failing_block_2 = blocks.RichTextBlock() block = blocks.StreamBlock([ ('two_column', blocks.StructBlock([ ('left', blocks.StructBlock([ ('heading', blocks.CharBlock()), ('rich text', failing_block_1), ])), ('right', blocks.StructBlock([ ('heading', blocks.CharBlock()), ('rich text', failing_block_2), ])) ])) ]) errors = block.check() self.assertEqual(len(errors), 2) self.assertEqual(errors[0].id, 'wagtailcore.E001') self.assertEqual(errors[0].hint, "Block names cannot contain spaces") self.assertEqual(errors[0].obj, failing_block_1) self.assertEqual(errors[1].id, 'wagtailcore.E001') self.assertEqual(errors[1].hint, "Block names cannot contain spaces") self.assertEqual(errors[0].obj, failing_block_2) class TestTemplateRendering(TestCase): def test_render_with_custom_context(self): from wagtail.tests.testapp.blocks import LinkBlock block = LinkBlock() value = block.to_python({'title': 'Torchbox', 'url': 'http://torchbox.com/'}) result = block.render(value) self.assertEqual(result, '<a href="http://torchbox.com/" class="important">Torchbox</a>')
bsd-3-clause
nhuntwalker/astroML
book_figures/chapter6/fig_great_wall_KDE.py
4
5422
""" Great Wall KDE -------------- Figure 6.3 Kernel density estimation for galaxies within the SDSS "Great Wall." The top-left panel shows points that are galaxies, projected by their spatial locations (right ascension and distance determined from redshift measurement) onto the equatorial plane (declination ~ 0 degrees). The remaining panels show estimates of the density of these points using kernel density estimation with a Gaussian kernel (upper right), a top-hat kernel (lower left), and an exponential kernel (lower right). Compare also to figure 6.4. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from scipy.spatial import cKDTree from scipy.stats import gaussian_kde from astroML.datasets import fetch_great_wall # Scikit-learn 0.14 added sklearn.neighbors.KernelDensity, which is a very # fast kernel density estimator based on a KD Tree. We'll use this if # available (and raise a warning if it isn't). try: from sklearn.neighbors import KernelDensity use_sklearn_KDE = True except: import warnings warnings.warn("KDE will be removed in astroML version 0.3. Please " "upgrade to scikit-learn 0.14+ and use " "sklearn.neighbors.KernelDensity.", DeprecationWarning) from astroML.density_estimation import KDE use_sklearn_KDE = False #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the great wall data X = fetch_great_wall() #------------------------------------------------------------ # Create the grid on which to evaluate the results Nx = 50 Ny = 125 xmin, xmax = (-375, -175) ymin, ymax = (-300, 200) #------------------------------------------------------------ # Evaluate for several models Xgrid = np.vstack(map(np.ravel, np.meshgrid(np.linspace(xmin, xmax, Nx), np.linspace(ymin, ymax, Ny)))).T kernels = ['gaussian', 'tophat', 'exponential'] dens = [] if use_sklearn_KDE: kde1 = KernelDensity(5, kernel='gaussian') log_dens1 = kde1.fit(X).score_samples(Xgrid) dens1 = X.shape[0] * np.exp(log_dens1).reshape((Ny, Nx)) kde2 = KernelDensity(5, kernel='tophat') log_dens2 = kde2.fit(X).score_samples(Xgrid) dens2 = X.shape[0] * np.exp(log_dens2).reshape((Ny, Nx)) kde3 = KernelDensity(5, kernel='exponential') log_dens3 = kde3.fit(X).score_samples(Xgrid) dens3 = X.shape[0] * np.exp(log_dens3).reshape((Ny, Nx)) else: kde1 = KDE(metric='gaussian', h=5) dens1 = kde1.fit(X).eval(Xgrid).reshape((Ny, Nx)) kde2 = KDE(metric='tophat', h=5) dens2 = kde2.fit(X).eval(Xgrid).reshape((Ny, Nx)) kde3 = KDE(metric='exponential', h=5) dens3 = kde3.fit(X).eval(Xgrid).reshape((Ny, Nx)) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 2.2)) fig.subplots_adjust(left=0.12, right=0.95, bottom=0.2, top=0.9, hspace=0.01, wspace=0.01) # First plot: scatter the points ax1 = plt.subplot(221, aspect='equal') ax1.scatter(X[:, 1], X[:, 0], s=1, lw=0, c='k') ax1.text(0.95, 0.9, "input", ha='right', va='top', transform=ax1.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Second plot: gaussian kernel ax2 = plt.subplot(222, aspect='equal') ax2.imshow(dens1.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax2.text(0.95, 0.9, "Gaussian $(h=5)$", ha='right', va='top', transform=ax2.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Third plot: top-hat kernel ax3 = plt.subplot(223, aspect='equal') ax3.imshow(dens2.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax3.text(0.95, 0.9, "top-hat $(h=5)$", ha='right', va='top', transform=ax3.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) ax3.images[0].set_clim(0.01, 0.8) # Fourth plot: exponential kernel ax4 = plt.subplot(224, aspect='equal') ax4.imshow(dens3.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax4.text(0.95, 0.9, "exponential $(h=5)$", ha='right', va='top', transform=ax4.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) for ax in [ax1, ax2, ax3, ax4]: ax.set_xlim(ymin, ymax - 0.01) ax.set_ylim(xmin, xmax) for ax in [ax1, ax2]: ax.xaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax3, ax4]: ax.set_xlabel('$y$ (Mpc)') for ax in [ax2, ax4]: ax.yaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax1, ax3]: ax.set_ylabel('$x$ (Mpc)') plt.show()
bsd-2-clause
keras-team/keras-io
examples/vision/vivit.py
1
13690
""" Title: Video Vision Transformer Author: [Aritra Roy Gosthipaty](https://twitter.com/ariG23498), [Ayush Thakur](https://twitter.com/ayushthakur0) (equal contribution) Date created: 2022/01/12 Last modified: 2022/01/12 Description: A Transformer-based architecture for video classification. """ """ ## Introduction Videos are sequences of images. Let's assume you have an image representation model (CNN, ViT, etc.) and a sequence model (RNN, LSTM, etc.) at hand. We ask you to tweak the model for video classification. The simplest approach would be to apply the image model to individual frames, use the sequence model to learn sequences of image features, then apply a classification head on the learned sequence representation. The Keras example [Video Classification with a CNN-RNN Architecture](https://keras.io/examples/vision/video_classification/) explains this approach in detail. Alernatively, you can also build a hybrid Transformer-based model for video classification as shown in the Keras example [Video Classification with Transformers](https://keras.io/examples/vision/video_transformers/). In this example, we minimally implement [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Arnab et al., a **pure Transformer-based** model for video classification. The authors propose a novel embedding scheme and a number of Transformer variants to model video clips. We implement the embedding scheme and one of the variants of the Transformer architecture, for simplicity. This example requires TensorFlow 2.6 or higher, and the `medmnist` package, which can be installed by running the code cell below. """ """shell pip install -qq medmnist """ """ ## Imports """ import os import io import imageio import medmnist import ipywidgets import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # Setting seed for reproducibility SEED = 42 os.environ["TF_CUDNN_DETERMINISTIC"] = "1" keras.utils.set_random_seed(SEED) """ ## Hyperparameters The hyperparameters are chosen via hyperparameter search. You can learn more about the process in the "conclusion" section. """ # DATA DATASET_NAME = "organmnist3d" BATCH_SIZE = 32 AUTO = tf.data.AUTOTUNE INPUT_SHAPE = (28, 28, 28, 1) NUM_CLASSES = 11 # OPTIMIZER LEARNING_RATE = 1e-4 WEIGHT_DECAY = 1e-5 # TRAINING EPOCHS = 60 # TUBELET EMBEDDING PATCH_SIZE = (8, 8, 8) NUM_PATCHES = (INPUT_SHAPE[0] // PATCH_SIZE[0]) ** 2 # ViViT ARCHITECTURE LAYER_NORM_EPS = 1e-6 PROJECTION_DIM = 128 NUM_HEADS = 8 NUM_LAYERS = 8 """ ## Dataset For our example we use the [MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification](https://medmnist.com/) dataset. The videos are lightweight and easy to train on. """ def download_and_prepare_dataset(data_info: dict): """Utility function to download the dataset. Arguments: data_info (dict): Dataset metadata. """ data_path = keras.utils.get_file(origin=data_info["url"], md5_hash=data_info["MD5"]) with np.load(data_path) as data: # Get videos train_videos = data["train_images"] valid_videos = data["val_images"] test_videos = data["test_images"] # Get labels train_labels = data["train_labels"].flatten() valid_labels = data["val_labels"].flatten() test_labels = data["test_labels"].flatten() return ( (train_videos, train_labels), (valid_videos, valid_labels), (test_videos, test_labels), ) # Get the metadata of the dataset info = medmnist.INFO[DATASET_NAME] # Get the dataset prepared_dataset = download_and_prepare_dataset(info) (train_videos, train_labels) = prepared_dataset[0] (valid_videos, valid_labels) = prepared_dataset[1] (test_videos, test_labels) = prepared_dataset[2] """ ### `tf.data` pipeline """ @tf.function def preprocess(frames: tf.Tensor, label: tf.Tensor): """Preprocess the frames tensors and parse the labels.""" # Preprocess images frames = tf.image.convert_image_dtype( frames[ ..., tf.newaxis ], # The new axis is to help for further processing with Conv3D layers tf.float32, ) # Parse label label = tf.cast(label, tf.float32) return frames, label def prepare_dataloader( videos: np.ndarray, labels: np.ndarray, loader_type: str = "train", batch_size: int = BATCH_SIZE, ): """Utility function to prepare the dataloader.""" dataset = tf.data.Dataset.from_tensor_slices((videos, labels)) if loader_type == "train": dataset = dataset.shuffle(BATCH_SIZE * 2) dataloader = ( dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE) .batch(batch_size) .prefetch(tf.data.AUTOTUNE) ) return dataloader trainloader = prepare_dataloader(train_videos, train_labels, "train") validloader = prepare_dataloader(valid_videos, valid_labels, "valid") testloader = prepare_dataloader(test_videos, test_labels, "test") """ ## Tubelet Embedding In ViTs, an image is divided into patches, which are then spatially flattened, a process known as tokenization. For a video, one can repeat this process for individual frames. **Uniform frame sampling** as suggested by the authors is a tokenization scheme in which we sample frames from the video clip and perform simple ViT tokenization. | ![uniform frame sampling](https://i.imgur.com/aaPyLPX.png) | | :--: | | Uniform Frame Sampling [Source](https://arxiv.org/abs/2103.15691) | **Tubelet Embedding** is different in terms of capturing temporal information from the video. First, we extract volumes from the video -- these volumes contain patches of the frame and the temporal information as well. The volumes are then flattened to build video tokens. | ![tubelet embedding](https://i.imgur.com/9G7QTfV.png) | | :--: | | Tubelet Embedding [Source](https://arxiv.org/abs/2103.15691) | """ class TubeletEmbedding(layers.Layer): def __init__(self, embed_dim, patch_size, **kwargs): super().__init__(**kwargs) self.projection = layers.Conv3D( filters=embed_dim, kernel_size=patch_size, strides=patch_size, padding="VALID", ) self.flatten = layers.Reshape(target_shape=(-1, embed_dim)) def call(self, videos): projected_patches = self.projection(videos) flattened_patches = self.flatten(projected_patches) return flattened_patches """ ## Positional Embedding This layer adds positional information to the encoded video tokens. """ class PositionalEncoder(layers.Layer): def __init__(self, embed_dim, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim def build(self, input_shape): _, num_tokens, _ = input_shape self.position_embedding = layers.Embedding( input_dim=num_tokens, output_dim=self.embed_dim ) self.positions = tf.range(start=0, limit=num_tokens, delta=1) def call(self, encoded_tokens): # Encode the positions and add it to the encoded tokens encoded_positions = self.position_embedding(self.positions) encoded_tokens = encoded_tokens + encoded_positions return encoded_tokens """ ## Video Vision Transformer The authors suggest 4 variants of Vision Transformer: - Spatio-temporal attention - Factorized encoder - Factorized self-attention - Factorized dot-product attention In this example, we will implement the **Spatio-temporal attention** model for simplicity. The following code snippet is heavily inspired from [Image classification with Vision Transformer](https://keras.io/examples/vision/image_classification_with_vision_transformer/). One can also refer to the [official repository of ViViT](https://github.com/google-research/scenic/tree/main/scenic/projects/vivit) which contains all the variants, implemented in JAX. """ def create_vivit_classifier( tubelet_embedder, positional_encoder, input_shape=INPUT_SHAPE, transformer_layers=NUM_LAYERS, num_heads=NUM_HEADS, embed_dim=PROJECTION_DIM, layer_norm_eps=LAYER_NORM_EPS, num_classes=NUM_CLASSES, ): # Get the input layer inputs = layers.Input(shape=input_shape) # Create patches. patches = tubelet_embedder(inputs) # Encode patches. encoded_patches = positional_encoder(patches) # Create multiple layers of the Transformer block. for _ in range(transformer_layers): # Layer normalization and MHSA x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim // num_heads, dropout=0.1 )(x1, x1) # Skip connection x2 = layers.Add()([attention_output, encoded_patches]) # Layer Normalization and MLP x3 = layers.LayerNormalization(epsilon=1e-6)(x2) x3 = keras.Sequential( [ layers.Dense(units=embed_dim * 4, activation=tf.nn.gelu), layers.Dense(units=embed_dim, activation=tf.nn.gelu), ] )(x3) # Skip connection encoded_patches = layers.Add()([x3, x2]) # Layer normalization and Global average pooling. representation = layers.LayerNormalization(epsilon=layer_norm_eps)(encoded_patches) representation = layers.GlobalAvgPool1D()(representation) # Classify outputs. outputs = layers.Dense(units=num_classes, activation="softmax")(representation) # Create the Keras model. model = keras.Model(inputs=inputs, outputs=outputs) return model """ ## Train """ def run_experiment(): # Initialize model model = create_vivit_classifier( tubelet_embedder=TubeletEmbedding( embed_dim=PROJECTION_DIM, patch_size=PATCH_SIZE ), positional_encoder=PositionalEncoder(embed_dim=PROJECTION_DIM), ) # Compile the model with the optimizer, loss function # and the metrics. optimizer = keras.optimizers.Adam(learning_rate=LEARNING_RATE) model.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=[ keras.metrics.SparseCategoricalAccuracy(name="accuracy"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"), ], ) # Train the model. _ = model.fit(trainloader, epochs=EPOCHS, validation_data=validloader) _, accuracy, top_5_accuracy = model.evaluate(testloader) print(f"Test accuracy: {round(accuracy * 100, 2)}%") print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%") return model model = run_experiment() """ ## Inference """ NUM_SAMPLES_VIZ = 25 testsamples, labels = next(iter(testloader)) testsamples, labels = testsamples[:NUM_SAMPLES_VIZ], labels[:NUM_SAMPLES_VIZ] ground_truths = [] preds = [] videos = [] for i, (testsample, label) in enumerate(zip(testsamples, labels)): # Generate gif with io.BytesIO() as gif: imageio.mimsave(gif, (testsample.numpy() * 255).astype("uint8"), "GIF", fps=5) videos.append(gif.getvalue()) # Get model prediction output = model.predict(tf.expand_dims(testsample, axis=0))[0] pred = np.argmax(output, axis=0) ground_truths.append(label.numpy().astype("int")) preds.append(pred) def make_box_for_grid(image_widget, fit): """Make a VBox to hold caption/image for demonstrating option_fit values. Source: https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html """ # Make the caption if fit is not None: fit_str = "'{}'".format(fit) else: fit_str = str(fit) h = ipywidgets.HTML(value="" + str(fit_str) + "") # Make the green box with the image widget inside it boxb = ipywidgets.widgets.Box() boxb.children = [image_widget] # Compose into a vertical box vb = ipywidgets.widgets.VBox() vb.layout.align_items = "center" vb.children = [h, boxb] return vb boxes = [] for i in range(NUM_SAMPLES_VIZ): ib = ipywidgets.widgets.Image(value=videos[i], width=100, height=100) true_class = info["label"][str(ground_truths[i])] pred_class = info["label"][str(preds[i])] caption = f"T: {true_class} | P: {pred_class}" boxes.append(make_box_for_grid(ib, caption)) ipywidgets.widgets.GridBox( boxes, layout=ipywidgets.widgets.Layout(grid_template_columns="repeat(5, 200px)") ) """ ## Final thoughts With a vanilla implementation, we achieve ~79-80% Top-1 accuracy on the test dataset. The hyperparameters used in this tutorial were finalized by running a hyperparameter search using [W&B Sweeps](https://docs.wandb.ai/guides/sweeps). You can find out our sweeps result [here](https://wandb.ai/minimal-implementations/vivit/sweeps/66fp0lhz) and our quick analysis of the results [here](https://wandb.ai/minimal-implementations/vivit/reports/Hyperparameter-Tuning-Analysis--VmlldzoxNDEwNzcx). For further improvement, you could look into the following: - Using data augmentation for videos. - Using a better regularization scheme for training. - Apply different variants of the transformer model as in the paper. We would like to thank [Anurag Arnab](https://anuragarnab.github.io/) (first author of ViViT) for helpful discussion. We are grateful to [Weights and Biases](https://wandb.ai/site) program for helping with GPU credits. You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/video-vision-transformer) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/video-vision-transformer-CT). """
apache-2.0
pravsripad/mne-python
tutorials/preprocessing/40_artifact_correction_ica.py
2
29198
# -*- coding: utf-8 -*- """ .. _tut-artifact-ica: ============================ Repairing artifacts with ICA ============================ This tutorial covers the basics of independent components analysis (ICA) and shows how ICA can be used for artifact repair; an extended example illustrates repair of ocular and heartbeat artifacts. For conceptual background on ICA, see :ref:`this scikit-learn tutorial <sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py>`. We begin as always by importing the necessary Python modules and loading some :ref:`example data <sample-dataset>`. Because ICA can be computationally intense, we'll also crop the data to 60 seconds; and to save ourselves from repeatedly typing ``mne.preprocessing`` we'll directly import a few functions and classes from that submodule: """ # %% import os import mne from mne.preprocessing import (ICA, create_eog_epochs, create_ecg_epochs, corrmap) sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file) # Here we'll crop to 60 seconds and drop gradiometer channels for speed raw.crop(tmax=60.).pick_types(meg='mag', eeg=True, stim=True, eog=True) raw.load_data() # %% # .. note:: # Before applying ICA (or any artifact repair strategy), be sure to observe # the artifacts in your data to make sure you choose the right repair tool. # Sometimes the right tool is no tool at all — if the artifacts are small # enough you may not even need to repair them to get good analysis results. # See :ref:`tut-artifact-overview` for guidance on detecting and # visualizing various types of artifact. # # What is ICA? # ^^^^^^^^^^^^ # # Independent components analysis (ICA) is a technique for estimating # independent source signals from a set of recordings in which the source # signals were mixed together in unknown ratios. A common example of this is # the problem of `blind source separation`_: with 3 musical instruments playing # in the same room, and 3 microphones recording the performance (each picking # up all 3 instruments, but at varying levels), can you somehow "unmix" the # signals recorded by the 3 microphones so that you end up with a separate # "recording" isolating the sound of each instrument? # # It is not hard to see how this analogy applies to EEG/MEG analysis: there are # many "microphones" (sensor channels) simultaneously recording many # "instruments" (blinks, heartbeats, activity in different areas of the brain, # muscular activity from jaw clenching or swallowing, etc). As long as these # various source signals are `statistically independent`_ and non-gaussian, it # is usually possible to separate the sources using ICA, and then re-construct # the sensor signals after excluding the sources that are unwanted. # # # ICA in MNE-Python # ~~~~~~~~~~~~~~~~~ # # .. sidebar:: ICA and dimensionality reduction # # If you want to perform ICA with *no* dimensionality reduction (other than # the number of Independent Components (ICs) given in ``n_components``, and # any subsequent exclusion of ICs you specify in ``ICA.exclude``), simply # pass ``n_components``. # # However, if you *do* want to reduce dimensionality, consider this # example: if you have 300 sensor channels and you set ``n_components=50`` # during instantiation and pass ``n_pca_components=None`` to # `~mne.preprocessing.ICA.apply`, then the the first 50 # PCs are sent to the ICA algorithm (yielding 50 ICs), and during # reconstruction `~mne.preprocessing.ICA.apply` will use the 50 ICs # plus PCs number 51-300 (the full PCA residual). If instead you specify # ``n_pca_components=120`` in `~mne.preprocessing.ICA.apply`, it will # reconstruct using the 50 ICs plus the first 70 PCs in the PCA residual # (numbers 51-120), thus discarding the smallest 180 components. # # **If you have previously been using EEGLAB**'s ``runica()`` and are # looking for the equivalent of its ``'pca', n`` option to reduce # dimensionality, set ``n_components=n`` during initialization and pass # ``n_pca_components=n`` to `~mne.preprocessing.ICA.apply`. # # MNE-Python implements three different ICA algorithms: ``fastica`` (the # default), ``picard``, and ``infomax``. FastICA and Infomax are both in fairly # widespread use; Picard is a newer (2017) algorithm that is expected to # converge faster than FastICA and Infomax, and is more robust than other # algorithms in cases where the sources are not completely independent, which # typically happens with real EEG/MEG data. See # :footcite:`AblinEtAl2018` for more information. # # The ICA interface in MNE-Python is similar to the interface in # `scikit-learn`_: some general parameters are specified when creating an # `~mne.preprocessing.ICA` object, then the `~mne.preprocessing.ICA` object is # fit to the data using its `~mne.preprocessing.ICA.fit` method. The results of # the fitting are added to the `~mne.preprocessing.ICA` object as attributes # that end in an underscore (``_``), such as ``ica.mixing_matrix_`` and # ``ica.unmixing_matrix_``. After fitting, the ICA component(s) that you want # to remove must be chosen, and the ICA fit must then be applied to the # `~mne.io.Raw` or `~mne.Epochs` object using the `~mne.preprocessing.ICA` # object's `~mne.preprocessing.ICA.apply` method. # # As is typically done with ICA, the data are first scaled to unit variance and # whitened using principal components analysis (PCA) before performing the ICA # decomposition. This is a two-stage process: # # 1. To deal with different channel types having different units # (e.g., Volts for EEG and Tesla for MEG), data must be pre-whitened. # If ``noise_cov=None`` (default), all data of a given channel type is # scaled by the standard deviation across all channels. If ``noise_cov`` is # a `~mne.Covariance`, the channels are pre-whitened using the covariance. # 2. The pre-whitened data are then decomposed using PCA. # # From the resulting principal components (PCs), the first ``n_components`` are # then passed to the ICA algorithm if ``n_components`` is an integer number. # It can also be a float between 0 and 1, specifying the **fraction** of # explained variance that the PCs should capture; the appropriate number of # PCs (i.e., just as many PCs as are required to explain the given fraction # of total variance) is then passed to the ICA. # # After visualizing the Independent Components (ICs) and excluding any that # capture artifacts you want to repair, the sensor signal can be reconstructed # using the `~mne.preprocessing.ICA` object's # `~mne.preprocessing.ICA.apply` method. By default, signal # reconstruction uses all of the ICs (less any ICs listed in ``ICA.exclude``) # plus all of the PCs that were not included in the ICA decomposition (i.e., # the "PCA residual"). If you want to reduce the number of components used at # the reconstruction stage, it is controlled by the ``n_pca_components`` # parameter (which will in turn reduce the rank of your data; by default # ``n_pca_components=None`` resulting in no additional dimensionality # reduction). The fitting and reconstruction procedures and the # parameters that control dimensionality at various stages are summarized in # the diagram below: # # # .. raw:: html # # <a href= # "../../_images/graphviz-7483cb1cf41f06e2a4ef451b17f073dbe584ba30.png"> # # .. graphviz:: ../../_static/diagrams/ica.dot # :alt: Diagram of ICA procedure in MNE-Python # :align: left # # .. raw:: html # # </a> # # See the Notes section of the `~mne.preprocessing.ICA` documentation # for further details. Next we'll walk through an extended example that # illustrates each of these steps in greater detail. # # Example: EOG and ECG artifact repair # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # Visualizing the artifacts # ~~~~~~~~~~~~~~~~~~~~~~~~~ # # Let's begin by visualizing the artifacts that we want to repair. In this # dataset they are big enough to see easily in the raw data: # pick some channels that clearly show heartbeats and blinks regexp = r'(MEG [12][45][123]1|EEG 00.)' artifact_picks = mne.pick_channels_regexp(raw.ch_names, regexp=regexp) raw.plot(order=artifact_picks, n_channels=len(artifact_picks), show_scrollbars=False) # %% # We can get a summary of how the ocular artifact manifests across each channel # type using `~mne.preprocessing.create_eog_epochs` like we did in the # :ref:`tut-artifact-overview` tutorial: eog_evoked = create_eog_epochs(raw).average() eog_evoked.apply_baseline(baseline=(None, -0.2)) eog_evoked.plot_joint() # %% # Now we'll do the same for the heartbeat artifacts, using # `~mne.preprocessing.create_ecg_epochs`: ecg_evoked = create_ecg_epochs(raw).average() ecg_evoked.apply_baseline(baseline=(None, -0.2)) ecg_evoked.plot_joint() # %% # Filtering to remove slow drifts # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Before we run the ICA, an important step is filtering the data to remove # low-frequency drifts, which can negatively affect the quality of the ICA fit. # The slow drifts are problematic because they reduce the independence of the # assumed-to-be-independent sources (e.g., during a slow upward drift, the # neural, heartbeat, blink, and other muscular sources will all tend to have # higher values), making it harder for the algorithm to find an accurate # solution. A high-pass filter with 1 Hz cutoff frequency is recommended. # However, because filtering is a linear operation, the ICA solution found from # the filtered signal can be applied to the unfiltered signal (see # :footcite:`WinklerEtAl2015` for # more information), so we'll keep a copy of the unfiltered # `~mne.io.Raw` object around so we can apply the ICA solution to it # later. filt_raw = raw.copy().filter(l_freq=1., h_freq=None) # %% # Fitting and plotting the ICA solution # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # .. sidebar:: Ignoring the time domain # # The ICA algorithms implemented in MNE-Python find patterns across # channels, but ignore the time domain. This means you can compute ICA on # discontinuous `~mne.Epochs` or `~mne.Evoked` objects (not # just continuous `~mne.io.Raw` objects), or only use every Nth # sample by passing the ``decim`` parameter to ``ICA.fit()``. # # .. note:: `~mne.Epochs` used for fitting ICA should not be # baseline-corrected. Because cleaning the data via ICA may # introduce DC offsets, we suggest to baseline correct your data # **after** cleaning (and not before), should you require # baseline correction. # # Now we're ready to set up and fit the ICA. Since we know (from observing our # raw data) that the EOG and ECG artifacts are fairly strong, we would expect # those artifacts to be captured in the first few dimensions of the PCA # decomposition that happens before the ICA. Therefore, we probably don't need # a huge number of components to do a good job of isolating our artifacts # (though it is usually preferable to include more components for a more # accurate solution). As a first guess, we'll run ICA with ``n_components=15`` # (use only the first 15 PCA components to compute the ICA decomposition) — a # very small number given that our data has over 300 channels, but with the # advantage that it will run quickly and we will able to tell easily whether it # worked or not (because we already know what the EOG / ECG artifacts should # look like). # # ICA fitting is not deterministic (e.g., the components may get a sign # flip on different runs, or may not always be returned in the same order), so # we'll also specify a `random seed`_ so that we get identical results each # time this tutorial is built by our web servers. ica = ICA(n_components=15, max_iter='auto', random_state=97) ica.fit(filt_raw) ica # %% # Some optional parameters that we could have passed to the # `~mne.preprocessing.ICA.fit` method include ``decim`` (to use only # every Nth sample in computing the ICs, which can yield a considerable # speed-up) and ``reject`` (for providing a rejection dictionary for maximum # acceptable peak-to-peak amplitudes for each channel type, just like we used # when creating epoched data in the :ref:`tut-overview` tutorial). # # Now we can examine the ICs to see what they captured. # `~mne.preprocessing.ICA.plot_sources` will show the time series of the # ICs. Note that in our call to `~mne.preprocessing.ICA.plot_sources` we # can use the original, unfiltered `~mne.io.Raw` object. A helpful tip is that # right clicking (or control + click with a trackpad) on the name of the # component will bring up a plot of its properties. In this plot, you can # also toggle the channel type in the topoplot (if you have multiple channel # types) with 't' and whether the spectrum is log-scaled or not with 'l'. raw.load_data() ica.plot_sources(raw, show_scrollbars=False) # %% # Here we can pretty clearly see that the first component (``ICA000``) captures # the EOG signal quite well, and the second component (``ICA001``) looks a lot # like `a heartbeat <qrs_>`_ (for more info on visually identifying Independent # Components, `this EEGLAB tutorial`_ is a good resource). We can also # visualize the scalp field distribution of each component using # `~mne.preprocessing.ICA.plot_components`. These are interpolated based # on the values in the ICA mixing matrix: # sphinx_gallery_thumbnail_number = 9 ica.plot_components() # %% # .. note:: # # `~mne.preprocessing.ICA.plot_components` (which plots the scalp # field topographies for each component) has an optional ``inst`` parameter # that takes an instance of `~mne.io.Raw` or `~mne.Epochs`. # Passing ``inst`` makes the scalp topographies interactive: clicking one # will bring up a diagnostic `~mne.preprocessing.ICA.plot_properties` # window (see below) for that component. # # In the plots above it's fairly obvious which ICs are capturing our EOG and # ECG artifacts, but there are additional ways visualize them anyway just to # be sure. First, we can plot an overlay of the original signal against the # reconstructed signal with the artifactual ICs excluded, using # `~mne.preprocessing.ICA.plot_overlay`: # blinks ica.plot_overlay(raw, exclude=[0], picks='eeg') # heartbeats ica.plot_overlay(raw, exclude=[1], picks='mag') # %% # We can also plot some diagnostics of each IC using # `~mne.preprocessing.ICA.plot_properties`: ica.plot_properties(raw, picks=[0, 1]) # %% # In the remaining sections, we'll look at different ways of choosing which ICs # to exclude prior to reconstructing the sensor signals. # # # Selecting ICA components manually # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Once we're certain which components we want to exclude, we can specify that # manually by setting the ``ica.exclude`` attribute. Similar to marking bad # channels, merely setting ``ica.exclude`` doesn't do anything immediately (it # just adds the excluded ICs to a list that will get used later when it's # needed). Once the exclusions have been set, ICA methods like # `~mne.preprocessing.ICA.plot_overlay` will exclude those component(s) # even if no ``exclude`` parameter is passed, and the list of excluded # components will be preserved when using `mne.preprocessing.ICA.save` # and `mne.preprocessing.read_ica`. ica.exclude = [0, 1] # indices chosen based on various plots above # %% # Now that the exclusions have been set, we can reconstruct the sensor signals # with artifacts removed using the `~mne.preprocessing.ICA.apply` method # (remember, we're applying the ICA solution from the *filtered* data to the # original *unfiltered* signal). Plotting the original raw data alongside the # reconstructed data shows that the heartbeat and blink artifacts are repaired. # ica.apply() changes the Raw object in-place, so let's make a copy first: reconst_raw = raw.copy() ica.apply(reconst_raw) raw.plot(order=artifact_picks, n_channels=len(artifact_picks), show_scrollbars=False) reconst_raw.plot(order=artifact_picks, n_channels=len(artifact_picks), show_scrollbars=False) del reconst_raw # %% # Using an EOG channel to select ICA components # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # It may have seemed easy to review the plots and manually select which ICs to # exclude, but when processing dozens or hundreds of subjects this can become # a tedious, rate-limiting step in the analysis pipeline. One alternative is to # use dedicated EOG or ECG sensors as a "pattern" to check the ICs against, and # automatically mark for exclusion any ICs that match the EOG/ECG pattern. Here # we'll use `~mne.preprocessing.ICA.find_bads_eog` to automatically find # the ICs that best match the EOG signal, then use # `~mne.preprocessing.ICA.plot_scores` along with our other plotting # functions to see which ICs it picked. We'll start by resetting # ``ica.exclude`` back to an empty list: ica.exclude = [] # find which ICs match the EOG pattern eog_indices, eog_scores = ica.find_bads_eog(raw) ica.exclude = eog_indices # barplot of ICA component "EOG match" scores ica.plot_scores(eog_scores) # plot diagnostics ica.plot_properties(raw, picks=eog_indices) # plot ICs applied to raw data, with EOG matches highlighted ica.plot_sources(raw, show_scrollbars=False) # plot ICs applied to the averaged EOG epochs, with EOG matches highlighted ica.plot_sources(eog_evoked) # %% # Note that above we used `~mne.preprocessing.ICA.plot_sources` on both # the original `~mne.io.Raw` instance and also on an # `~mne.Evoked` instance of the extracted EOG artifacts. This can be # another way to confirm that `~mne.preprocessing.ICA.find_bads_eog` has # identified the correct components. # # # Using a simulated channel to select ICA components # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # If you don't have an EOG channel, # `~mne.preprocessing.ICA.find_bads_eog` has a ``ch_name`` parameter that # you can use as a proxy for EOG. You can use a single channel, or create a # bipolar reference from frontal EEG sensors and use that as virtual EOG # channel. This carries a risk however: you must hope that the frontal EEG # channels only reflect EOG and not brain dynamics in the prefrontal cortex (or # you must not care about those prefrontal signals). # # For ECG, it is easier: `~mne.preprocessing.ICA.find_bads_ecg` can use # cross-channel averaging of magnetometer or gradiometer channels to construct # a virtual ECG channel, so if you have MEG channels it is usually not # necessary to pass a specific channel name. # `~mne.preprocessing.ICA.find_bads_ecg` also has two options for its # ``method`` parameter: ``'ctps'`` (cross-trial phase statistics # :footcite:`DammersEtAl2008`) and # ``'correlation'`` (Pearson correlation between data and ECG channel). ica.exclude = [] # find which ICs match the ECG pattern ecg_indices, ecg_scores = ica.find_bads_ecg(raw, method='correlation', threshold='auto') ica.exclude = ecg_indices # barplot of ICA component "ECG match" scores ica.plot_scores(ecg_scores) # plot diagnostics ica.plot_properties(raw, picks=ecg_indices) # plot ICs applied to raw data, with ECG matches highlighted ica.plot_sources(raw, show_scrollbars=False) # plot ICs applied to the averaged ECG epochs, with ECG matches highlighted ica.plot_sources(ecg_evoked) # %% # The last of these plots is especially useful: it shows us that the heartbeat # artifact is coming through on *two* ICs, and we've only caught one of them. # In fact, if we look closely at the output of # `~mne.preprocessing.ICA.plot_sources` (online, you can right-click → # "view image" to zoom in), it looks like ``ICA014`` has a weak periodic # component that is in-phase with ``ICA001``. It might be worthwhile to re-run # the ICA with more components to see if that second heartbeat artifact # resolves out a little better: # refit the ICA with 30 components this time new_ica = ICA(n_components=30, max_iter='auto', random_state=97) new_ica.fit(filt_raw) # find which ICs match the ECG pattern ecg_indices, ecg_scores = new_ica.find_bads_ecg(raw, method='correlation', threshold='auto') new_ica.exclude = ecg_indices # barplot of ICA component "ECG match" scores new_ica.plot_scores(ecg_scores) # plot diagnostics new_ica.plot_properties(raw, picks=ecg_indices) # plot ICs applied to raw data, with ECG matches highlighted new_ica.plot_sources(raw, show_scrollbars=False) # plot ICs applied to the averaged ECG epochs, with ECG matches highlighted new_ica.plot_sources(ecg_evoked) # %% # Much better! Now we've captured both ICs that are reflecting the heartbeat # artifact (and as a result, we got two diagnostic plots: one for each IC that # reflects the heartbeat). This demonstrates the value of checking the results # of automated approaches like `~mne.preprocessing.ICA.find_bads_ecg` # before accepting them. # %% # For EEG, activation of muscles for postural control of the head and neck # contaminate the signal as well. This is usually not detected by MEG. For # an example showing how to remove these components, see :ref:`ex-muscle-ica`. # clean up memory before moving on del raw, ica, new_ica # %% # Selecting ICA components using template matching # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # When dealing with multiple subjects, it is also possible to manually select # an IC for exclusion on one subject, and then use that component as a # *template* for selecting which ICs to exclude from other subjects' data, # using `mne.preprocessing.corrmap` :footcite:`CamposViolaEtAl2009`. # The idea behind `~mne.preprocessing.corrmap` is that the artifact patterns # are similar # enough across subjects that corresponding ICs can be identified by # correlating the ICs from each ICA solution with a common template, and # picking the ICs with the highest correlation strength. # `~mne.preprocessing.corrmap` takes a list of ICA solutions, and a # ``template`` parameter that specifies which ICA object and which component # within it to use as a template. # # Since our sample dataset only contains data from one subject, we'll use a # different dataset with multiple subjects: the EEGBCI dataset # :footcite:`SchalkEtAl2004,GoldbergerEtAl2000`. The # dataset has 109 subjects, we'll just download one run (a left/right hand # movement task) from each of the first 4 subjects: raws = list() icas = list() for subj in range(4): # EEGBCI subjects are 1-indexed; run 3 is a left/right hand movement task fname = mne.datasets.eegbci.load_data(subj + 1, runs=[3])[0] raw = mne.io.read_raw_edf(fname).load_data().resample(50) # remove trailing `.` from channel names so we can set montage mne.datasets.eegbci.standardize(raw) raw.set_montage('standard_1005') # high-pass filter raw_filt = raw.copy().load_data().filter(l_freq=1., h_freq=None) # fit ICA, using low max_iter for speed ica = ICA(n_components=30, max_iter=100, random_state=97) ica.fit(raw_filt, verbose='error') raws.append(raw) icas.append(ica) # %% # Now let's run `~mne.preprocessing.corrmap`: # use the first subject as template; use Fpz as proxy for EOG raw = raws[0] ica = icas[0] eog_inds, eog_scores = ica.find_bads_eog(raw, ch_name='Fpz') corrmap(icas, template=(0, eog_inds[0])) # %% # The first figure shows the template map, while the second figure shows all # the maps that were considered a "match" for the template (including the # template itself). There is one match for each subject, but it's a good idea # to also double-check the ICA sources for each subject: for index, (ica, raw) in enumerate(zip(icas, raws)): with mne.viz.use_browser_backend('matplotlib'): fig = ica.plot_sources(raw, show_scrollbars=False) fig.subplots_adjust(top=0.9) # make space for title fig.suptitle('Subject {}'.format(index)) # %% # Notice that subjects 2 and 3 each seem to have *two* ICs that reflect ocular # activity (components ``ICA000`` and ``ICA002``), but only one was caught by # `~mne.preprocessing.corrmap`. Let's try setting the threshold manually: corrmap(icas, template=(0, eog_inds[0]), threshold=0.9) # %% # This time it found 2 ICs for each of subjects 2 and 3 (which is good). # At this point we'll re-run `~mne.preprocessing.corrmap` with # parameters ``label='blink', plot=False`` to *label* the ICs from each subject # that capture the blink artifacts (without plotting them again). corrmap(icas, template=(0, eog_inds[0]), threshold=0.9, label='blink', plot=False) print([ica.labels_ for ica in icas]) # %% # Notice that the first subject has 3 different labels for the IC at index 0: # "eog/0/Fpz", "eog", and "blink". The first two were added by # `~mne.preprocessing.ICA.find_bads_eog`; the "blink" label was added by the # last call to `~mne.preprocessing.corrmap`. Notice also that each subject has # at least one IC index labelled "blink", and subjects 2 and 3 each have two # components (0 and 2) labelled "blink" (consistent with the plot of IC sources # above). The ``labels_`` attribute of `~mne.preprocessing.ICA` objects can # also be manually edited to annotate the ICs with custom labels. They also # come in handy when plotting: icas[3].plot_components(picks=icas[3].labels_['blink']) icas[3].exclude = icas[3].labels_['blink'] icas[3].plot_sources(raws[3], show_scrollbars=False) # %% # As a final note, it is possible to extract ICs numerically using the # `~mne.preprocessing.ICA.get_components` method of # `~mne.preprocessing.ICA` objects. This will return a :class:`NumPy # array <numpy.ndarray>` that can be passed to # `~mne.preprocessing.corrmap` instead of the :class:`tuple` of # ``(subject_index, component_index)`` we passed before, and will yield the # same result: template_eog_component = icas[0].get_components()[:, eog_inds[0]] corrmap(icas, template=template_eog_component, threshold=0.9) print(template_eog_component) # %% # An advantage of using this numerical representation of an IC to capture a # particular artifact pattern is that it can be saved and used as a template # for future template-matching tasks using `~mne.preprocessing.corrmap` # without having to load or recompute the ICA solution that yielded the # template originally. Put another way, when the template is a NumPy array, the # `~mne.preprocessing.ICA` object containing the template does not need # to be in the list of ICAs provided to `~mne.preprocessing.corrmap`. # # .. LINKS # # .. _`blind source separation`: # https://en.wikipedia.org/wiki/Signal_separation # .. _`statistically independent`: # https://en.wikipedia.org/wiki/Independence_(probability_theory) # .. _`scikit-learn`: https://scikit-learn.org # .. _`random seed`: https://en.wikipedia.org/wiki/Random_seed # .. _`regular expression`: https://www.regular-expressions.info/ # .. _`qrs`: https://en.wikipedia.org/wiki/QRS_complex # .. _`this EEGLAB tutorial`: https://labeling.ucsd.edu/tutorial/labels # %% # Compute ICA components on Epochs # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ICA is now fit to epoched MEG data instead of the raw data. # We assume that the non-stationary EOG artifacts have already been removed. # The sources matching the ECG are automatically found and displayed. # # .. note:: # This example is computationally intensive, so it might take a few minutes # to complete. # # After reading the data, preprocessing consists of: # # - MEG channel selection # - 1-30 Hz band-pass filter # - epoching -0.2 to 0.5 seconds with respect to events # - rejection based on peak-to-peak amplitude # # Note that we don't baseline correct the epochs here – we'll do this after # cleaning with ICA is completed. Baseline correction before ICA is not # recommended by the MNE-Python developers, as it doesn't guarantee optimal # results. filt_raw.pick_types(meg=True, eeg=False, exclude='bads', stim=True).load_data() filt_raw.filter(1, 30, fir_design='firwin') # peak-to-peak amplitude rejection parameters reject = dict(mag=4e-12) # create longer and more epochs for more artifact exposure events = mne.find_events(filt_raw, stim_channel='STI 014') # don't baseline correct epochs epochs = mne.Epochs(filt_raw, events, event_id=None, tmin=-0.2, tmax=0.5, reject=reject, baseline=None) # %% # Fit ICA model using the FastICA algorithm, detect and plot components # explaining ECG artifacts. ica = ICA(n_components=15, method='fastica', max_iter="auto").fit(epochs) ecg_epochs = create_ecg_epochs(filt_raw, tmin=-.5, tmax=.5) ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, threshold='auto') ica.plot_components(ecg_inds) # %% # Plot the properties of the ECG components: ica.plot_properties(epochs, picks=ecg_inds) # %% # Plot the estimated sources of detected ECG related components: ica.plot_sources(filt_raw, picks=ecg_inds) # %% # References # ^^^^^^^^^^ # .. footbibliography::
bsd-3-clause
daydayuplo/gee
earth_enterprise/src/server/pywms/ogc/wmts/xml/capabilities.py
4
349901
#!/usr/bin/env python # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # # Generated Wed Aug 31 14:02:20 2011 by generateDS.py version 2.5a. # import sys import getopt import re as re_ etree_ = None Verbose_import_ = False ( XMLParser_import_none, XMLParser_import_lxml, XMLParser_import_elementtree ) = range(3) XMLParser_import_library = None try: # lxml from lxml import etree as etree_ XMLParser_import_library = XMLParser_import_lxml if Verbose_import_: print("running with lxml.etree") except ImportError: try: # cElementTree from Python 2.5+ import xml.etree.cElementTree as etree_ XMLParser_import_library = XMLParser_import_elementtree if Verbose_import_: print("running with cElementTree on Python 2.5+") except ImportError: try: # ElementTree from Python 2.5+ import xml.etree.ElementTree as etree_ XMLParser_import_library = XMLParser_import_elementtree if Verbose_import_: print("running with ElementTree on Python 2.5+") except ImportError: try: # normal cElementTree install import cElementTree as etree_ XMLParser_import_library = XMLParser_import_elementtree if Verbose_import_: print("running with cElementTree") except ImportError: try: # normal ElementTree install import elementtree.ElementTree as etree_ XMLParser_import_library = XMLParser_import_elementtree if Verbose_import_: print("running with ElementTree") except ImportError: raise ImportError("Failed to import ElementTree from any known place") def parsexml_(*args, **kwargs): if (XMLParser_import_library == XMLParser_import_lxml and 'parser' not in kwargs): # Use the lxml ElementTree compatible parser so that, e.g., # we ignore comments. kwargs['parser'] = etree_.ETCompatXMLParser() doc = etree_.parse(*args, **kwargs) return doc # # User methods # # Calls to the methods in these classes are generated by generateDS.py. # You can replace these methods by re-implementing the following class # in a module named generatedssuper.py. try: from generatedssuper import GeneratedsSuper except ImportError, exp: class GeneratedsSuper(object): def gds_format_string(self, input_data, input_name=''): return input_data def gds_validate_string(self, input_data, node, input_name=''): return input_data def gds_format_integer(self, input_data, input_name=''): return '%d' % input_data def gds_validate_integer(self, input_data, node, input_name=''): return input_data def gds_format_integer_list(self, input_data, input_name=''): return '%s' % input_data def gds_validate_integer_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError), exp: raise_parse_error(node, 'Requires sequence of integers') return input_data def gds_format_float(self, input_data, input_name=''): return '%f' % input_data def gds_validate_float(self, input_data, node, input_name=''): return input_data def gds_format_float_list(self, input_data, input_name=''): return '%s' % input_data def gds_validate_float_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError), exp: raise_parse_error(node, 'Requires sequence of floats') return input_data def gds_format_double(self, input_data, input_name=''): return '%e' % input_data def gds_validate_double(self, input_data, node, input_name=''): return input_data def gds_format_double_list(self, input_data, input_name=''): return '%s' % input_data def gds_validate_double_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: try: fvalue = float(value) except (TypeError, ValueError), exp: raise_parse_error(node, 'Requires sequence of doubles') return input_data def gds_format_boolean(self, input_data, input_name=''): return '%s' % input_data def gds_validate_boolean(self, input_data, node, input_name=''): return input_data def gds_format_boolean_list(self, input_data, input_name=''): return '%s' % input_data def gds_validate_boolean_list(self, input_data, node, input_name=''): values = input_data.split() for value in values: if value not in ('true', '1', 'false', '0', ): raise_parse_error(node, 'Requires sequence of booleans ("true", "1", "false", "0")') return input_data def gds_str_lower(self, instring): return instring.lower() def get_path_(self, node): path_list = [] self.get_path_list_(node, path_list) path_list.reverse() path = '/'.join(path_list) return path Tag_strip_pattern_ = re_.compile(r'\{.*\}') def get_path_list_(self, node, path_list): if node is None: return tag = GeneratedsSuper.Tag_strip_pattern_.sub('', node.tag) if tag: path_list.append(tag) self.get_path_list_(node.getparent(), path_list) # # If you have installed IPython you can uncomment and use the following. # IPython is available from http://ipython.scipy.org/. # ## from IPython.Shell import IPShellEmbed ## args = '' ## ipshell = IPShellEmbed(args, ## banner = 'Dropping into IPython', ## exit_msg = 'Leaving Interpreter, back to program.') # Then use the following line where and when you want to drop into the # IPython shell: # ipshell('<some message> -- Entering ipshell.\nHit Ctrl-D to exit') # # Globals # ExternalEncoding = 'ascii' Tag_pattern_ = re_.compile(r'({.*})?(.*)') STRING_CLEANUP_PAT = re_.compile(r"[\n\r\s]+") # # Support/utility functions. # def showIndent(outfile, level): for idx in range(level): outfile.write(' ') def quote_xml(inStr): if not inStr: return '' s1 = (isinstance(inStr, basestring) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') return s1 def quote_attrib(inStr): s1 = (isinstance(inStr, basestring) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') if '"' in s1: if "'" in s1: s1 = '"%s"' % s1.replace('"', "&quot;") else: s1 = "'%s'" % s1 else: s1 = '"%s"' % s1 return s1 def quote_python(inStr): s1 = inStr if s1.find("'") == -1: if s1.find('\n') == -1: return "'%s'" % s1 else: return "'''%s'''" % s1 else: if s1.find('"') != -1: s1 = s1.replace('"', '\\"') if s1.find('\n') == -1: return '"%s"' % s1 else: return '"""%s"""' % s1 def get_all_text_(node): if node.text is not None: text = node.text else: text = '' for child in node: if child.tail is not None: text += child.tail return text def find_attr_value_(attr_name, node): attrs = node.attrib # First try with no namespace. value = attrs.get(attr_name) if value is None: # Now try the other possible namespaces. namespaces = node.nsmap.itervalues() for namespace in namespaces: value = attrs.get('{%s}%s' % (namespace, attr_name, )) if value is not None: break return value class GDSParseError(Exception): pass def raise_parse_error(node, msg): if XMLParser_import_library == XMLParser_import_lxml: msg = '%s (element %s/line %d)' % (msg, node.tag, node.sourceline, ) else: msg = '%s (element %s)' % (msg, node.tag, ) raise GDSParseError(msg) class MixedContainer: # Constants for category: CategoryNone = 0 CategoryText = 1 CategorySimple = 2 CategoryComplex = 3 # Constants for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export(outfile, level, namespace,name) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % (self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % (self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % (self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % (self.name, self.value, self.name)) def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write('model_.MixedContainer(%d, %d, "%s", "%s"),\n' % \ (self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write('model_.MixedContainer(%d, %d, "%s", "%s"),\n' % \ (self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write('model_.MixedContainer(%d, %d, "%s",\n' % \ (self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0): self.name = name self.data_type = data_type self.container = container def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class TileMatrixSetLink(GeneratedsSuper): """Metadata about the TileMatrixSet reference.""" subclass = None superclass = None def __init__(self, TileMatrixSet=None, TileMatrixSetLimits=None): self.TileMatrixSet = TileMatrixSet self.TileMatrixSetLimits = TileMatrixSetLimits def factory(*args_, **kwargs_): if TileMatrixSetLink.subclass: return TileMatrixSetLink.subclass(*args_, **kwargs_) else: return TileMatrixSetLink(*args_, **kwargs_) factory = staticmethod(factory) def get_TileMatrixSet(self): return self.TileMatrixSet def set_TileMatrixSet(self, TileMatrixSet): self.TileMatrixSet = TileMatrixSet def get_TileMatrixSetLimits(self): return self.TileMatrixSetLimits def set_TileMatrixSetLimits(self, TileMatrixSetLimits): self.TileMatrixSetLimits = TileMatrixSetLimits def export(self, outfile, level, namespace_='', name_='TileMatrixSetLink', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TileMatrixSetLink') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TileMatrixSetLink'): pass def exportChildren(self, outfile, level, namespace_='', name_='TileMatrixSetLink', fromsubclass_=False): if self.TileMatrixSet is not None: showIndent(outfile, level) outfile.write('<%sTileMatrixSet>%s</%sTileMatrixSet>\n' % (namespace_, self.gds_format_string(quote_xml(self.TileMatrixSet).encode(ExternalEncoding), input_name='TileMatrixSet'), namespace_)) if self.TileMatrixSetLimits: self.TileMatrixSetLimits.export(outfile, level, namespace_, name_='TileMatrixSetLimits') def hasContent_(self): if ( self.TileMatrixSet is not None or self.TileMatrixSetLimits is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='TileMatrixSetLink'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.TileMatrixSet is not None: showIndent(outfile, level) outfile.write('TileMatrixSet=%s,\n' % quote_python(self.TileMatrixSet).encode(ExternalEncoding)) if self.TileMatrixSetLimits is not None: showIndent(outfile, level) outfile.write('TileMatrixSetLimits=model_.TileMatrixSetLimits(\n') self.TileMatrixSetLimits.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'TileMatrixSet': TileMatrixSet_ = child_.text TileMatrixSet_ = self.gds_validate_string(TileMatrixSet_, node, 'TileMatrixSet') self.TileMatrixSet = TileMatrixSet_ elif nodeName_ == 'TileMatrixSetLimits': obj_ = TileMatrixSetLimits.factory() obj_.build(child_) self.set_TileMatrixSetLimits(obj_) # end class TileMatrixSetLink class TileMatrixSetLimits(GeneratedsSuper): """Metadata about a the limits of the tile row and tile col indices.""" subclass = None superclass = None def __init__(self, TileMatrixLimits=None): if TileMatrixLimits is None: self.TileMatrixLimits = [] else: self.TileMatrixLimits = TileMatrixLimits def factory(*args_, **kwargs_): if TileMatrixSetLimits.subclass: return TileMatrixSetLimits.subclass(*args_, **kwargs_) else: return TileMatrixSetLimits(*args_, **kwargs_) factory = staticmethod(factory) def get_TileMatrixLimits(self): return self.TileMatrixLimits def set_TileMatrixLimits(self, TileMatrixLimits): self.TileMatrixLimits = TileMatrixLimits def add_TileMatrixLimits(self, value): self.TileMatrixLimits.append(value) def insert_TileMatrixLimits(self, index, value): self.TileMatrixLimits[index] = value def export(self, outfile, level, namespace_='', name_='TileMatrixSetLimits', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TileMatrixSetLimits') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TileMatrixSetLimits'): pass def exportChildren(self, outfile, level, namespace_='', name_='TileMatrixSetLimits', fromsubclass_=False): for TileMatrixLimits_ in self.TileMatrixLimits: TileMatrixLimits_.export(outfile, level, namespace_, name_='TileMatrixLimits') def hasContent_(self): if ( self.TileMatrixLimits ): return True else: return False def exportLiteral(self, outfile, level, name_='TileMatrixSetLimits'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('TileMatrixLimits=[\n') level += 1 for TileMatrixLimits_ in self.TileMatrixLimits: showIndent(outfile, level) outfile.write('model_.TileMatrixLimits(\n') TileMatrixLimits_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'TileMatrixLimits': obj_ = TileMatrixLimits.factory() obj_.build(child_) self.TileMatrixLimits.append(obj_) # end class TileMatrixSetLimits class TileMatrixLimits(GeneratedsSuper): """Metadata describing the limits of a TileMatrix for this layer.""" subclass = None superclass = None def __init__(self, TileMatrix=None, MinTileRow=None, MaxTileRow=None, MinTileCol=None, MaxTileCol=None): self.TileMatrix = TileMatrix self.MinTileRow = MinTileRow self.MaxTileRow = MaxTileRow self.MinTileCol = MinTileCol self.MaxTileCol = MaxTileCol def factory(*args_, **kwargs_): if TileMatrixLimits.subclass: return TileMatrixLimits.subclass(*args_, **kwargs_) else: return TileMatrixLimits(*args_, **kwargs_) factory = staticmethod(factory) def get_TileMatrix(self): return self.TileMatrix def set_TileMatrix(self, TileMatrix): self.TileMatrix = TileMatrix def get_MinTileRow(self): return self.MinTileRow def set_MinTileRow(self, MinTileRow): self.MinTileRow = MinTileRow def get_MaxTileRow(self): return self.MaxTileRow def set_MaxTileRow(self, MaxTileRow): self.MaxTileRow = MaxTileRow def get_MinTileCol(self): return self.MinTileCol def set_MinTileCol(self, MinTileCol): self.MinTileCol = MinTileCol def get_MaxTileCol(self): return self.MaxTileCol def set_MaxTileCol(self, MaxTileCol): self.MaxTileCol = MaxTileCol def export(self, outfile, level, namespace_='', name_='TileMatrixLimits', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TileMatrixLimits') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TileMatrixLimits'): pass def exportChildren(self, outfile, level, namespace_='', name_='TileMatrixLimits', fromsubclass_=False): if self.TileMatrix is not None: showIndent(outfile, level) outfile.write('<%sTileMatrix>%s</%sTileMatrix>\n' % (namespace_, self.gds_format_string(quote_xml(self.TileMatrix).encode(ExternalEncoding), input_name='TileMatrix'), namespace_)) if self.MinTileRow is not None: showIndent(outfile, level) outfile.write('<%sMinTileRow>%s</%sMinTileRow>\n' % (namespace_, self.gds_format_integer(self.MinTileRow, input_name='MinTileRow'), namespace_)) if self.MaxTileRow is not None: showIndent(outfile, level) outfile.write('<%sMaxTileRow>%s</%sMaxTileRow>\n' % (namespace_, self.gds_format_integer(self.MaxTileRow, input_name='MaxTileRow'), namespace_)) if self.MinTileCol is not None: showIndent(outfile, level) outfile.write('<%sMinTileCol>%s</%sMinTileCol>\n' % (namespace_, self.gds_format_integer(self.MinTileCol, input_name='MinTileCol'), namespace_)) if self.MaxTileCol is not None: showIndent(outfile, level) outfile.write('<%sMaxTileCol>%s</%sMaxTileCol>\n' % (namespace_, self.gds_format_integer(self.MaxTileCol, input_name='MaxTileCol'), namespace_)) def hasContent_(self): if ( self.TileMatrix is not None or self.MinTileRow is not None or self.MaxTileRow is not None or self.MinTileCol is not None or self.MaxTileCol is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='TileMatrixLimits'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.TileMatrix is not None: showIndent(outfile, level) outfile.write('TileMatrix=%s,\n' % quote_python(self.TileMatrix).encode(ExternalEncoding)) if self.MinTileRow is not None: showIndent(outfile, level) outfile.write('MinTileRow=%d,\n' % self.MinTileRow) if self.MaxTileRow is not None: showIndent(outfile, level) outfile.write('MaxTileRow=%d,\n' % self.MaxTileRow) if self.MinTileCol is not None: showIndent(outfile, level) outfile.write('MinTileCol=%d,\n' % self.MinTileCol) if self.MaxTileCol is not None: showIndent(outfile, level) outfile.write('MaxTileCol=%d,\n' % self.MaxTileCol) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'TileMatrix': TileMatrix_ = child_.text TileMatrix_ = self.gds_validate_string(TileMatrix_, node, 'TileMatrix') self.TileMatrix = TileMatrix_ elif nodeName_ == 'MinTileRow': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MinTileRow') self.MinTileRow = ival_ elif nodeName_ == 'MaxTileRow': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MaxTileRow') self.MaxTileRow = ival_ elif nodeName_ == 'MinTileCol': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MinTileCol') self.MinTileCol = ival_ elif nodeName_ == 'MaxTileCol': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MaxTileCol') self.MaxTileCol = ival_ # end class TileMatrixLimits class URLTemplateType(GeneratedsSuper): """Format of the resource representation that can be retrieved one resolved the URL template.Resource type to be retrieved. It can only be "tile" or "FeatureInfo"URL template. A template processor will be applied to substitute some variables between {} for their values and get a URL to a resource. We cound not use a anyURI type (that conforms the character restrictions specified in RFC2396 and excludes '{' '}' characters in some XML parsers) because this attribute must accept the '{' '}' caracters.""" subclass = None superclass = None def __init__(self, resourceType=None, template=None, format=None, valueOf_=None): self.resourceType = _cast(None, resourceType) self.template = _cast(None, template) self.format = _cast(None, format) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if URLTemplateType.subclass: return URLTemplateType.subclass(*args_, **kwargs_) else: return URLTemplateType(*args_, **kwargs_) factory = staticmethod(factory) def get_resourceType(self): return self.resourceType def set_resourceType(self, resourceType): self.resourceType = resourceType def get_template(self): return self.template def set_template(self, template): self.template = template def get_format(self): return self.format def set_format(self, format): self.format = format def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='URLTemplateType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='URLTemplateType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='URLTemplateType'): if self.resourceType is not None and 'resourceType' not in already_processed: already_processed.append('resourceType') outfile.write(' resourceType=%s' % (self.gds_format_string(quote_attrib(self.resourceType).encode(ExternalEncoding), input_name='resourceType'), )) if self.template is not None and 'template' not in already_processed: already_processed.append('template') outfile.write(' template=%s' % (self.gds_format_string(quote_attrib(self.template).encode(ExternalEncoding), input_name='template'), )) if self.format is not None and 'format' not in already_processed: already_processed.append('format') outfile.write(' format=%s' % (quote_attrib(self.format), )) def exportChildren(self, outfile, level, namespace_='', name_='URLTemplateType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='URLTemplateType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.resourceType is not None and 'resourceType' not in already_processed: already_processed.append('resourceType') showIndent(outfile, level) outfile.write('resourceType = "%s",\n' % (self.resourceType,)) if self.template is not None and 'template' not in already_processed: already_processed.append('template') showIndent(outfile, level) outfile.write('template = "%s",\n' % (self.template,)) if self.format is not None and 'format' not in already_processed: already_processed.append('format') showIndent(outfile, level) outfile.write('format = %s,\n' % (self.format,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('resourceType', node) if value is not None and 'resourceType' not in already_processed: already_processed.append('resourceType') self.resourceType = value value = find_attr_value_('template', node) if value is not None and 'template' not in already_processed: already_processed.append('template') self.template = value value = find_attr_value_('format', node) if value is not None and 'format' not in already_processed: already_processed.append('format') self.format = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class URLTemplateType class Themes(GeneratedsSuper): """Provides a set of hierarchical themes that the client can use to categorize the layers by.""" subclass = None superclass = None def __init__(self, Theme=None): if Theme is None: self.Theme = [] else: self.Theme = Theme def factory(*args_, **kwargs_): if Themes.subclass: return Themes.subclass(*args_, **kwargs_) else: return Themes(*args_, **kwargs_) factory = staticmethod(factory) def get_Theme(self): return self.Theme def set_Theme(self, Theme): self.Theme = Theme def add_Theme(self, value): self.Theme.append(value) def insert_Theme(self, index, value): self.Theme[index] = value def export(self, outfile, level, namespace_='', name_='Themes', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Themes') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Themes'): pass def exportChildren(self, outfile, level, namespace_='', name_='Themes', fromsubclass_=False): for Theme_ in self.Theme: Theme_.export(outfile, level, namespace_, name_='Theme') def hasContent_(self): if ( self.Theme ): return True else: return False def exportLiteral(self, outfile, level, name_='Themes'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Theme=[\n') level += 1 for Theme_ in self.Theme: showIndent(outfile, level) outfile.write('model_.Theme(\n') Theme_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Theme': obj_ = Theme.factory() obj_.build(child_) self.Theme.append(obj_) # end class Themes class Resource(GeneratedsSuper): """XML encoded GetResourceByID operation response. The complexType used by this element shall be specified by each specific OWS.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if Resource.subclass: return Resource.subclass(*args_, **kwargs_) else: return Resource(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='Resource', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Resource') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Resource'): pass def exportChildren(self, outfile, level, namespace_='', name_='Resource', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='Resource'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class Resource class GetResourceByIdType(GeneratedsSuper): """Request to a service to perform the GetResourceByID operation. This operation allows a client to retrieve one or more identified resources, including datasets and resources that describe datasets or parameters. In this XML encoding, no "request" parameter is included, since the element name specifies the specific operation.""" subclass = None superclass = None def __init__(self, version=None, service=None, ResourceID=None, OutputFormat=None): self.version = _cast(None, version) self.service = _cast(None, service) if ResourceID is None: self.ResourceID = [] else: self.ResourceID = ResourceID self.OutputFormat = OutputFormat def factory(*args_, **kwargs_): if GetResourceByIdType.subclass: return GetResourceByIdType.subclass(*args_, **kwargs_) else: return GetResourceByIdType(*args_, **kwargs_) factory = staticmethod(factory) def get_ResourceID(self): return self.ResourceID def set_ResourceID(self, ResourceID): self.ResourceID = ResourceID def add_ResourceID(self, value): self.ResourceID.append(value) def insert_ResourceID(self, index, value): self.ResourceID[index] = value def get_OutputFormat(self): return self.OutputFormat def set_OutputFormat(self, OutputFormat): self.OutputFormat = OutputFormat def get_version(self): return self.version def set_version(self, version): self.version = version def get_service(self): return self.service def set_service(self, service): self.service = service def export(self, outfile, level, namespace_='', name_='GetResourceByIdType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='GetResourceByIdType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='GetResourceByIdType'): if self.version is not None and 'version' not in already_processed: already_processed.append('version') outfile.write(' version=%s' % (quote_attrib(self.version), )) if self.service is not None and 'service' not in already_processed: already_processed.append('service') outfile.write(' service=%s' % (quote_attrib(self.service), )) def exportChildren(self, outfile, level, namespace_='', name_='GetResourceByIdType', fromsubclass_=False): for ResourceID_ in self.ResourceID: showIndent(outfile, level) outfile.write('<%sResourceID>%s</%sResourceID>\n' % (namespace_, self.gds_format_string(quote_xml(ResourceID_).encode(ExternalEncoding), input_name='ResourceID'), namespace_)) if self.OutputFormat is not None: showIndent(outfile, level) outfile.write('<%sOutputFormat>%s</%sOutputFormat>\n' % (namespace_, self.gds_format_string(quote_xml(self.OutputFormat).encode(ExternalEncoding), input_name='OutputFormat'), namespace_)) def hasContent_(self): if ( self.ResourceID or self.OutputFormat is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='GetResourceByIdType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.version is not None and 'version' not in already_processed: already_processed.append('version') showIndent(outfile, level) outfile.write('version = %s,\n' % (self.version,)) if self.service is not None and 'service' not in already_processed: already_processed.append('service') showIndent(outfile, level) outfile.write('service = %s,\n' % (self.service,)) def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('ResourceID=[\n') level += 1 for ResourceID_ in self.ResourceID: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(ResourceID_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.OutputFormat is not None: showIndent(outfile, level) outfile.write('OutputFormat=%s,\n' % quote_python(self.OutputFormat).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('version', node) if value is not None and 'version' not in already_processed: already_processed.append('version') self.version = value value = find_attr_value_('service', node) if value is not None and 'service' not in already_processed: already_processed.append('service') self.service = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ResourceID': ResourceID_ = child_.text ResourceID_ = self.gds_validate_string(ResourceID_, node, 'ResourceID') self.ResourceID.append(ResourceID_) elif nodeName_ == 'OutputFormat': OutputFormat_ = child_.text OutputFormat_ = self.gds_validate_string(OutputFormat_, node, 'OutputFormat') self.OutputFormat = OutputFormat_ # end class GetResourceByIdType class DescriptionType(GeneratedsSuper): """Human-readable descriptive information for the object it is included within. This type shall be extended if needed for specific OWS use to include additional metadata for each type of information. This type shall not be restricted for a specific OWS to change the multiplicity (or optionality) of some elements. If the xml:lang attribute is not included in a Title, Abstract or Keyword element, then no language is specified for that element unless specified by another means. All Title, Abstract and Keyword elements in the same Description that share the same xml:lang attribute value represent the description of the parent object in that language. Multiple Title or Abstract elements shall not exist in the same Description with the same xml:lang attribute value unless otherwise specified.""" subclass = None superclass = None def __init__(self, Title=None, Abstract=None, Keywords=None): if Title is None: self.Title = [] else: self.Title = Title if Abstract is None: self.Abstract = [] else: self.Abstract = Abstract if Keywords is None: self.Keywords = [] else: self.Keywords = Keywords def factory(*args_, **kwargs_): if DescriptionType.subclass: return DescriptionType.subclass(*args_, **kwargs_) else: return DescriptionType(*args_, **kwargs_) factory = staticmethod(factory) def get_Title(self): return self.Title def set_Title(self, Title): self.Title = Title def add_Title(self, value): self.Title.append(value) def insert_Title(self, index, value): self.Title[index] = value def get_Abstract(self): return self.Abstract def set_Abstract(self, Abstract): self.Abstract = Abstract def add_Abstract(self, value): self.Abstract.append(value) def insert_Abstract(self, index, value): self.Abstract[index] = value def get_Keywords(self): return self.Keywords def set_Keywords(self, Keywords): self.Keywords = Keywords def add_Keywords(self, value): self.Keywords.append(value) def insert_Keywords(self, index, value): self.Keywords[index] = value def export(self, outfile, level, namespace_='', name_='DescriptionType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='DescriptionType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='DescriptionType'): pass def exportChildren(self, outfile, level, namespace_='', name_='DescriptionType', fromsubclass_=False): for Title_ in self.Title: Title_.export(outfile, level, namespace_, name_='Title') for Abstract_ in self.Abstract: Abstract_.export(outfile, level, namespace_, name_='Abstract') for Keywords_ in self.Keywords: Keywords_.export(outfile, level, namespace_, name_='Keywords') def hasContent_(self): if ( self.Title or self.Abstract or self.Keywords ): return True else: return False def exportLiteral(self, outfile, level, name_='DescriptionType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Title=[\n') level += 1 for Title_ in self.Title: showIndent(outfile, level) outfile.write('model_.Title(\n') Title_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Abstract=[\n') level += 1 for Abstract_ in self.Abstract: showIndent(outfile, level) outfile.write('model_.Abstract(\n') Abstract_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Keywords=[\n') level += 1 for Keywords_ in self.Keywords: showIndent(outfile, level) outfile.write('model_.Keywords(\n') Keywords_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Title': obj_ = LanguageStringType.factory() obj_.build(child_) self.Title.append(obj_) elif nodeName_ == 'Abstract': obj_ = LanguageStringType.factory() obj_.build(child_) self.Abstract.append(obj_) elif nodeName_ == 'Keywords': obj_ = KeywordsType.factory() obj_.build(child_) self.Keywords.append(obj_) # end class DescriptionType class BasicIdentificationType(DescriptionType): """Basic metadata identifying and describing a set of data.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, Metadata=None): super(BasicIdentificationType, self).__init__(Title, Abstract, Keywords, ) self.Identifier = Identifier if Metadata is None: self.Metadata = [] else: self.Metadata = Metadata def factory(*args_, **kwargs_): if BasicIdentificationType.subclass: return BasicIdentificationType.subclass(*args_, **kwargs_) else: return BasicIdentificationType(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_Metadata(self): return self.Metadata def set_Metadata(self, Metadata): self.Metadata = Metadata def add_Metadata(self, value): self.Metadata.append(value) def insert_Metadata(self, index, value): self.Metadata[index] = value def export(self, outfile, level, namespace_='', name_='BasicIdentificationType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='BasicIdentificationType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="BasicIdentificationType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='BasicIdentificationType'): super(BasicIdentificationType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='BasicIdentificationType') def exportChildren(self, outfile, level, namespace_='', name_='BasicIdentificationType', fromsubclass_=False): super(BasicIdentificationType, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier') for Metadata_ in self.Metadata: Metadata_.export(outfile, level, namespace_, name_='Metadata') def hasContent_(self): if ( self.Identifier is not None or self.Metadata or super(BasicIdentificationType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='BasicIdentificationType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(BasicIdentificationType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(BasicIdentificationType, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('Metadata=[\n') level += 1 for Metadata_ in self.Metadata: showIndent(outfile, level) outfile.write('model_.Metadata(\n') Metadata_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(BasicIdentificationType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'Metadata': obj_ = MetadataType.factory() obj_.build(child_) self.Metadata.append(obj_) super(BasicIdentificationType, self).buildChildren(child_, node, nodeName_, True) # end class BasicIdentificationType class IdentificationType(BasicIdentificationType): """Extended metadata identifying and describing a set of data. This type shall be extended if needed for each specific OWS to include additional metadata for each type of dataset. If needed, this type should first be restricted for each specific OWS to change the multiplicity (or optionality) of some elements.""" subclass = None superclass = BasicIdentificationType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, Metadata=None, BoundingBox=None, OutputFormat=None, AvailableCRS=None): super(IdentificationType, self).__init__(Title, Abstract, Keywords, Identifier, Metadata, ) if BoundingBox is None: self.BoundingBox = [] else: self.BoundingBox = BoundingBox if OutputFormat is None: self.OutputFormat = [] else: self.OutputFormat = OutputFormat if AvailableCRS is None: self.AvailableCRS = [] else: self.AvailableCRS = AvailableCRS def factory(*args_, **kwargs_): if IdentificationType.subclass: return IdentificationType.subclass(*args_, **kwargs_) else: return IdentificationType(*args_, **kwargs_) factory = staticmethod(factory) def get_BoundingBox(self): return self.BoundingBox def set_BoundingBox(self, BoundingBox): self.BoundingBox = BoundingBox def add_BoundingBox(self, value): self.BoundingBox.append(value) def insert_BoundingBox(self, index, value): self.BoundingBox[index] = value def get_OutputFormat(self): return self.OutputFormat def set_OutputFormat(self, OutputFormat): self.OutputFormat = OutputFormat def add_OutputFormat(self, value): self.OutputFormat.append(value) def insert_OutputFormat(self, index, value): self.OutputFormat[index] = value def get_AvailableCRS(self): return self.AvailableCRS def set_AvailableCRS(self, AvailableCRS): self.AvailableCRS = AvailableCRS def add_AvailableCRS(self, value): self.AvailableCRS.append(value) def insert_AvailableCRS(self, index, value): self.AvailableCRS[index] = value def export(self, outfile, level, namespace_='', name_='IdentificationType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='IdentificationType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="IdentificationType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='IdentificationType'): super(IdentificationType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='IdentificationType') def exportChildren(self, outfile, level, namespace_='', name_='IdentificationType', fromsubclass_=False): super(IdentificationType, self).exportChildren(outfile, level, namespace_, name_, True) for BoundingBox_ in self.BoundingBox: BoundingBox_.export(outfile, level, namespace_, name_='BoundingBox') for OutputFormat_ in self.OutputFormat: showIndent(outfile, level) outfile.write('<%sOutputFormat>%s</%sOutputFormat>\n' % (namespace_, self.gds_format_string(quote_xml(OutputFormat_).encode(ExternalEncoding), input_name='OutputFormat'), namespace_)) for AvailableCRS_ in self.AvailableCRS: showIndent(outfile, level) outfile.write('<%sAvailableCRS>%s</%sAvailableCRS>\n' % (namespace_, self.gds_format_string(quote_xml(AvailableCRS_).encode(ExternalEncoding), input_name='AvailableCRS'), namespace_)) def hasContent_(self): if ( self.BoundingBox or self.OutputFormat or self.AvailableCRS or super(IdentificationType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='IdentificationType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(IdentificationType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(IdentificationType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('BoundingBox=[\n') level += 1 for BoundingBox_ in self.BoundingBox: showIndent(outfile, level) outfile.write('model_.BoundingBox(\n') BoundingBox_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('OutputFormat=[\n') level += 1 for OutputFormat_ in self.OutputFormat: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(OutputFormat_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('AvailableCRS=[\n') level += 1 for AvailableCRS_ in self.AvailableCRS: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(AvailableCRS_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(IdentificationType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'BoundingBox': obj_ = BoundingBoxType.factory() obj_.build(child_) self.BoundingBox.append(obj_) elif nodeName_ == 'OutputFormat': OutputFormat_ = child_.text OutputFormat_ = self.gds_validate_string(OutputFormat_, node, 'OutputFormat') self.OutputFormat.append(OutputFormat_) elif nodeName_ == 'AvailableCRS': AvailableCRS_ = child_.text AvailableCRS_ = self.gds_validate_string(AvailableCRS_, node, 'AvailableCRS') self.AvailableCRS.append(AvailableCRS_) super(IdentificationType, self).buildChildren(child_, node, nodeName_, True) # end class IdentificationType class MetadataType(GeneratedsSuper): """This element either references or contains more metadata about the element that includes this element. To reference metadata stored remotely, at least the xlinks:href attribute in xlink:simpleLink shall be included. Either at least one of the attributes in xlink:simpleLink or a substitute for the AbstractMetaData element shall be included, but not both. An Implementation Specification can restrict the contents of this element to always be a reference or always contain metadata. (Informative: This element was adapted from the metaDataProperty element in GML 3.0.) Reference to metadata recorded elsewhere, either external to this XML document or within it. Whenever practical, the xlink:href attribute with type anyURI should include a URL from which this metadata can be electronically retrieved. Optional reference to the aspect of the element which includes this "metadata" element that this metadata provides more information about.""" subclass = None superclass = None def __init__(self, about=None, title=None, show=None, actuate=None, href=None, role=None, arcrole=None, type_=None, AbstractMetaData=None): self.about = _cast(None, about) self.title = _cast(None, title) self.show = _cast(None, show) self.actuate = _cast(None, actuate) self.href = _cast(None, href) self.role = _cast(None, role) self.arcrole = _cast(None, arcrole) self.type_ = _cast(None, type_) self.AbstractMetaData = AbstractMetaData def factory(*args_, **kwargs_): if MetadataType.subclass: return MetadataType.subclass(*args_, **kwargs_) else: return MetadataType(*args_, **kwargs_) factory = staticmethod(factory) def get_AbstractMetaData(self): return self.AbstractMetaData def set_AbstractMetaData(self, AbstractMetaData): self.AbstractMetaData = AbstractMetaData def get_about(self): return self.about def set_about(self, about): self.about = about def get_title(self): return self.title def set_title(self, title): self.title = title def get_show(self): return self.show def set_show(self, show): self.show = show def get_actuate(self): return self.actuate def set_actuate(self, actuate): self.actuate = actuate def get_href(self): return self.href def set_href(self, href): self.href = href def get_role(self): return self.role def set_role(self, role): self.role = role def get_arcrole(self): return self.arcrole def set_arcrole(self, arcrole): self.arcrole = arcrole def get_type(self): return self.type_ def set_type(self, type_): self.type_ = type_ def export(self, outfile, level, namespace_='', name_='MetadataType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='MetadataType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='MetadataType'): if self.about is not None and 'about' not in already_processed: already_processed.append('about') outfile.write(' about=%s' % (self.gds_format_string(quote_attrib(self.about).encode(ExternalEncoding), input_name='about'), )) if self.title is not None and 'title' not in already_processed: already_processed.append('title') outfile.write(' title=%s' % (self.gds_format_string(quote_attrib(self.title).encode(ExternalEncoding), input_name='title'), )) if self.show is not None and 'show' not in already_processed: already_processed.append('show') outfile.write(' show=%s' % (self.gds_format_string(quote_attrib(self.show).encode(ExternalEncoding), input_name='show'), )) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') outfile.write(' actuate=%s' % (self.gds_format_string(quote_attrib(self.actuate).encode(ExternalEncoding), input_name='actuate'), )) if self.href is not None and 'href' not in already_processed: already_processed.append('href') outfile.write(' href=%s' % (self.gds_format_string(quote_attrib(self.href).encode(ExternalEncoding), input_name='href'), )) if self.role is not None and 'role' not in already_processed: already_processed.append('role') outfile.write(' role=%s' % (self.gds_format_string(quote_attrib(self.role).encode(ExternalEncoding), input_name='role'), )) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') outfile.write(' arcrole=%s' % (self.gds_format_string(quote_attrib(self.arcrole).encode(ExternalEncoding), input_name='arcrole'), )) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') outfile.write(' type=%s' % (self.gds_format_string(quote_attrib(self.type_).encode(ExternalEncoding), input_name='type'), )) def exportChildren(self, outfile, level, namespace_='', name_='MetadataType', fromsubclass_=False): AbstractMetaData_.export(outfile, level, namespace_, name_='AbstractMetaData') def hasContent_(self): if ( self.AbstractMetaData is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='MetadataType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.about is not None and 'about' not in already_processed: already_processed.append('about') showIndent(outfile, level) outfile.write('about = "%s",\n' % (self.about,)) if self.title is not None and 'title' not in already_processed: already_processed.append('title') showIndent(outfile, level) outfile.write('title = "%s",\n' % (self.title,)) if self.show is not None and 'show' not in already_processed: already_processed.append('show') showIndent(outfile, level) outfile.write('show = "%s",\n' % (self.show,)) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') showIndent(outfile, level) outfile.write('actuate = "%s",\n' % (self.actuate,)) if self.href is not None and 'href' not in already_processed: already_processed.append('href') showIndent(outfile, level) outfile.write('href = "%s",\n' % (self.href,)) if self.role is not None and 'role' not in already_processed: already_processed.append('role') showIndent(outfile, level) outfile.write('role = "%s",\n' % (self.role,)) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') showIndent(outfile, level) outfile.write('arcrole = "%s",\n' % (self.arcrole,)) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') showIndent(outfile, level) outfile.write('type_ = "%s",\n' % (self.type_,)) def exportLiteralChildren(self, outfile, level, name_): if self.AbstractMetaData is not None: showIndent(outfile, level) outfile.write('AbstractMetaData=model_.AbstractMetaData(\n') self.AbstractMetaData.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('about', node) if value is not None and 'about' not in already_processed: already_processed.append('about') self.about = value value = find_attr_value_('title', node) if value is not None and 'title' not in already_processed: already_processed.append('title') self.title = value value = find_attr_value_('show', node) if value is not None and 'show' not in already_processed: already_processed.append('show') self.show = value value = find_attr_value_('actuate', node) if value is not None and 'actuate' not in already_processed: already_processed.append('actuate') self.actuate = value value = find_attr_value_('href', node) if value is not None and 'href' not in already_processed: already_processed.append('href') self.href = value value = find_attr_value_('role', node) if value is not None and 'role' not in already_processed: already_processed.append('role') self.role = value value = find_attr_value_('arcrole', node) if value is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') self.arcrole = value value = find_attr_value_('type', node) if value is not None and 'type' not in already_processed: already_processed.append('type') self.type_ = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'AbstractMetaData': type_name_ = child_.attrib.get('{http://www.w3.org/2001/XMLSchema-instance}type') if type_name_ is None: type_name_ = child_.attrib.get('type') if type_name_ is not None: type_names_ = type_name_.split(':') if len(type_names_) == 1: type_name_ = type_names_[0] else: type_name_ = type_names_[1] class_ = globals()[type_name_] obj_ = class_.factory() obj_.build(child_) else: raise NotImplementedError( 'Class not implemented for <AbstractMetaData> element') self.set_AbstractMetaData(obj_) # end class MetadataType class AbstractMetaData(GeneratedsSuper): """Abstract element containing more metadata about the element that includes the containing "metadata" element. A specific server implementation, or an Implementation Specification, can define concrete elements in the AbstractMetaData substitution group.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if AbstractMetaData.subclass: return AbstractMetaData.subclass(*args_, **kwargs_) else: return AbstractMetaData(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='AbstractMetaData', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AbstractMetaData') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AbstractMetaData'): pass def exportChildren(self, outfile, level, namespace_='', name_='AbstractMetaData', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='AbstractMetaData'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class AbstractMetaData class BoundingBoxType(GeneratedsSuper): """XML encoded minimum rectangular bounding box (or region) parameter, surrounding all the associated data. This type is adapted from the EnvelopeType of GML 3.1, with modified contents and documentation for encoding a MINIMUM size box SURROUNDING all associated data. Usually references the definition of a CRS, as specified in [OGC Topic 2]. Such a CRS definition can be XML encoded using the gml:CoordinateReferenceSystemType in [GML 3.1]. For well known references, it is not required that a CRS definition exist at the location the URI points to. If no anyURI value is included, the applicable CRS must be either: a) Specified outside the bounding box, but inside a data structure that includes this bounding box, as specified for a specific OWS use of this bounding box type. b) Fixed and specified in the Implementation Specification for a specific OWS use of the bounding box type. The number of dimensions in this CRS (the length of a coordinate sequence in this use of the PositionType). This number is specified by the CRS definition, but can also be specified here.""" subclass = None superclass = None def __init__(self, crs=None, dimensions=None, LowerCorner=None, UpperCorner=None): self.crs = _cast(None, crs) self.dimensions = _cast(int, dimensions) self.LowerCorner = LowerCorner self.UpperCorner = UpperCorner def factory(*args_, **kwargs_): if BoundingBoxType.subclass: return BoundingBoxType.subclass(*args_, **kwargs_) else: return BoundingBoxType(*args_, **kwargs_) factory = staticmethod(factory) def get_LowerCorner(self): return self.LowerCorner def set_LowerCorner(self, LowerCorner): self.LowerCorner = LowerCorner def validate_PositionType(self, value): # Validate type PositionType, a restriction on double. pass def get_UpperCorner(self): return self.UpperCorner def set_UpperCorner(self, UpperCorner): self.UpperCorner = UpperCorner def get_crs(self): return self.crs def set_crs(self, crs): self.crs = crs def get_dimensions(self): return self.dimensions def set_dimensions(self, dimensions): self.dimensions = dimensions def export(self, outfile, level, namespace_='', name_='BoundingBoxType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='BoundingBoxType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='BoundingBoxType'): if self.crs is not None and 'crs' not in already_processed: already_processed.append('crs') outfile.write(' crs=%s' % (self.gds_format_string(quote_attrib(self.crs).encode(ExternalEncoding), input_name='crs'), )) if self.dimensions is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') outfile.write(' dimensions="%s"' % self.gds_format_integer(self.dimensions, input_name='dimensions')) def exportChildren(self, outfile, level, namespace_='', name_='BoundingBoxType', fromsubclass_=False): if self.LowerCorner is not None: showIndent(outfile, level) outfile.write('<%sLowerCorner>%s</%sLowerCorner>\n' % (namespace_, self.gds_format_double_list(self.LowerCorner, input_name='LowerCorner'), namespace_)) if self.UpperCorner is not None: showIndent(outfile, level) outfile.write('<%sUpperCorner>%s</%sUpperCorner>\n' % (namespace_, self.gds_format_double_list(self.UpperCorner, input_name='UpperCorner'), namespace_)) def hasContent_(self): if ( self.LowerCorner is not None or self.UpperCorner is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='BoundingBoxType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.crs is not None and 'crs' not in already_processed: already_processed.append('crs') showIndent(outfile, level) outfile.write('crs = "%s",\n' % (self.crs,)) if self.dimensions is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') showIndent(outfile, level) outfile.write('dimensions = %d,\n' % (self.dimensions,)) def exportLiteralChildren(self, outfile, level, name_): if self.LowerCorner is not None: showIndent(outfile, level) outfile.write('LowerCorner=%e,\n' % self.LowerCorner) if self.UpperCorner is not None: showIndent(outfile, level) outfile.write('UpperCorner=%e,\n' % self.UpperCorner) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('crs', node) if value is not None and 'crs' not in already_processed: already_processed.append('crs') self.crs = value value = find_attr_value_('dimensions', node) if value is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') try: self.dimensions = int(value) except ValueError, exp: raise_parse_error(node, 'Bad integer attribute: %s' % exp) if self.dimensions <= 0: raise_parse_error(node, 'Invalid PositiveInteger') def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'LowerCorner': LowerCorner_ = child_.text LowerCorner_ = self.gds_validate_double_list(LowerCorner_, node, 'LowerCorner') self.LowerCorner = LowerCorner_ self.LowerCorner = self.LowerCorner.split() self.validate_PositionType(self.LowerCorner) # validate type PositionType elif nodeName_ == 'UpperCorner': UpperCorner_ = child_.text UpperCorner_ = self.gds_validate_double_list(UpperCorner_, node, 'UpperCorner') self.UpperCorner = UpperCorner_ self.UpperCorner = self.UpperCorner.split() self.validate_PositionType(self.UpperCorner) # validate type PositionType # end class BoundingBoxType class WGS84BoundingBoxType(GeneratedsSuper): """XML encoded minimum rectangular bounding box (or region) parameter, surrounding all the associated data. This box is specialized for use with the 2D WGS 84 coordinate reference system with decimal values of longitude and latitude. This type is adapted from the general BoundingBoxType, with modified contents and documentation for use with the 2D WGS 84 coordinate reference system. This attribute can be included when considered useful. When included, this attribute shall reference the 2D WGS 84 coordinate reference system with longitude before latitude and decimal values of longitude and latitude. The number of dimensions in this CRS (the length of a coordinate sequence in this use of the PositionType). This number is specified by the CRS definition, but can also be specified here.""" subclass = None superclass = None def __init__(self, crs=None, dimensions=None, LowerCorner=None, UpperCorner=None): self.crs = _cast(None, crs) self.dimensions = _cast(int, dimensions) self.LowerCorner = LowerCorner self.UpperCorner = UpperCorner def factory(*args_, **kwargs_): if WGS84BoundingBoxType.subclass: return WGS84BoundingBoxType.subclass(*args_, **kwargs_) else: return WGS84BoundingBoxType(*args_, **kwargs_) factory = staticmethod(factory) def get_LowerCorner(self): return self.LowerCorner def set_LowerCorner(self, LowerCorner): self.LowerCorner = LowerCorner def validate_PositionType2D(self, value): # Validate type PositionType2D, a restriction on ows:PositionType. pass def get_UpperCorner(self): return self.UpperCorner def set_UpperCorner(self, UpperCorner): self.UpperCorner = UpperCorner def get_crs(self): return self.crs def set_crs(self, crs): self.crs = crs def get_dimensions(self): return self.dimensions def set_dimensions(self, dimensions): self.dimensions = dimensions def export(self, outfile, level, namespace_='', name_='WGS84BoundingBoxType', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='WGS84BoundingBoxType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='WGS84BoundingBoxType'): if self.crs is not None and 'crs' not in already_processed: already_processed.append('crs') outfile.write(' crs=%s' % (self.gds_format_string(quote_attrib(self.crs).encode(ExternalEncoding), input_name='crs'), )) if self.dimensions is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') outfile.write(' dimensions="%s"' % self.gds_format_integer(self.dimensions, input_name='dimensions')) def exportChildren(self, outfile, level, namespace_='', name_='WGS84BoundingBoxType', fromsubclass_=False): if self.LowerCorner is not None: showIndent(outfile, level) outfile.write('<%sLowerCorner>%s</%sLowerCorner>\n' % (namespace_, self.gds_format_string(quote_xml(self.LowerCorner).encode(ExternalEncoding), input_name='LowerCorner'), namespace_)) if self.UpperCorner is not None: showIndent(outfile, level) outfile.write('<%sUpperCorner>%s</%sUpperCorner>\n' % (namespace_, self.gds_format_string(quote_xml(self.UpperCorner).encode(ExternalEncoding), input_name='UpperCorner'), namespace_)) def hasContent_(self): if ( self.LowerCorner is not None or self.UpperCorner is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='WGS84BoundingBoxType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.crs is not None and 'crs' not in already_processed: already_processed.append('crs') showIndent(outfile, level) outfile.write('crs = "%s",\n' % (self.crs,)) if self.dimensions is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') showIndent(outfile, level) outfile.write('dimensions = %d,\n' % (self.dimensions,)) def exportLiteralChildren(self, outfile, level, name_): if self.LowerCorner is not None: showIndent(outfile, level) outfile.write('LowerCorner=model_.ows_PositionType(\n') self.LowerCorner.exportLiteral(outfile, level, name_='LowerCorner') showIndent(outfile, level) outfile.write('),\n') if self.UpperCorner is not None: showIndent(outfile, level) outfile.write('UpperCorner=model_.ows_PositionType(\n') self.UpperCorner.exportLiteral(outfile, level, name_='UpperCorner') showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('crs', node) if value is not None and 'crs' not in already_processed: already_processed.append('crs') self.crs = value value = find_attr_value_('dimensions', node) if value is not None and 'dimensions' not in already_processed: already_processed.append('dimensions') try: self.dimensions = int(value) except ValueError, exp: raise_parse_error(node, 'Bad integer attribute: %s' % exp) if self.dimensions <= 0: raise_parse_error(node, 'Invalid PositiveInteger') def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'LowerCorner': obj_ = None self.set_LowerCorner(obj_) self.validate_PositionType2D(self.LowerCorner) # validate type PositionType2D elif nodeName_ == 'UpperCorner': obj_ = None self.set_UpperCorner(obj_) self.validate_PositionType2D(self.UpperCorner) # validate type PositionType2D # end class WGS84BoundingBoxType class LanguageStringType(GeneratedsSuper): """Text string with the language of the string identified as recommended in the XML 1.0 W3C Recommendation, section 2.12.""" subclass = None superclass = None def __init__(self, lang=None, valueOf_=None): self.lang = _cast(None, lang) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if LanguageStringType.subclass: return LanguageStringType.subclass(*args_, **kwargs_) else: return LanguageStringType(*args_, **kwargs_) factory = staticmethod(factory) def get_lang(self): return self.lang def set_lang(self, lang): self.lang = lang def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='LanguageStringType', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='LanguageStringType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='LanguageStringType'): if self.lang is not None and 'lang' not in already_processed: already_processed.append('lang') outfile.write(' lang=%s' % (self.gds_format_string(quote_attrib(self.lang).encode(ExternalEncoding), input_name='lang'), )) def exportChildren(self, outfile, level, namespace_='', name_='LanguageStringType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='LanguageStringType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.lang is not None and 'lang' not in already_processed: already_processed.append('lang') showIndent(outfile, level) outfile.write('lang = "%s",\n' % (self.lang,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('lang', node) if value is not None and 'lang' not in already_processed: already_processed.append('lang') self.lang = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class LanguageStringType class KeywordsType(GeneratedsSuper): """Unordered list of one or more commonly used or formalised word(s) or phrase(s) used to describe the subject. When needed, the optional "type" can name the type of the associated list of keywords that shall all have the same type. Also when needed, the codeSpace attribute of that "type" can reference the type name authority and/or thesaurus. If the xml:lang attribute is not included in a Keyword element, then no language is specified for that element unless specified by another means. All Keyword elements in the same Keywords element that share the same xml:lang attribute value represent different keywords in that language. For OWS use, the optional thesaurusName element was omitted as being complex information that could be referenced by the codeSpace attribute of the Type element.""" subclass = None superclass = None def __init__(self, Keyword=None, Type=None): if Keyword is None: self.Keyword = [] else: self.Keyword = Keyword self.Type = Type def factory(*args_, **kwargs_): if KeywordsType.subclass: return KeywordsType.subclass(*args_, **kwargs_) else: return KeywordsType(*args_, **kwargs_) factory = staticmethod(factory) def get_Keyword(self): return self.Keyword def set_Keyword(self, Keyword): self.Keyword = Keyword def add_Keyword(self, value): self.Keyword.append(value) def insert_Keyword(self, index, value): self.Keyword[index] = value def get_Type(self): return self.Type def set_Type(self, Type): self.Type = Type def export(self, outfile, level, namespace_='', name_='KeywordsType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='KeywordsType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='KeywordsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='KeywordsType', fromsubclass_=False): for Keyword_ in self.Keyword: Keyword_.export(outfile, level, namespace_, name_='Keyword') if self.Type: self.Type.export(outfile, level, namespace_, name_='Type') def hasContent_(self): if ( self.Keyword or self.Type is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='KeywordsType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Keyword=[\n') level += 1 for Keyword_ in self.Keyword: showIndent(outfile, level) outfile.write('model_.LanguageStringType(\n') Keyword_.exportLiteral(outfile, level, name_='LanguageStringType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.Type is not None: showIndent(outfile, level) outfile.write('Type=model_.CodeType(\n') self.Type.exportLiteral(outfile, level, name_='Type') showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Keyword': obj_ = LanguageStringType.factory() obj_.build(child_) self.Keyword.append(obj_) elif nodeName_ == 'Type': obj_ = CodeType.factory() obj_.build(child_) self.set_Type(obj_) # end class KeywordsType class CodeType(GeneratedsSuper): """Name or code with an (optional) authority. If the codeSpace attribute is present, its value shall reference a dictionary, thesaurus, or authority for the name or code, such as the organisation who assigned the value, or the dictionary from which it is taken. Type copied from basicTypes.xsd of GML 3 with documentation edited, for possible use outside the ServiceIdentification section of a service metadata document.""" subclass = None superclass = None def __init__(self, codeSpace=None, valueOf_=None): self.codeSpace = _cast(None, codeSpace) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if CodeType.subclass: return CodeType.subclass(*args_, **kwargs_) else: return CodeType(*args_, **kwargs_) factory = staticmethod(factory) def get_codeSpace(self): return self.codeSpace def set_codeSpace(self, codeSpace): self.codeSpace = codeSpace def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='CodeType', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='CodeType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='CodeType'): if self.codeSpace is not None and 'codeSpace' not in already_processed: already_processed.append('codeSpace') outfile.write(' codeSpace=%s' % (self.gds_format_string(quote_attrib(self.codeSpace).encode(ExternalEncoding), input_name='codeSpace'), )) def exportChildren(self, outfile, level, namespace_='', name_='CodeType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='CodeType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.codeSpace is not None and 'codeSpace' not in already_processed: already_processed.append('codeSpace') showIndent(outfile, level) outfile.write('codeSpace = "%s",\n' % (self.codeSpace,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('codeSpace', node) if value is not None and 'codeSpace' not in already_processed: already_processed.append('codeSpace') self.codeSpace = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class CodeType class ResponsiblePartyType(GeneratedsSuper): """Identification of, and means of communication with, person responsible for the server. At least one of IndividualName, OrganisationName, or PositionName shall be included.""" subclass = None superclass = None def __init__(self, IndividualName=None, OrganisationName=None, PositionName=None, ContactInfo=None, Role=None): self.IndividualName = IndividualName self.OrganisationName = OrganisationName self.PositionName = PositionName self.ContactInfo = ContactInfo self.Role = Role def factory(*args_, **kwargs_): if ResponsiblePartyType.subclass: return ResponsiblePartyType.subclass(*args_, **kwargs_) else: return ResponsiblePartyType(*args_, **kwargs_) factory = staticmethod(factory) def get_IndividualName(self): return self.IndividualName def set_IndividualName(self, IndividualName): self.IndividualName = IndividualName def get_OrganisationName(self): return self.OrganisationName def set_OrganisationName(self, OrganisationName): self.OrganisationName = OrganisationName def get_PositionName(self): return self.PositionName def set_PositionName(self, PositionName): self.PositionName = PositionName def get_ContactInfo(self): return self.ContactInfo def set_ContactInfo(self, ContactInfo): self.ContactInfo = ContactInfo def get_Role(self): return self.Role def set_Role(self, Role): self.Role = Role def export(self, outfile, level, namespace_='', name_='ResponsiblePartyType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ResponsiblePartyType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ResponsiblePartyType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ResponsiblePartyType', fromsubclass_=False): if self.IndividualName is not None: showIndent(outfile, level) outfile.write('<%sIndividualName>%s</%sIndividualName>\n' % (namespace_, self.gds_format_string(quote_xml(self.IndividualName).encode(ExternalEncoding), input_name='IndividualName'), namespace_)) if self.OrganisationName is not None: showIndent(outfile, level) outfile.write('<%sOrganisationName>%s</%sOrganisationName>\n' % (namespace_, self.gds_format_string(quote_xml(self.OrganisationName).encode(ExternalEncoding), input_name='OrganisationName'), namespace_)) if self.PositionName is not None: showIndent(outfile, level) outfile.write('<%sPositionName>%s</%sPositionName>\n' % (namespace_, self.gds_format_string(quote_xml(self.PositionName).encode(ExternalEncoding), input_name='PositionName'), namespace_)) if self.ContactInfo: self.ContactInfo.export(outfile, level, namespace_, name_='ContactInfo') if self.Role: self.Role.export(outfile, level, namespace_, name_='Role', ) def hasContent_(self): if ( self.IndividualName is not None or self.OrganisationName is not None or self.PositionName is not None or self.ContactInfo is not None or self.Role is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='ResponsiblePartyType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.IndividualName is not None: showIndent(outfile, level) outfile.write('IndividualName=%s,\n' % quote_python(self.IndividualName).encode(ExternalEncoding)) if self.OrganisationName is not None: showIndent(outfile, level) outfile.write('OrganisationName=%s,\n' % quote_python(self.OrganisationName).encode(ExternalEncoding)) if self.PositionName is not None: showIndent(outfile, level) outfile.write('PositionName=%s,\n' % quote_python(self.PositionName).encode(ExternalEncoding)) if self.ContactInfo is not None: showIndent(outfile, level) outfile.write('ContactInfo=model_.ContactInfo(\n') self.ContactInfo.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.Role is not None: showIndent(outfile, level) outfile.write('Role=model_.Role(\n') self.Role.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'IndividualName': IndividualName_ = child_.text IndividualName_ = self.gds_validate_string(IndividualName_, node, 'IndividualName') self.IndividualName = IndividualName_ elif nodeName_ == 'OrganisationName': OrganisationName_ = child_.text OrganisationName_ = self.gds_validate_string(OrganisationName_, node, 'OrganisationName') self.OrganisationName = OrganisationName_ elif nodeName_ == 'PositionName': PositionName_ = child_.text PositionName_ = self.gds_validate_string(PositionName_, node, 'PositionName') self.PositionName = PositionName_ elif nodeName_ == 'ContactInfo': obj_ = ContactType.factory() obj_.build(child_) self.set_ContactInfo(obj_) elif nodeName_ == 'Role': obj_ = CodeType.factory() obj_.build(child_) self.set_Role(obj_) # end class ResponsiblePartyType class ResponsiblePartySubsetType(GeneratedsSuper): """Identification of, and means of communication with, person responsible for the server. For OWS use in the ServiceProvider section of a service metadata document, the optional organizationName element was removed, since this type is always used with the ProviderName element which provides that information. The mandatory "role" element was changed to optional, since no clear use of this information is known in the ServiceProvider section.""" subclass = None superclass = None def __init__(self, IndividualName=None, PositionName=None, ContactInfo=None, Role=None): self.IndividualName = IndividualName self.PositionName = PositionName self.ContactInfo = ContactInfo self.Role = Role def factory(*args_, **kwargs_): if ResponsiblePartySubsetType.subclass: return ResponsiblePartySubsetType.subclass(*args_, **kwargs_) else: return ResponsiblePartySubsetType(*args_, **kwargs_) factory = staticmethod(factory) def get_IndividualName(self): return self.IndividualName def set_IndividualName(self, IndividualName): self.IndividualName = IndividualName def get_PositionName(self): return self.PositionName def set_PositionName(self, PositionName): self.PositionName = PositionName def get_ContactInfo(self): return self.ContactInfo def set_ContactInfo(self, ContactInfo): self.ContactInfo = ContactInfo def get_Role(self): return self.Role def set_Role(self, Role): self.Role = Role def export(self, outfile, level, namespace_='', name_='ResponsiblePartySubsetType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ResponsiblePartySubsetType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ResponsiblePartySubsetType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ResponsiblePartySubsetType', fromsubclass_=False): if self.IndividualName is not None: showIndent(outfile, level) outfile.write('<%sIndividualName>%s</%sIndividualName>\n' % (namespace_, self.gds_format_string(quote_xml(self.IndividualName).encode(ExternalEncoding), input_name='IndividualName'), namespace_)) if self.PositionName is not None: showIndent(outfile, level) outfile.write('<%sPositionName>%s</%sPositionName>\n' % (namespace_, self.gds_format_string(quote_xml(self.PositionName).encode(ExternalEncoding), input_name='PositionName'), namespace_)) if self.ContactInfo: self.ContactInfo.export(outfile, level, namespace_, name_='ContactInfo') if self.Role: self.Role.export(outfile, level, namespace_, name_='Role') def hasContent_(self): if ( self.IndividualName is not None or self.PositionName is not None or self.ContactInfo is not None or self.Role is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='ResponsiblePartySubsetType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.IndividualName is not None: showIndent(outfile, level) outfile.write('IndividualName=%s,\n' % quote_python(self.IndividualName).encode(ExternalEncoding)) if self.PositionName is not None: showIndent(outfile, level) outfile.write('PositionName=%s,\n' % quote_python(self.PositionName).encode(ExternalEncoding)) if self.ContactInfo is not None: showIndent(outfile, level) outfile.write('ContactInfo=model_.ContactInfo(\n') self.ContactInfo.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.Role is not None: showIndent(outfile, level) outfile.write('Role=model_.Role(\n') self.Role.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'IndividualName': IndividualName_ = child_.text IndividualName_ = self.gds_validate_string(IndividualName_, node, 'IndividualName') self.IndividualName = IndividualName_ elif nodeName_ == 'PositionName': PositionName_ = child_.text PositionName_ = self.gds_validate_string(PositionName_, node, 'PositionName') self.PositionName = PositionName_ elif nodeName_ == 'ContactInfo': obj_ = ContactType.factory() obj_.build(child_) self.set_ContactInfo(obj_) elif nodeName_ == 'Role': obj_ = CodeType.factory() obj_.build(child_) self.set_Role(obj_) # end class ResponsiblePartySubsetType class ContactType(GeneratedsSuper): """Information required to enable contact with the responsible person and/or organization. For OWS use in the service metadata document, the optional hoursOfService and contactInstructions elements were retained, as possibly being useful in the ServiceProvider section.""" subclass = None superclass = None def __init__(self, Phone=None, Address=None, OnlineResource=None, HoursOfService=None, ContactInstructions=None): self.Phone = Phone self.Address = Address self.OnlineResource = OnlineResource self.HoursOfService = HoursOfService self.ContactInstructions = ContactInstructions def factory(*args_, **kwargs_): if ContactType.subclass: return ContactType.subclass(*args_, **kwargs_) else: return ContactType(*args_, **kwargs_) factory = staticmethod(factory) def get_Phone(self): return self.Phone def set_Phone(self, Phone): self.Phone = Phone def get_Address(self): return self.Address def set_Address(self, Address): self.Address = Address def get_OnlineResource(self): return self.OnlineResource def set_OnlineResource(self, OnlineResource): self.OnlineResource = OnlineResource def get_HoursOfService(self): return self.HoursOfService def set_HoursOfService(self, HoursOfService): self.HoursOfService = HoursOfService def get_ContactInstructions(self): return self.ContactInstructions def set_ContactInstructions(self, ContactInstructions): self.ContactInstructions = ContactInstructions def export(self, outfile, level, namespace_='', name_='ContactType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ContactType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ContactType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ContactType', fromsubclass_=False): if self.Phone: self.Phone.export(outfile, level, namespace_, name_='Phone') if self.Address: self.Address.export(outfile, level, namespace_, name_='Address') if self.OnlineResource: self.OnlineResource.export(outfile, level, namespace_, name_='OnlineResource') if self.HoursOfService is not None: showIndent(outfile, level) outfile.write('<%sHoursOfService>%s</%sHoursOfService>\n' % (namespace_, self.gds_format_string(quote_xml(self.HoursOfService).encode(ExternalEncoding), input_name='HoursOfService'), namespace_)) if self.ContactInstructions is not None: showIndent(outfile, level) outfile.write('<%sContactInstructions>%s</%sContactInstructions>\n' % (namespace_, self.gds_format_string(quote_xml(self.ContactInstructions).encode(ExternalEncoding), input_name='ContactInstructions'), namespace_)) def hasContent_(self): if ( self.Phone is not None or self.Address is not None or self.OnlineResource is not None or self.HoursOfService is not None or self.ContactInstructions is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='ContactType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.Phone is not None: showIndent(outfile, level) outfile.write('Phone=model_.TelephoneType(\n') self.Phone.exportLiteral(outfile, level, name_='Phone') showIndent(outfile, level) outfile.write('),\n') if self.Address is not None: showIndent(outfile, level) outfile.write('Address=model_.AddressType(\n') self.Address.exportLiteral(outfile, level, name_='Address') showIndent(outfile, level) outfile.write('),\n') if self.OnlineResource is not None: showIndent(outfile, level) outfile.write('OnlineResource=model_.OnlineResourceType(\n') self.OnlineResource.exportLiteral(outfile, level, name_='OnlineResource') showIndent(outfile, level) outfile.write('),\n') if self.HoursOfService is not None: showIndent(outfile, level) outfile.write('HoursOfService=%s,\n' % quote_python(self.HoursOfService).encode(ExternalEncoding)) if self.ContactInstructions is not None: showIndent(outfile, level) outfile.write('ContactInstructions=%s,\n' % quote_python(self.ContactInstructions).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Phone': obj_ = TelephoneType.factory() obj_.build(child_) self.set_Phone(obj_) elif nodeName_ == 'Address': obj_ = AddressType.factory() obj_.build(child_) self.set_Address(obj_) elif nodeName_ == 'OnlineResource': obj_ = OnlineResourceType.factory() obj_.build(child_) self.set_OnlineResource(obj_) elif nodeName_ == 'HoursOfService': HoursOfService_ = child_.text HoursOfService_ = self.gds_validate_string(HoursOfService_, node, 'HoursOfService') self.HoursOfService = HoursOfService_ elif nodeName_ == 'ContactInstructions': ContactInstructions_ = child_.text ContactInstructions_ = self.gds_validate_string(ContactInstructions_, node, 'ContactInstructions') self.ContactInstructions = ContactInstructions_ # end class ContactType class OnlineResourceType(GeneratedsSuper): """Reference to on-line resource from which data can be obtained. For OWS use in the service metadata document, the CI_OnlineResource class was XML encoded as the attributeGroup "xlink:simpleLink", as used in GML.""" subclass = None superclass = None def __init__(self, title=None, arcrole=None, actuate=None, href=None, role=None, show=None, type_=None, valueOf_=None): self.title = _cast(None, title) self.arcrole = _cast(None, arcrole) self.actuate = _cast(None, actuate) self.href = _cast(None, href) self.role = _cast(None, role) self.show = _cast(None, show) self.type_ = _cast(None, type_) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if OnlineResourceType.subclass: return OnlineResourceType.subclass(*args_, **kwargs_) else: return OnlineResourceType(*args_, **kwargs_) factory = staticmethod(factory) def get_title(self): return self.title def set_title(self, title): self.title = title def get_arcrole(self): return self.arcrole def set_arcrole(self, arcrole): self.arcrole = arcrole def get_actuate(self): return self.actuate def set_actuate(self, actuate): self.actuate = actuate def get_href(self): return self.href def set_href(self, href): self.href = href def get_role(self): return self.role def set_role(self, role): self.role = role def get_show(self): return self.show def set_show(self, show): self.show = show def get_type(self): return self.type_ def set_type(self, type_): self.type_ = type_ def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='OnlineResourceType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='OnlineResourceType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='OnlineResourceType'): if self.title is not None and 'title' not in already_processed: already_processed.append('title') outfile.write(' title=%s' % (self.gds_format_string(quote_attrib(self.title).encode(ExternalEncoding), input_name='title'), )) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') outfile.write(' arcrole=%s' % (self.gds_format_string(quote_attrib(self.arcrole).encode(ExternalEncoding), input_name='arcrole'), )) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') outfile.write(' actuate=%s' % (self.gds_format_string(quote_attrib(self.actuate).encode(ExternalEncoding), input_name='actuate'), )) if self.href is not None and 'href' not in already_processed: already_processed.append('href') outfile.write(' xlink:href=%s' % (self.gds_format_string(quote_attrib(self.href).encode(ExternalEncoding), input_name='xlink:href'), )) if self.role is not None and 'role' not in already_processed: already_processed.append('role') outfile.write(' role=%s' % (self.gds_format_string(quote_attrib(self.role).encode(ExternalEncoding), input_name='role'), )) if self.show is not None and 'show' not in already_processed: already_processed.append('show') outfile.write(' show=%s' % (self.gds_format_string(quote_attrib(self.show).encode(ExternalEncoding), input_name='show'), )) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') outfile.write(' type=%s' % (self.gds_format_string(quote_attrib(self.type_).encode(ExternalEncoding), input_name='type'), )) def exportChildren(self, outfile, level, namespace_='', name_='OnlineResourceType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='OnlineResourceType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.title is not None and 'title' not in already_processed: already_processed.append('title') showIndent(outfile, level) outfile.write('title = "%s",\n' % (self.title,)) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') showIndent(outfile, level) outfile.write('arcrole = "%s",\n' % (self.arcrole,)) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') showIndent(outfile, level) outfile.write('actuate = "%s",\n' % (self.actuate,)) if self.href is not None and 'href' not in already_processed: already_processed.append('href') showIndent(outfile, level) outfile.write('href = "%s",\n' % (self.href,)) if self.role is not None and 'role' not in already_processed: already_processed.append('role') showIndent(outfile, level) outfile.write('role = "%s",\n' % (self.role,)) if self.show is not None and 'show' not in already_processed: already_processed.append('show') showIndent(outfile, level) outfile.write('show = "%s",\n' % (self.show,)) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') showIndent(outfile, level) outfile.write('type_ = "%s",\n' % (self.type_,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('title', node) if value is not None and 'title' not in already_processed: already_processed.append('title') self.title = value value = find_attr_value_('arcrole', node) if value is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') self.arcrole = value value = find_attr_value_('actuate', node) if value is not None and 'actuate' not in already_processed: already_processed.append('actuate') self.actuate = value value = find_attr_value_('href', node) if value is not None and 'href' not in already_processed: already_processed.append('href') self.href = value value = find_attr_value_('role', node) if value is not None and 'role' not in already_processed: already_processed.append('role') self.role = value value = find_attr_value_('show', node) if value is not None and 'show' not in already_processed: already_processed.append('show') self.show = value value = find_attr_value_('type', node) if value is not None and 'type' not in already_processed: already_processed.append('type') self.type_ = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class OnlineResourceType class TelephoneType(GeneratedsSuper): """Telephone numbers for contacting the responsible individual or organization.""" subclass = None superclass = None def __init__(self, Voice=None, Facsimile=None): if Voice is None: self.Voice = [] else: self.Voice = Voice if Facsimile is None: self.Facsimile = [] else: self.Facsimile = Facsimile def factory(*args_, **kwargs_): if TelephoneType.subclass: return TelephoneType.subclass(*args_, **kwargs_) else: return TelephoneType(*args_, **kwargs_) factory = staticmethod(factory) def get_Voice(self): return self.Voice def set_Voice(self, Voice): self.Voice = Voice def add_Voice(self, value): self.Voice.append(value) def insert_Voice(self, index, value): self.Voice[index] = value def get_Facsimile(self): return self.Facsimile def set_Facsimile(self, Facsimile): self.Facsimile = Facsimile def add_Facsimile(self, value): self.Facsimile.append(value) def insert_Facsimile(self, index, value): self.Facsimile[index] = value def export(self, outfile, level, namespace_='', name_='TelephoneType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TelephoneType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TelephoneType'): pass def exportChildren(self, outfile, level, namespace_='', name_='TelephoneType', fromsubclass_=False): for Voice_ in self.Voice: showIndent(outfile, level) outfile.write('<%sVoice>%s</%sVoice>\n' % (namespace_, self.gds_format_string(quote_xml(Voice_).encode(ExternalEncoding), input_name='Voice'), namespace_)) for Facsimile_ in self.Facsimile: showIndent(outfile, level) outfile.write('<%sFacsimile>%s</%sFacsimile>\n' % (namespace_, self.gds_format_string(quote_xml(Facsimile_).encode(ExternalEncoding), input_name='Facsimile'), namespace_)) def hasContent_(self): if ( self.Voice or self.Facsimile ): return True else: return False def exportLiteral(self, outfile, level, name_='TelephoneType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Voice=[\n') level += 1 for Voice_ in self.Voice: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Voice_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Facsimile=[\n') level += 1 for Facsimile_ in self.Facsimile: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Facsimile_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Voice': Voice_ = child_.text Voice_ = self.gds_validate_string(Voice_, node, 'Voice') self.Voice.append(Voice_) elif nodeName_ == 'Facsimile': Facsimile_ = child_.text Facsimile_ = self.gds_validate_string(Facsimile_, node, 'Facsimile') self.Facsimile.append(Facsimile_) # end class TelephoneType class AddressType(GeneratedsSuper): """Location of the responsible individual or organization.""" subclass = None superclass = None def __init__(self, DeliveryPoint=None, City=None, AdministrativeArea=None, PostalCode=None, Country=None, ElectronicMailAddress=None): if DeliveryPoint is None: self.DeliveryPoint = [] else: self.DeliveryPoint = DeliveryPoint self.City = City self.AdministrativeArea = AdministrativeArea self.PostalCode = PostalCode self.Country = Country if ElectronicMailAddress is None: self.ElectronicMailAddress = [] else: self.ElectronicMailAddress = ElectronicMailAddress def factory(*args_, **kwargs_): if AddressType.subclass: return AddressType.subclass(*args_, **kwargs_) else: return AddressType(*args_, **kwargs_) factory = staticmethod(factory) def get_DeliveryPoint(self): return self.DeliveryPoint def set_DeliveryPoint(self, DeliveryPoint): self.DeliveryPoint = DeliveryPoint def add_DeliveryPoint(self, value): self.DeliveryPoint.append(value) def insert_DeliveryPoint(self, index, value): self.DeliveryPoint[index] = value def get_City(self): return self.City def set_City(self, City): self.City = City def get_AdministrativeArea(self): return self.AdministrativeArea def set_AdministrativeArea(self, AdministrativeArea): self.AdministrativeArea = AdministrativeArea def get_PostalCode(self): return self.PostalCode def set_PostalCode(self, PostalCode): self.PostalCode = PostalCode def get_Country(self): return self.Country def set_Country(self, Country): self.Country = Country def get_ElectronicMailAddress(self): return self.ElectronicMailAddress def set_ElectronicMailAddress(self, ElectronicMailAddress): self.ElectronicMailAddress = ElectronicMailAddress def add_ElectronicMailAddress(self, value): self.ElectronicMailAddress.append(value) def insert_ElectronicMailAddress(self, index, value): self.ElectronicMailAddress[index] = value def export(self, outfile, level, namespace_='', name_='AddressType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AddressType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AddressType'): pass def exportChildren(self, outfile, level, namespace_='', name_='AddressType', fromsubclass_=False): for DeliveryPoint_ in self.DeliveryPoint: showIndent(outfile, level) outfile.write('<%sDeliveryPoint>%s</%sDeliveryPoint>\n' % (namespace_, self.gds_format_string(quote_xml(DeliveryPoint_).encode(ExternalEncoding), input_name='DeliveryPoint'), namespace_)) if self.City is not None: showIndent(outfile, level) outfile.write('<%sCity>%s</%sCity>\n' % (namespace_, self.gds_format_string(quote_xml(self.City).encode(ExternalEncoding), input_name='City'), namespace_)) if self.AdministrativeArea is not None: showIndent(outfile, level) outfile.write('<%sAdministrativeArea>%s</%sAdministrativeArea>\n' % (namespace_, self.gds_format_string(quote_xml(self.AdministrativeArea).encode(ExternalEncoding), input_name='AdministrativeArea'), namespace_)) if self.PostalCode is not None: showIndent(outfile, level) outfile.write('<%sPostalCode>%s</%sPostalCode>\n' % (namespace_, self.gds_format_string(quote_xml(self.PostalCode).encode(ExternalEncoding), input_name='PostalCode'), namespace_)) if self.Country is not None: showIndent(outfile, level) outfile.write('<%sCountry>%s</%sCountry>\n' % (namespace_, self.gds_format_string(quote_xml(self.Country).encode(ExternalEncoding), input_name='Country'), namespace_)) for ElectronicMailAddress_ in self.ElectronicMailAddress: showIndent(outfile, level) outfile.write('<%sElectronicMailAddress>%s</%sElectronicMailAddress>\n' % (namespace_, self.gds_format_string(quote_xml(ElectronicMailAddress_).encode(ExternalEncoding), input_name='ElectronicMailAddress'), namespace_)) def hasContent_(self): if ( self.DeliveryPoint or self.City is not None or self.AdministrativeArea is not None or self.PostalCode is not None or self.Country is not None or self.ElectronicMailAddress ): return True else: return False def exportLiteral(self, outfile, level, name_='AddressType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('DeliveryPoint=[\n') level += 1 for DeliveryPoint_ in self.DeliveryPoint: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(DeliveryPoint_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.City is not None: showIndent(outfile, level) outfile.write('City=%s,\n' % quote_python(self.City).encode(ExternalEncoding)) if self.AdministrativeArea is not None: showIndent(outfile, level) outfile.write('AdministrativeArea=%s,\n' % quote_python(self.AdministrativeArea).encode(ExternalEncoding)) if self.PostalCode is not None: showIndent(outfile, level) outfile.write('PostalCode=%s,\n' % quote_python(self.PostalCode).encode(ExternalEncoding)) if self.Country is not None: showIndent(outfile, level) outfile.write('Country=%s,\n' % quote_python(self.Country).encode(ExternalEncoding)) showIndent(outfile, level) outfile.write('ElectronicMailAddress=[\n') level += 1 for ElectronicMailAddress_ in self.ElectronicMailAddress: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(ElectronicMailAddress_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'DeliveryPoint': DeliveryPoint_ = child_.text DeliveryPoint_ = self.gds_validate_string(DeliveryPoint_, node, 'DeliveryPoint') self.DeliveryPoint.append(DeliveryPoint_) elif nodeName_ == 'City': City_ = child_.text City_ = self.gds_validate_string(City_, node, 'City') self.City = City_ elif nodeName_ == 'AdministrativeArea': AdministrativeArea_ = child_.text AdministrativeArea_ = self.gds_validate_string(AdministrativeArea_, node, 'AdministrativeArea') self.AdministrativeArea = AdministrativeArea_ elif nodeName_ == 'PostalCode': PostalCode_ = child_.text PostalCode_ = self.gds_validate_string(PostalCode_, node, 'PostalCode') self.PostalCode = PostalCode_ elif nodeName_ == 'Country': Country_ = child_.text Country_ = self.gds_validate_string(Country_, node, 'Country') self.Country = Country_ elif nodeName_ == 'ElectronicMailAddress': ElectronicMailAddress_ = child_.text ElectronicMailAddress_ = self.gds_validate_string(ElectronicMailAddress_, node, 'ElectronicMailAddress') self.ElectronicMailAddress.append(ElectronicMailAddress_) # end class AddressType class CapabilitiesBaseType(GeneratedsSuper): """XML encoded GetCapabilities operation response. This document provides clients with service metadata about a specific service instance, usually including metadata about the tightly-coupled data served. If the server does not implement the updateSequence parameter, the server shall always return the complete Capabilities document, without the updateSequence parameter. When the server implements the updateSequence parameter and the GetCapabilities operation request included the updateSequence parameter with the current value, the server shall return this element with only the "version" and "updateSequence" attributes. Otherwise, all optional elements shall be included or not depending on the actual value of the Contents parameter in the GetCapabilities operation request. This base type shall be extended by each specific OWS to include the additional contents needed. Service metadata document version, having values that are "increased" whenever any change is made in service metadata document. Values are selected by each server, and are always opaque to clients. When not supported by server, server shall not return this attribute.""" subclass = None superclass = None def __init__(self, updateSequence=None, version=None, ServiceIdentification=None, ServiceProvider=None, OperationsMetadata=None): self.updateSequence = _cast(None, updateSequence) self.version = _cast(None, version) self.ServiceIdentification = ServiceIdentification self.ServiceProvider = ServiceProvider self.OperationsMetadata = OperationsMetadata def factory(*args_, **kwargs_): if CapabilitiesBaseType.subclass: return CapabilitiesBaseType.subclass(*args_, **kwargs_) else: return CapabilitiesBaseType(*args_, **kwargs_) factory = staticmethod(factory) def get_ServiceIdentification(self): return self.ServiceIdentification def set_ServiceIdentification(self, ServiceIdentification): self.ServiceIdentification = ServiceIdentification def get_ServiceProvider(self): return self.ServiceProvider def set_ServiceProvider(self, ServiceProvider): self.ServiceProvider = ServiceProvider def get_OperationsMetadata(self): return self.OperationsMetadata def set_OperationsMetadata(self, OperationsMetadata): self.OperationsMetadata = OperationsMetadata def get_updateSequence(self): return self.updateSequence def set_updateSequence(self, updateSequence): self.updateSequence = updateSequence def get_version(self): return self.version def set_version(self, version): self.version = version def export(self, outfile, level, namespace_='', name_='CapabilitiesBaseType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='CapabilitiesBaseType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='CapabilitiesBaseType'): if self.updateSequence is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') outfile.write(' updateSequence=%s' % (quote_attrib(self.updateSequence), )) if self.version is not None and 'version' not in already_processed: already_processed.append('version') outfile.write(' version=%s' % (quote_attrib(self.version), )) def exportChildren(self, outfile, level, namespace_='', name_='CapabilitiesBaseType', fromsubclass_=False): if self.ServiceIdentification: self.ServiceIdentification.export(outfile, level, namespace_, name_='ServiceIdentification') if self.ServiceProvider: self.ServiceProvider.export(outfile, level, namespace_, name_='ServiceProvider') if self.OperationsMetadata: self.OperationsMetadata.export(outfile, level, namespace_, name_='OperationsMetadata') def hasContent_(self): if ( self.ServiceIdentification is not None or self.ServiceProvider is not None or self.OperationsMetadata is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='CapabilitiesBaseType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.updateSequence is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') showIndent(outfile, level) outfile.write('updateSequence = %s,\n' % (self.updateSequence,)) if self.version is not None and 'version' not in already_processed: already_processed.append('version') showIndent(outfile, level) outfile.write('version = %s,\n' % (self.version,)) def exportLiteralChildren(self, outfile, level, name_): if self.ServiceIdentification is not None: showIndent(outfile, level) outfile.write('ServiceIdentification=model_.ServiceIdentification(\n') self.ServiceIdentification.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.ServiceProvider is not None: showIndent(outfile, level) outfile.write('ServiceProvider=model_.ServiceProvider(\n') self.ServiceProvider.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.OperationsMetadata is not None: showIndent(outfile, level) outfile.write('OperationsMetadata=model_.OperationsMetadata(\n') self.OperationsMetadata.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('updateSequence', node) if value is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') self.updateSequence = value value = find_attr_value_('version', node) if value is not None and 'version' not in already_processed: already_processed.append('version') self.version = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ServiceIdentification': obj_ = ServiceIdentification.factory() obj_.build(child_) self.set_ServiceIdentification(obj_) elif nodeName_ == 'ServiceProvider': obj_ = ServiceProvider.factory() obj_.build(child_) self.set_ServiceProvider(obj_) elif nodeName_ == 'OperationsMetadata': obj_ = OperationsMetadata.factory() obj_.build(child_) self.set_OperationsMetadata(obj_) # end class CapabilitiesBaseType class GetCapabilitiesType(GeneratedsSuper): """XML encoded GetCapabilities operation request. This operation allows clients to retrieve service metadata about a specific service instance. In this XML encoding, no "request" parameter is included, since the element name specifies the specific operation. This base type shall be extended by each specific OWS to include the additional required "service" attribute, with the correct value for that OWS. When omitted or not supported by server, server shall return latest complete service metadata document.""" subclass = None superclass = None def __init__(self, updateSequence=None, AcceptVersions=None, Sections=None, AcceptFormats=None): self.updateSequence = _cast(None, updateSequence) self.AcceptVersions = AcceptVersions self.Sections = Sections self.AcceptFormats = AcceptFormats def factory(*args_, **kwargs_): if GetCapabilitiesType.subclass: return GetCapabilitiesType.subclass(*args_, **kwargs_) else: return GetCapabilitiesType(*args_, **kwargs_) factory = staticmethod(factory) def get_AcceptVersions(self): return self.AcceptVersions def set_AcceptVersions(self, AcceptVersions): self.AcceptVersions = AcceptVersions def get_Sections(self): return self.Sections def set_Sections(self, Sections): self.Sections = Sections def get_AcceptFormats(self): return self.AcceptFormats def set_AcceptFormats(self, AcceptFormats): self.AcceptFormats = AcceptFormats def get_updateSequence(self): return self.updateSequence def set_updateSequence(self, updateSequence): self.updateSequence = updateSequence def export(self, outfile, level, namespace_='', name_='GetCapabilitiesType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='GetCapabilitiesType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='GetCapabilitiesType'): if self.updateSequence is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') outfile.write(' updateSequence=%s' % (quote_attrib(self.updateSequence), )) def exportChildren(self, outfile, level, namespace_='', name_='GetCapabilitiesType', fromsubclass_=False): if self.AcceptVersions: self.AcceptVersions.export(outfile, level, namespace_, name_='AcceptVersions') if self.Sections: self.Sections.export(outfile, level, namespace_, name_='Sections') if self.AcceptFormats: self.AcceptFormats.export(outfile, level, namespace_, name_='AcceptFormats') def hasContent_(self): if ( self.AcceptVersions is not None or self.Sections is not None or self.AcceptFormats is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='GetCapabilitiesType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.updateSequence is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') showIndent(outfile, level) outfile.write('updateSequence = %s,\n' % (self.updateSequence,)) def exportLiteralChildren(self, outfile, level, name_): if self.AcceptVersions is not None: showIndent(outfile, level) outfile.write('AcceptVersions=model_.AcceptVersionsType(\n') self.AcceptVersions.exportLiteral(outfile, level, name_='AcceptVersions') showIndent(outfile, level) outfile.write('),\n') if self.Sections is not None: showIndent(outfile, level) outfile.write('Sections=model_.SectionsType(\n') self.Sections.exportLiteral(outfile, level, name_='Sections') showIndent(outfile, level) outfile.write('),\n') if self.AcceptFormats is not None: showIndent(outfile, level) outfile.write('AcceptFormats=model_.AcceptFormatsType(\n') self.AcceptFormats.exportLiteral(outfile, level, name_='AcceptFormats') showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('updateSequence', node) if value is not None and 'updateSequence' not in already_processed: already_processed.append('updateSequence') self.updateSequence = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'AcceptVersions': obj_ = AcceptVersionsType.factory() obj_.build(child_) self.set_AcceptVersions(obj_) elif nodeName_ == 'Sections': obj_ = SectionsType.factory() obj_.build(child_) self.set_Sections(obj_) elif nodeName_ == 'AcceptFormats': obj_ = AcceptFormatsType.factory() obj_.build(child_) self.set_AcceptFormats(obj_) # end class GetCapabilitiesType class AcceptVersionsType(GeneratedsSuper): """Prioritized sequence of one or more specification versions accepted by client, with preferred versions listed first. See Version negotiation subclause for more information.""" subclass = None superclass = None def __init__(self, Version=None): if Version is None: self.Version = [] else: self.Version = Version def factory(*args_, **kwargs_): if AcceptVersionsType.subclass: return AcceptVersionsType.subclass(*args_, **kwargs_) else: return AcceptVersionsType(*args_, **kwargs_) factory = staticmethod(factory) def get_Version(self): return self.Version def set_Version(self, Version): self.Version = Version def add_Version(self, value): self.Version.append(value) def insert_Version(self, index, value): self.Version[index] = value def validate_VersionType(self, value): # Validate type VersionType, a restriction on string. pass def export(self, outfile, level, namespace_='', name_='AcceptVersionsType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AcceptVersionsType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AcceptVersionsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='AcceptVersionsType', fromsubclass_=False): for Version_ in self.Version: showIndent(outfile, level) outfile.write('<%sVersion>%s</%sVersion>\n' % (namespace_, self.gds_format_string(quote_xml(Version_).encode(ExternalEncoding), input_name='Version'), namespace_)) def hasContent_(self): if ( self.Version ): return True else: return False def exportLiteral(self, outfile, level, name_='AcceptVersionsType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Version=[\n') level += 1 for Version_ in self.Version: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Version_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Version': Version_ = child_.text Version_ = self.gds_validate_string(Version_, node, 'Version') self.Version.append(Version_) self.validate_VersionType(self.Version) # validate type VersionType # end class AcceptVersionsType class SectionsType(GeneratedsSuper): """Unordered list of zero or more names of requested sections in complete service metadata document. Each Section value shall contain an allowed section name as specified by each OWS specification. See Sections parameter subclause for more information.""" subclass = None superclass = None def __init__(self, Section=None): if Section is None: self.Section = [] else: self.Section = Section def factory(*args_, **kwargs_): if SectionsType.subclass: return SectionsType.subclass(*args_, **kwargs_) else: return SectionsType(*args_, **kwargs_) factory = staticmethod(factory) def get_Section(self): return self.Section def set_Section(self, Section): self.Section = Section def add_Section(self, value): self.Section.append(value) def insert_Section(self, index, value): self.Section[index] = value def export(self, outfile, level, namespace_='', name_='SectionsType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='SectionsType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='SectionsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='SectionsType', fromsubclass_=False): for Section_ in self.Section: showIndent(outfile, level) outfile.write('<%sSection>%s</%sSection>\n' % (namespace_, self.gds_format_string(quote_xml(Section_).encode(ExternalEncoding), input_name='Section'), namespace_)) def hasContent_(self): if ( self.Section ): return True else: return False def exportLiteral(self, outfile, level, name_='SectionsType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Section=[\n') level += 1 for Section_ in self.Section: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Section_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Section': Section_ = child_.text Section_ = self.gds_validate_string(Section_, node, 'Section') self.Section.append(Section_) # end class SectionsType class AcceptFormatsType(GeneratedsSuper): """Prioritized sequence of zero or more GetCapabilities operation response formats desired by client, with preferred formats listed first. Each response format shall be identified by its MIME type. See AcceptFormats parameter use subclause for more information.""" subclass = None superclass = None def __init__(self, OutputFormat=None): if OutputFormat is None: self.OutputFormat = [] else: self.OutputFormat = OutputFormat def factory(*args_, **kwargs_): if AcceptFormatsType.subclass: return AcceptFormatsType.subclass(*args_, **kwargs_) else: return AcceptFormatsType(*args_, **kwargs_) factory = staticmethod(factory) def get_OutputFormat(self): return self.OutputFormat def set_OutputFormat(self, OutputFormat): self.OutputFormat = OutputFormat def add_OutputFormat(self, value): self.OutputFormat.append(value) def insert_OutputFormat(self, index, value): self.OutputFormat[index] = value def validate_MimeType(self, value): # Validate type MimeType, a restriction on string. pass def export(self, outfile, level, namespace_='', name_='AcceptFormatsType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AcceptFormatsType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AcceptFormatsType'): pass def exportChildren(self, outfile, level, namespace_='', name_='AcceptFormatsType', fromsubclass_=False): for OutputFormat_ in self.OutputFormat: showIndent(outfile, level) outfile.write('<%sOutputFormat>%s</%sOutputFormat>\n' % (namespace_, self.gds_format_string(quote_xml(OutputFormat_).encode(ExternalEncoding), input_name='OutputFormat'), namespace_)) def hasContent_(self): if ( self.OutputFormat ): return True else: return False def exportLiteral(self, outfile, level, name_='AcceptFormatsType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('OutputFormat=[\n') level += 1 for OutputFormat_ in self.OutputFormat: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(OutputFormat_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'OutputFormat': OutputFormat_ = child_.text OutputFormat_ = self.gds_validate_string(OutputFormat_, node, 'OutputFormat') self.OutputFormat.append(OutputFormat_) self.validate_MimeType(self.OutputFormat) # validate type MimeType # end class AcceptFormatsType class ServiceIdentification(DescriptionType): """General metadata for this specific server. This XML Schema of this section shall be the same for all OWS.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, ServiceType=None, ServiceTypeVersion=None, Profile=None, Fees=None, AccessConstraints=None): super(ServiceIdentification, self).__init__(Title, Abstract, Keywords, ) self.ServiceType = ServiceType if ServiceTypeVersion is None: self.ServiceTypeVersion = [] else: self.ServiceTypeVersion = ServiceTypeVersion if Profile is None: self.Profile = [] else: self.Profile = Profile self.Fees = Fees if AccessConstraints is None: self.AccessConstraints = [] else: self.AccessConstraints = AccessConstraints def factory(*args_, **kwargs_): if ServiceIdentification.subclass: return ServiceIdentification.subclass(*args_, **kwargs_) else: return ServiceIdentification(*args_, **kwargs_) factory = staticmethod(factory) def get_ServiceType(self): return self.ServiceType def set_ServiceType(self, ServiceType): self.ServiceType = ServiceType def get_ServiceTypeVersion(self): return self.ServiceTypeVersion def set_ServiceTypeVersion(self, ServiceTypeVersion): self.ServiceTypeVersion = ServiceTypeVersion def add_ServiceTypeVersion(self, value): self.ServiceTypeVersion.append(value) def insert_ServiceTypeVersion(self, index, value): self.ServiceTypeVersion[index] = value def validate_VersionType(self, value): # Validate type VersionType, a restriction on string. pass def get_Profile(self): return self.Profile def set_Profile(self, Profile): self.Profile = Profile def add_Profile(self, value): self.Profile.append(value) def insert_Profile(self, index, value): self.Profile[index] = value def get_Fees(self): return self.Fees def set_Fees(self, Fees): self.Fees = Fees def get_AccessConstraints(self): return self.AccessConstraints def set_AccessConstraints(self, AccessConstraints): self.AccessConstraints = AccessConstraints def add_AccessConstraints(self, value): self.AccessConstraints.append(value) def insert_AccessConstraints(self, index, value): self.AccessConstraints[index] = value def export(self, outfile, level, namespace_='', name_='ServiceIdentification', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ServiceIdentification') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ServiceIdentification"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ServiceIdentification'): super(ServiceIdentification, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ServiceIdentification') def exportChildren(self, outfile, level, namespace_='', name_='ServiceIdentification', fromsubclass_=False): super(ServiceIdentification, self).exportChildren(outfile, level, namespace_, name_, True) if self.ServiceType: self.ServiceType.export(outfile, level, namespace_, name_='ServiceType', ) for ServiceTypeVersion_ in self.ServiceTypeVersion: showIndent(outfile, level) outfile.write('<%sServiceTypeVersion>%s</%sServiceTypeVersion>\n' % (namespace_, self.gds_format_string(quote_xml(ServiceTypeVersion_).encode(ExternalEncoding), input_name='ServiceTypeVersion'), namespace_)) for Profile_ in self.Profile: showIndent(outfile, level) outfile.write('<%sProfile>%s</%sProfile>\n' % (namespace_, self.gds_format_string(quote_xml(Profile_).encode(ExternalEncoding), input_name='Profile'), namespace_)) if self.Fees is not None: showIndent(outfile, level) outfile.write('<%sFees>%s</%sFees>\n' % (namespace_, self.gds_format_string(quote_xml(self.Fees).encode(ExternalEncoding), input_name='Fees'), namespace_)) for AccessConstraints_ in self.AccessConstraints: showIndent(outfile, level) outfile.write('<%sAccessConstraints>%s</%sAccessConstraints>\n' % (namespace_, self.gds_format_string(quote_xml(AccessConstraints_).encode(ExternalEncoding), input_name='AccessConstraints'), namespace_)) def hasContent_(self): if ( self.ServiceType is not None or self.ServiceTypeVersion or self.Profile or self.Fees is not None or self.AccessConstraints or super(ServiceIdentification, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ServiceIdentification'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ServiceIdentification, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ServiceIdentification, self).exportLiteralChildren(outfile, level, name_) if self.ServiceType is not None: showIndent(outfile, level) outfile.write('ServiceType=model_.CodeType(\n') self.ServiceType.exportLiteral(outfile, level, name_='ServiceType') showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('ServiceTypeVersion=[\n') level += 1 for ServiceTypeVersion_ in self.ServiceTypeVersion: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(ServiceTypeVersion_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Profile=[\n') level += 1 for Profile_ in self.Profile: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Profile_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.Fees is not None: showIndent(outfile, level) outfile.write('Fees=%s,\n' % quote_python(self.Fees).encode(ExternalEncoding)) showIndent(outfile, level) outfile.write('AccessConstraints=[\n') level += 1 for AccessConstraints_ in self.AccessConstraints: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(AccessConstraints_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ServiceIdentification, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ServiceType': obj_ = CodeType.factory() obj_.build(child_) self.set_ServiceType(obj_) elif nodeName_ == 'ServiceTypeVersion': ServiceTypeVersion_ = child_.text ServiceTypeVersion_ = self.gds_validate_string(ServiceTypeVersion_, node, 'ServiceTypeVersion') self.ServiceTypeVersion.append(ServiceTypeVersion_) self.validate_VersionType(self.ServiceTypeVersion) # validate type VersionType elif nodeName_ == 'Profile': Profile_ = child_.text Profile_ = self.gds_validate_string(Profile_, node, 'Profile') self.Profile.append(Profile_) elif nodeName_ == 'Fees': Fees_ = child_.text Fees_ = self.gds_validate_string(Fees_, node, 'Fees') self.Fees = Fees_ elif nodeName_ == 'AccessConstraints': AccessConstraints_ = child_.text AccessConstraints_ = self.gds_validate_string(AccessConstraints_, node, 'AccessConstraints') self.AccessConstraints.append(AccessConstraints_) super(ServiceIdentification, self).buildChildren(child_, node, nodeName_, True) # end class ServiceIdentification class ServiceProvider(GeneratedsSuper): """Metadata about the organization that provides this specific service instance or server.""" subclass = None superclass = None def __init__(self, ProviderName=None, ProviderSite=None, ServiceContact=None): self.ProviderName = ProviderName self.ProviderSite = ProviderSite self.ServiceContact = ServiceContact def factory(*args_, **kwargs_): if ServiceProvider.subclass: return ServiceProvider.subclass(*args_, **kwargs_) else: return ServiceProvider(*args_, **kwargs_) factory = staticmethod(factory) def get_ProviderName(self): return self.ProviderName def set_ProviderName(self, ProviderName): self.ProviderName = ProviderName def get_ProviderSite(self): return self.ProviderSite def set_ProviderSite(self, ProviderSite): self.ProviderSite = ProviderSite def get_ServiceContact(self): return self.ServiceContact def set_ServiceContact(self, ServiceContact): self.ServiceContact = ServiceContact def export(self, outfile, level, namespace_='', name_='ServiceProvider', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ServiceProvider') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ServiceProvider'): pass def exportChildren(self, outfile, level, namespace_='', name_='ServiceProvider', fromsubclass_=False): if self.ProviderName is not None: showIndent(outfile, level) outfile.write('<%sProviderName>%s</%sProviderName>\n' % (namespace_, self.gds_format_string(quote_xml(self.ProviderName).encode(ExternalEncoding), input_name='ProviderName'), namespace_)) if self.ProviderSite: self.ProviderSite.export(outfile, level, namespace_, name_='ProviderSite') if self.ServiceContact: self.ServiceContact.export(outfile, level, namespace_, name_='ServiceContact', ) def hasContent_(self): if ( self.ProviderName is not None or self.ProviderSite is not None or self.ServiceContact is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='ServiceProvider'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.ProviderName is not None: showIndent(outfile, level) outfile.write('ProviderName=%s,\n' % quote_python(self.ProviderName).encode(ExternalEncoding)) if self.ProviderSite is not None: showIndent(outfile, level) outfile.write('ProviderSite=model_.OnlineResourceType(\n') self.ProviderSite.exportLiteral(outfile, level, name_='ProviderSite') showIndent(outfile, level) outfile.write('),\n') if self.ServiceContact is not None: showIndent(outfile, level) outfile.write('ServiceContact=model_.ResponsiblePartySubsetType(\n') self.ServiceContact.exportLiteral(outfile, level, name_='ServiceContact') showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ProviderName': ProviderName_ = child_.text ProviderName_ = self.gds_validate_string(ProviderName_, node, 'ProviderName') self.ProviderName = ProviderName_ elif nodeName_ == 'ProviderSite': obj_ = OnlineResourceType.factory() obj_.build(child_) self.set_ProviderSite(obj_) elif nodeName_ == 'ServiceContact': obj_ = ResponsiblePartySubsetType.factory() obj_.build(child_) self.set_ServiceContact(obj_) # end class ServiceProvider class OperationsMetadata(GeneratedsSuper): """Metadata about the operations and related abilities specified by this service and implemented by this server, including the URLs for operation requests. The basic contents of this section shall be the same for all OWS types, but individual services can add elements and/or change the optionality of optional elements.""" subclass = None superclass = None def __init__(self, Operation=None, Parameter=None, Constraint=None, ExtendedCapabilities=None): if Operation is None: self.Operation = [] else: self.Operation = Operation if Parameter is None: self.Parameter = [] else: self.Parameter = Parameter if Constraint is None: self.Constraint = [] else: self.Constraint = Constraint self.ExtendedCapabilities = ExtendedCapabilities def factory(*args_, **kwargs_): if OperationsMetadata.subclass: return OperationsMetadata.subclass(*args_, **kwargs_) else: return OperationsMetadata(*args_, **kwargs_) factory = staticmethod(factory) def get_Operation(self): return self.Operation def set_Operation(self, Operation): self.Operation = Operation def add_Operation(self, value): self.Operation.append(value) def insert_Operation(self, index, value): self.Operation[index] = value def get_Parameter(self): return self.Parameter def set_Parameter(self, Parameter): self.Parameter = Parameter def add_Parameter(self, value): self.Parameter.append(value) def insert_Parameter(self, index, value): self.Parameter[index] = value def get_Constraint(self): return self.Constraint def set_Constraint(self, Constraint): self.Constraint = Constraint def add_Constraint(self, value): self.Constraint.append(value) def insert_Constraint(self, index, value): self.Constraint[index] = value def get_ExtendedCapabilities(self): return self.ExtendedCapabilities def set_ExtendedCapabilities(self, ExtendedCapabilities): self.ExtendedCapabilities = ExtendedCapabilities def export(self, outfile, level, namespace_='', name_='OperationsMetadata', namespacedef_=''): if namespace_ == '': namespace_ = 'ows:' showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='OperationsMetadata') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='OperationsMetadata'): pass def exportChildren(self, outfile, level, namespace_='', name_='OperationsMetadata', fromsubclass_=False): for Operation_ in self.Operation: Operation_.export(outfile, level, namespace_, name_='Operation') for Parameter_ in self.Parameter: Parameter_.export(outfile, level, namespace_, name_='Parameter') for Constraint_ in self.Constraint: Constraint_.export(outfile, level, namespace_, name_='Constraint') if self.ExtendedCapabilities is not None: showIndent(outfile, level) outfile.write('<%sExtendedCapabilities>%s</%sExtendedCapabilities>\n' % (namespace_, self.gds_format_string(quote_xml(self.ExtendedCapabilities).encode(ExternalEncoding), input_name='ExtendedCapabilities'), namespace_)) def hasContent_(self): if ( self.Operation or self.Parameter or self.Constraint or self.ExtendedCapabilities is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='OperationsMetadata'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Operation=[\n') level += 1 for Operation_ in self.Operation: showIndent(outfile, level) outfile.write('model_.Operation(\n') Operation_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Parameter=[\n') level += 1 for Parameter_ in self.Parameter: showIndent(outfile, level) outfile.write('model_.DomainType(\n') Parameter_.exportLiteral(outfile, level, name_='DomainType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Constraint=[\n') level += 1 for Constraint_ in self.Constraint: showIndent(outfile, level) outfile.write('model_.DomainType(\n') Constraint_.exportLiteral(outfile, level, name_='DomainType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.ExtendedCapabilities is not None: showIndent(outfile, level) outfile.write('ExtendedCapabilities=%s,\n' % quote_python(self.ExtendedCapabilities).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Operation': obj_ = Operation.factory() obj_.build(child_) self.Operation.append(obj_) elif nodeName_ == 'Parameter': obj_ = DomainType.factory() obj_.build(child_) self.Parameter.append(obj_) elif nodeName_ == 'Constraint': obj_ = DomainType.factory() obj_.build(child_) self.Constraint.append(obj_) elif nodeName_ == 'ExtendedCapabilities': ExtendedCapabilities_ = child_.text ExtendedCapabilities_ = self.gds_validate_string(ExtendedCapabilities_, node, 'ExtendedCapabilities') self.ExtendedCapabilities = ExtendedCapabilities_ # end class OperationsMetadata class Operation(GeneratedsSuper): """Metadata for one operation that this server implements. Name or identifier of this operation (request) (for example, GetCapabilities). The list of required and optional operations implemented shall be specified in the Implementation Specification for this service.""" subclass = None superclass = None def __init__(self, name=None, DCP=None, Parameter=None, Constraint=None, Metadata=None): self.name = _cast(None, name) if DCP is None: self.DCP = [] else: self.DCP = DCP if Parameter is None: self.Parameter = [] else: self.Parameter = Parameter if Constraint is None: self.Constraint = [] else: self.Constraint = Constraint if Metadata is None: self.Metadata = [] else: self.Metadata = Metadata def factory(*args_, **kwargs_): if Operation.subclass: return Operation.subclass(*args_, **kwargs_) else: return Operation(*args_, **kwargs_) factory = staticmethod(factory) def get_DCP(self): return self.DCP def set_DCP(self, DCP): self.DCP = DCP def add_DCP(self, value): self.DCP.append(value) def insert_DCP(self, index, value): self.DCP[index] = value def get_Parameter(self): return self.Parameter def set_Parameter(self, Parameter): self.Parameter = Parameter def add_Parameter(self, value): self.Parameter.append(value) def insert_Parameter(self, index, value): self.Parameter[index] = value def get_Constraint(self): return self.Constraint def set_Constraint(self, Constraint): self.Constraint = Constraint def add_Constraint(self, value): self.Constraint.append(value) def insert_Constraint(self, index, value): self.Constraint[index] = value def get_Metadata(self): return self.Metadata def set_Metadata(self, Metadata): self.Metadata = Metadata def add_Metadata(self, value): self.Metadata.append(value) def insert_Metadata(self, index, value): self.Metadata[index] = value def get_name(self): return self.name def set_name(self, name): self.name = name def export(self, outfile, level, namespace_='', name_='Operation', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Operation') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Operation'): if self.name is not None and 'name' not in already_processed: already_processed.append('name') outfile.write(' name=%s' % (self.gds_format_string(quote_attrib(self.name).encode(ExternalEncoding), input_name='name'), )) def exportChildren(self, outfile, level, namespace_='', name_='Operation', fromsubclass_=False): for DCP_ in self.DCP: DCP_.export(outfile, level, namespace_, name_='DCP') for Parameter_ in self.Parameter: Parameter_.export(outfile, level, namespace_, name_='Parameter') for Constraint_ in self.Constraint: Constraint_.export(outfile, level, namespace_, name_='Constraint') for Metadata_ in self.Metadata: Metadata_.export(outfile, level, namespace_, name_='Metadata') def hasContent_(self): if ( self.DCP or self.Parameter or self.Constraint or self.Metadata ): return True else: return False def exportLiteral(self, outfile, level, name_='Operation'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.name is not None and 'name' not in already_processed: already_processed.append('name') showIndent(outfile, level) outfile.write('name = "%s",\n' % (self.name,)) def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('DCP=[\n') level += 1 for DCP_ in self.DCP: showIndent(outfile, level) outfile.write('model_.DCP(\n') DCP_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Parameter=[\n') level += 1 for Parameter_ in self.Parameter: showIndent(outfile, level) outfile.write('model_.DomainType(\n') Parameter_.exportLiteral(outfile, level, name_='DomainType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Constraint=[\n') level += 1 for Constraint_ in self.Constraint: showIndent(outfile, level) outfile.write('model_.DomainType(\n') Constraint_.exportLiteral(outfile, level, name_='DomainType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Metadata=[\n') level += 1 for Metadata_ in self.Metadata: showIndent(outfile, level) outfile.write('model_.Metadata(\n') Metadata_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('name', node) if value is not None and 'name' not in already_processed: already_processed.append('name') self.name = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'DCP': obj_ = DCP.factory() obj_.build(child_) self.DCP.append(obj_) elif nodeName_ == 'Parameter': obj_ = DomainType.factory() obj_.build(child_) self.Parameter.append(obj_) elif nodeName_ == 'Constraint': obj_ = DomainType.factory() obj_.build(child_) self.Constraint.append(obj_) elif nodeName_ == 'Metadata': obj_ = MetadataType.factory() obj_.build(child_) self.Metadata.append(obj_) # end class Operation class DCP(GeneratedsSuper): """Information for one distributed Computing Platform (DCP) supported for this operation. At present, only the HTTP DCP is defined, so this element only includes the HTTP element.""" subclass = None superclass = None def __init__(self, HTTP=None): self.HTTP = HTTP def factory(*args_, **kwargs_): if DCP.subclass: return DCP.subclass(*args_, **kwargs_) else: return DCP(*args_, **kwargs_) factory = staticmethod(factory) def get_HTTP(self): return self.HTTP def set_HTTP(self, HTTP): self.HTTP = HTTP def export(self, outfile, level, namespace_='', name_='DCP', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='DCP') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='DCP'): pass def exportChildren(self, outfile, level, namespace_='', name_='DCP', fromsubclass_=False): if self.HTTP: self.HTTP.export(outfile, level, namespace_, name_='HTTP', ) def hasContent_(self): if ( self.HTTP is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='DCP'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.HTTP is not None: showIndent(outfile, level) outfile.write('HTTP=model_.HTTP(\n') self.HTTP.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'HTTP': obj_ = HTTP.factory() obj_.build(child_) self.set_HTTP(obj_) # end class DCP class HTTP(GeneratedsSuper): """Connect point URLs for the HTTP Distributed Computing Platform (DCP). Normally, only one Get and/or one Post is included in this element. More than one Get and/or Post is allowed to support including alternative URLs for uses such as load balancing or backup.""" subclass = None superclass = None def __init__(self, Get=None, Post=None): if Get is None: self.Get = [] else: self.Get = Get if Post is None: self.Post = [] else: self.Post = Post def factory(*args_, **kwargs_): if HTTP.subclass: return HTTP.subclass(*args_, **kwargs_) else: return HTTP(*args_, **kwargs_) factory = staticmethod(factory) def get_Get(self): return self.Get def set_Get(self, Get): self.Get = Get def add_Get(self, value): self.Get.append(value) def insert_Get(self, index, value): self.Get[index] = value def get_Post(self): return self.Post def set_Post(self, Post): self.Post = Post def add_Post(self, value): self.Post.append(value) def insert_Post(self, index, value): self.Post[index] = value def export(self, outfile, level, namespace_='', name_='HTTP', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='HTTP') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='HTTP'): pass def exportChildren(self, outfile, level, namespace_='', name_='HTTP', fromsubclass_=False): for Get_ in self.Get: Get_.export(outfile, level, namespace_, name_='Get') for Post_ in self.Post: Post_.export(outfile, level, namespace_, name_='Post') def hasContent_(self): if ( self.Get or self.Post ): return True else: return False def exportLiteral(self, outfile, level, name_='HTTP'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Get=[\n') level += 1 for Get_ in self.Get: showIndent(outfile, level) outfile.write('model_.RequestMethodType(\n') Get_.exportLiteral(outfile, level, name_='RequestMethodType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Post=[\n') level += 1 for Post_ in self.Post: showIndent(outfile, level) outfile.write('model_.RequestMethodType(\n') Post_.exportLiteral(outfile, level, name_='RequestMethodType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Get': obj_ = RequestMethodType.factory() obj_.build(child_) self.Get.append(obj_) elif nodeName_ == 'Post': obj_ = RequestMethodType.factory() obj_.build(child_) self.Post.append(obj_) # end class HTTP class RequestMethodType(OnlineResourceType): """Connect point URL and any constraints for this HTTP request method for this operation request. In the OnlineResourceType, the xlink:href attribute in the xlink:simpleLink attribute group shall be used to contain this URL. The other attributes in the xlink:simpleLink attribute group should not be used.""" subclass = None superclass = OnlineResourceType def __init__(self, title=None, arcrole=None, actuate=None, href=None, role=None, show=None, type_=None, Constraint=None): super(RequestMethodType, self).__init__(title, arcrole, actuate, href, role, show, type_, ) if Constraint is None: self.Constraint = [] else: self.Constraint = Constraint def factory(*args_, **kwargs_): if RequestMethodType.subclass: return RequestMethodType.subclass(*args_, **kwargs_) else: return RequestMethodType(*args_, **kwargs_) factory = staticmethod(factory) def get_Constraint(self): return self.Constraint def set_Constraint(self, Constraint): self.Constraint = Constraint def add_Constraint(self, value): self.Constraint.append(value) def insert_Constraint(self, index, value): self.Constraint[index] = value def export(self, outfile, level, namespace_='', name_='RequestMethodType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='RequestMethodType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="RequestMethodType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='RequestMethodType'): super(RequestMethodType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='RequestMethodType') def exportChildren(self, outfile, level, namespace_='', name_='RequestMethodType', fromsubclass_=False): super(RequestMethodType, self).exportChildren(outfile, level, namespace_, name_, True) for Constraint_ in self.Constraint: Constraint_.export(outfile, level, namespace_, name_='Constraint') def hasContent_(self): if ( self.Constraint or super(RequestMethodType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='RequestMethodType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(RequestMethodType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(RequestMethodType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('Constraint=[\n') level += 1 for Constraint_ in self.Constraint: showIndent(outfile, level) outfile.write('model_.DomainType(\n') Constraint_.exportLiteral(outfile, level, name_='DomainType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(RequestMethodType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Constraint': obj_ = DomainType.factory() obj_.build(child_) self.Constraint.append(obj_) super(RequestMethodType, self).buildChildren(child_, node, nodeName_, True) # end class RequestMethodType class UnNamedDomainType(GeneratedsSuper): """Valid domain (or allowed set of values) of one quantity, with needed metadata but without a quantity name or identifier.""" subclass = None superclass = None def __init__(self, AllowedValues=None, AnyValue=None, NoValues=None, ValuesReference=None, DefaultValue=None, Meaning=None, DataType=None, UOM=None, ReferenceSystem=None, Metadata=None): self.AllowedValues = AllowedValues self.AnyValue = AnyValue self.NoValues = NoValues self.ValuesReference = ValuesReference self.DefaultValue = DefaultValue self.Meaning = Meaning self.DataType = DataType self.UOM = UOM self.ReferenceSystem = ReferenceSystem if Metadata is None: self.Metadata = [] else: self.Metadata = Metadata def factory(*args_, **kwargs_): if UnNamedDomainType.subclass: return UnNamedDomainType.subclass(*args_, **kwargs_) else: return UnNamedDomainType(*args_, **kwargs_) factory = staticmethod(factory) def get_AllowedValues(self): return self.AllowedValues def set_AllowedValues(self, AllowedValues): self.AllowedValues = AllowedValues def get_AnyValue(self): return self.AnyValue def set_AnyValue(self, AnyValue): self.AnyValue = AnyValue def get_NoValues(self): return self.NoValues def set_NoValues(self, NoValues): self.NoValues = NoValues def get_ValuesReference(self): return self.ValuesReference def set_ValuesReference(self, ValuesReference): self.ValuesReference = ValuesReference def get_DefaultValue(self): return self.DefaultValue def set_DefaultValue(self, DefaultValue): self.DefaultValue = DefaultValue def get_Meaning(self): return self.Meaning def set_Meaning(self, Meaning): self.Meaning = Meaning def get_DataType(self): return self.DataType def set_DataType(self, DataType): self.DataType = DataType def get_UOM(self): return self.UOM def set_UOM(self, UOM): self.UOM = UOM def get_ReferenceSystem(self): return self.ReferenceSystem def set_ReferenceSystem(self, ReferenceSystem): self.ReferenceSystem = ReferenceSystem def get_Metadata(self): return self.Metadata def set_Metadata(self, Metadata): self.Metadata = Metadata def add_Metadata(self, value): self.Metadata.append(value) def insert_Metadata(self, index, value): self.Metadata[index] = value def export(self, outfile, level, namespace_='', name_='UnNamedDomainType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='UnNamedDomainType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='UnNamedDomainType'): pass def exportChildren(self, outfile, level, namespace_='', name_='UnNamedDomainType', fromsubclass_=False): if self.AllowedValues: self.AllowedValues.export(outfile, level, namespace_, name_='AllowedValues', ) if self.AnyValue: self.AnyValue.export(outfile, level, namespace_, name_='AnyValue', ) if self.NoValues: self.NoValues.export(outfile, level, namespace_, name_='NoValues', ) if self.ValuesReference: self.ValuesReference.export(outfile, level, namespace_, name_='ValuesReference', ) if self.DefaultValue: self.DefaultValue.export(outfile, level, namespace_, name_='DefaultValue') if self.Meaning: self.Meaning.export(outfile, level, namespace_, name_='Meaning') if self.DataType: self.DataType.export(outfile, level, namespace_, name_='DataType') if self.UOM: self.UOM.export(outfile, level, namespace_, name_='UOM', ) if self.ReferenceSystem: self.ReferenceSystem.export(outfile, level, namespace_, name_='ReferenceSystem', ) for Metadata_ in self.Metadata: Metadata_.export(outfile, level, namespace_, name_='Metadata') def hasContent_(self): if ( self.AllowedValues is not None or self.AnyValue is not None or self.NoValues is not None or self.ValuesReference is not None or self.DefaultValue is not None or self.Meaning is not None or self.DataType is not None or self.UOM is not None or self.ReferenceSystem is not None or self.Metadata ): return True else: return False def exportLiteral(self, outfile, level, name_='UnNamedDomainType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): if self.AllowedValues is not None: showIndent(outfile, level) outfile.write('AllowedValues=model_.AllowedValues(\n') self.AllowedValues.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.AnyValue is not None: showIndent(outfile, level) outfile.write('AnyValue=model_.AnyValue(\n') self.AnyValue.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.NoValues is not None: showIndent(outfile, level) outfile.write('NoValues=model_.NoValues(\n') self.NoValues.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.ValuesReference is not None: showIndent(outfile, level) outfile.write('ValuesReference=model_.ValuesReference(\n') self.ValuesReference.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.DefaultValue is not None: showIndent(outfile, level) outfile.write('DefaultValue=model_.DefaultValue(\n') self.DefaultValue.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.Meaning is not None: showIndent(outfile, level) outfile.write('Meaning=model_.Meaning(\n') self.Meaning.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.DataType is not None: showIndent(outfile, level) outfile.write('DataType=model_.DataType(\n') self.DataType.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.UOM is not None: showIndent(outfile, level) outfile.write('UOM=model_.UOM(\n') self.UOM.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.ReferenceSystem is not None: showIndent(outfile, level) outfile.write('ReferenceSystem=model_.ReferenceSystem(\n') self.ReferenceSystem.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('Metadata=[\n') level += 1 for Metadata_ in self.Metadata: showIndent(outfile, level) outfile.write('model_.Metadata(\n') Metadata_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'AllowedValues': obj_ = AllowedValues.factory() obj_.build(child_) self.set_AllowedValues(obj_) elif nodeName_ == 'AnyValue': obj_ = AnyValue.factory() obj_.build(child_) self.set_AnyValue(obj_) elif nodeName_ == 'NoValues': obj_ = NoValues.factory() obj_.build(child_) self.set_NoValues(obj_) elif nodeName_ == 'ValuesReference': obj_ = ValuesReference.factory() obj_.build(child_) self.set_ValuesReference(obj_) elif nodeName_ == 'DefaultValue': obj_ = ValueType.factory() obj_.build(child_) self.set_DefaultValue(obj_) elif nodeName_ == 'Meaning': obj_ = DomainMetadataType.factory() obj_.build(child_) self.set_Meaning(obj_) elif nodeName_ == 'DataType': obj_ = DomainMetadataType.factory() obj_.build(child_) self.set_DataType(obj_) elif nodeName_ == 'UOM': obj_ = DomainMetadataType.factory() obj_.build(child_) self.set_UOM(obj_) elif nodeName_ == 'ReferenceSystem': obj_ = DomainMetadataType.factory() obj_.build(child_) self.set_ReferenceSystem(obj_) elif nodeName_ == 'Metadata': obj_ = MetadataType.factory() obj_.build(child_) self.Metadata.append(obj_) # end class UnNamedDomainType class AnyValue(GeneratedsSuper): """Specifies that any value is allowed for this parameter.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if AnyValue.subclass: return AnyValue.subclass(*args_, **kwargs_) else: return AnyValue(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='AnyValue', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AnyValue') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AnyValue'): pass def exportChildren(self, outfile, level, namespace_='', name_='AnyValue', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='AnyValue'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class AnyValue class NoValues(GeneratedsSuper): """Specifies that no values are allowed for this parameter or quantity.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if NoValues.subclass: return NoValues.subclass(*args_, **kwargs_) else: return NoValues(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='NoValues', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='NoValues') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='NoValues'): pass def exportChildren(self, outfile, level, namespace_='', name_='NoValues', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='NoValues'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class NoValues class ValuesReference(GeneratedsSuper): """Reference to externally specified list of all the valid values and/or ranges of values for this quantity. (Informative: This element was simplified from the metaDataProperty element in GML 3.0.) Human-readable name of the list of values provided by the referenced document. Can be empty string when this list has no name.""" subclass = None superclass = None def __init__(self, reference=None, valueOf_=None): self.reference = _cast(None, reference) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if ValuesReference.subclass: return ValuesReference.subclass(*args_, **kwargs_) else: return ValuesReference(*args_, **kwargs_) factory = staticmethod(factory) def get_reference(self): return self.reference def set_reference(self, reference): self.reference = reference def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='ValuesReference', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ValuesReference') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ValuesReference'): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') outfile.write(' reference=%s' % (self.gds_format_string(quote_attrib(self.reference).encode(ExternalEncoding), input_name='reference'), )) def exportChildren(self, outfile, level, namespace_='', name_='ValuesReference', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='ValuesReference'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') showIndent(outfile, level) outfile.write('reference = "%s",\n' % (self.reference,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('reference', node) if value is not None and 'reference' not in already_processed: already_processed.append('reference') self.reference = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class ValuesReference class AllowedValues(GeneratedsSuper): """List of all the valid values and/or ranges of values for this quantity. For numeric quantities, signed values should be ordered from negative infinity to positive infinity.""" subclass = None superclass = None def __init__(self, Value=None, Range=None): if Value is None: self.Value = [] else: self.Value = Value if Range is None: self.Range = [] else: self.Range = Range def factory(*args_, **kwargs_): if AllowedValues.subclass: return AllowedValues.subclass(*args_, **kwargs_) else: return AllowedValues(*args_, **kwargs_) factory = staticmethod(factory) def get_Value(self): return self.Value def set_Value(self, Value): self.Value = Value def add_Value(self, value): self.Value.append(value) def insert_Value(self, index, value): self.Value[index] = value def get_Range(self): return self.Range def set_Range(self, Range): self.Range = Range def add_Range(self, value): self.Range.append(value) def insert_Range(self, index, value): self.Range[index] = value def export(self, outfile, level, namespace_='', name_='AllowedValues', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AllowedValues') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AllowedValues'): pass def exportChildren(self, outfile, level, namespace_='', name_='AllowedValues', fromsubclass_=False): for Value_ in self.Value: Value_.export(outfile, level, namespace_, name_='Value') for Range_ in self.Range: Range_.export(outfile, level, namespace_, name_='Range') def hasContent_(self): if ( self.Value or self.Range ): return True else: return False def exportLiteral(self, outfile, level, name_='AllowedValues'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Value=[\n') level += 1 for Value_ in self.Value: showIndent(outfile, level) outfile.write('model_.Value(\n') Value_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Range=[\n') level += 1 for Range_ in self.Range: showIndent(outfile, level) outfile.write('model_.Range(\n') Range_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Value': obj_ = ValueType.factory() obj_.build(child_) self.Value.append(obj_) elif nodeName_ == 'Range': obj_ = RangeType.factory() obj_.build(child_) self.Range.append(obj_) # end class AllowedValues class ValueType(GeneratedsSuper): """A single value, encoded as a string. This type can be used for one value, for a spacing between allowed values, or for the default value of a parameter.""" subclass = None superclass = None def __init__(self, valueOf_=None): self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if ValueType.subclass: return ValueType.subclass(*args_, **kwargs_) else: return ValueType(*args_, **kwargs_) factory = staticmethod(factory) def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='ValueType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ValueType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ValueType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ValueType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='ValueType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class ValueType class RangeType(GeneratedsSuper): """A range of values of a numeric parameter. This range can be continuous or discrete, defined by a fixed spacing between adjacent valid values. If the MinimumValue or MaximumValue is not included, there is no value limit in that direction. Inclusion of the specified minimum and maximum values in the range shall be defined by the rangeClosure. Shall be included unless the default value applies.""" subclass = None superclass = None def __init__(self, rangeClosure=None, MinimumValue=None, MaximumValue=None, Spacing=None): self.rangeClosure = _cast(None, rangeClosure) self.MinimumValue = MinimumValue self.MaximumValue = MaximumValue self.Spacing = Spacing def factory(*args_, **kwargs_): if RangeType.subclass: return RangeType.subclass(*args_, **kwargs_) else: return RangeType(*args_, **kwargs_) factory = staticmethod(factory) def get_MinimumValue(self): return self.MinimumValue def set_MinimumValue(self, MinimumValue): self.MinimumValue = MinimumValue def get_MaximumValue(self): return self.MaximumValue def set_MaximumValue(self, MaximumValue): self.MaximumValue = MaximumValue def get_Spacing(self): return self.Spacing def set_Spacing(self, Spacing): self.Spacing = Spacing def get_rangeClosure(self): return self.rangeClosure def set_rangeClosure(self, rangeClosure): self.rangeClosure = rangeClosure def export(self, outfile, level, namespace_='', name_='RangeType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='RangeType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='RangeType'): if self.rangeClosure is not None and 'rangeClosure' not in already_processed: already_processed.append('rangeClosure') outfile.write(' rangeClosure=%s' % (self.gds_format_string(quote_attrib(self.rangeClosure).encode(ExternalEncoding), input_name='rangeClosure'), )) def exportChildren(self, outfile, level, namespace_='', name_='RangeType', fromsubclass_=False): if self.MinimumValue: self.MinimumValue.export(outfile, level, namespace_, name_='MinimumValue') if self.MaximumValue: self.MaximumValue.export(outfile, level, namespace_, name_='MaximumValue') if self.Spacing: self.Spacing.export(outfile, level, namespace_, name_='Spacing') def hasContent_(self): if ( self.MinimumValue is not None or self.MaximumValue is not None or self.Spacing is not None ): return True else: return False def exportLiteral(self, outfile, level, name_='RangeType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.rangeClosure is not None and 'rangeClosure' not in already_processed: already_processed.append('rangeClosure') showIndent(outfile, level) outfile.write('rangeClosure = "%s",\n' % (self.rangeClosure,)) def exportLiteralChildren(self, outfile, level, name_): if self.MinimumValue is not None: showIndent(outfile, level) outfile.write('MinimumValue=model_.MinimumValue(\n') self.MinimumValue.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.MaximumValue is not None: showIndent(outfile, level) outfile.write('MaximumValue=model_.MaximumValue(\n') self.MaximumValue.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.Spacing is not None: showIndent(outfile, level) outfile.write('Spacing=model_.Spacing(\n') self.Spacing.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('rangeClosure', node) if value is not None and 'rangeClosure' not in already_processed: already_processed.append('rangeClosure') self.rangeClosure = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'MinimumValue': obj_ = ValueType.factory() obj_.build(child_) self.set_MinimumValue(obj_) elif nodeName_ == 'MaximumValue': obj_ = ValueType.factory() obj_.build(child_) self.set_MaximumValue(obj_) elif nodeName_ == 'Spacing': obj_ = ValueType.factory() obj_.build(child_) self.set_Spacing(obj_) # end class RangeType class DomainMetadataType(GeneratedsSuper): """References metadata about a quantity, and provides a name for this metadata. (Informative: This element was simplified from the metaDataProperty element in GML 3.0.) Human-readable name of the metadata described by associated referenced document.""" subclass = None superclass = None def __init__(self, reference=None, valueOf_=None): self.reference = _cast(None, reference) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if DomainMetadataType.subclass: return DomainMetadataType.subclass(*args_, **kwargs_) else: return DomainMetadataType(*args_, **kwargs_) factory = staticmethod(factory) def get_reference(self): return self.reference def set_reference(self, reference): self.reference = reference def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='DomainMetadataType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='DomainMetadataType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='DomainMetadataType'): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') outfile.write(' reference=%s' % (self.gds_format_string(quote_attrib(self.reference).encode(ExternalEncoding), input_name='reference'), )) def exportChildren(self, outfile, level, namespace_='', name_='DomainMetadataType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='DomainMetadataType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.reference is not None and 'reference' not in already_processed: already_processed.append('reference') showIndent(outfile, level) outfile.write('reference = "%s",\n' % (self.reference,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('reference', node) if value is not None and 'reference' not in already_processed: already_processed.append('reference') self.reference = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class DomainMetadataType class ExceptionReport(GeneratedsSuper): """Report message returned to the client that requested any OWS operation when the server detects an error while processing that operation request. Specification version for OWS operation. The string value shall contain one x.y.z "version" value (e.g., "2.1.3"). A version number shall contain three non-negative integers separated by decimal points, in the form "x.y.z". The integers y and z shall not exceed 99. Each version shall be for the Implementation Specification (document) and the associated XML Schemas to which requested operations will conform. An Implementation Specification version normally specifies XML Schemas against which an XML encoded operation response must conform and should be validated. See Version negotiation subclause for more information. Identifier of the language used by all included exception text values. These language identifiers shall be as specified in IETF RFC 4646. When this attribute is omitted, the language used is not identified.""" subclass = None superclass = None def __init__(self, lang=None, version=None, Exception=None): self.lang = _cast(None, lang) self.version = _cast(None, version) if Exception is None: self.Exception = [] else: self.Exception = Exception def factory(*args_, **kwargs_): if ExceptionReport.subclass: return ExceptionReport.subclass(*args_, **kwargs_) else: return ExceptionReport(*args_, **kwargs_) factory = staticmethod(factory) def get_Exception(self): return self.Exception def set_Exception(self, Exception): self.Exception = Exception def add_Exception(self, value): self.Exception.append(value) def insert_Exception(self, index, value): self.Exception[index] = value def get_lang(self): return self.lang def set_lang(self, lang): self.lang = lang def get_version(self): return self.version def set_version(self, version): self.version = version def export(self, outfile, level, namespace_='', name_='ExceptionReport', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ExceptionReport') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ExceptionReport'): if self.lang is not None and 'lang' not in already_processed: already_processed.append('lang') outfile.write(' lang=%s' % (self.gds_format_string(quote_attrib(self.lang).encode(ExternalEncoding), input_name='lang'), )) if self.version is not None and 'version' not in already_processed: already_processed.append('version') outfile.write(' version=%s' % (self.gds_format_string(quote_attrib(self.version).encode(ExternalEncoding), input_name='version'), )) def exportChildren(self, outfile, level, namespace_='', name_='ExceptionReport', fromsubclass_=False): for Exception_ in self.Exception: Exception_.export(outfile, level, namespace_, name_='Exception') def hasContent_(self): if ( self.Exception ): return True else: return False def exportLiteral(self, outfile, level, name_='ExceptionReport'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.lang is not None and 'lang' not in already_processed: already_processed.append('lang') showIndent(outfile, level) outfile.write('lang = "%s",\n' % (self.lang,)) if self.version is not None and 'version' not in already_processed: already_processed.append('version') showIndent(outfile, level) outfile.write('version = "%s",\n' % (self.version,)) def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('Exception=[\n') level += 1 for Exception_ in self.Exception: showIndent(outfile, level) outfile.write('model_.Exception(\n') Exception_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('lang', node) if value is not None and 'lang' not in already_processed: already_processed.append('lang') self.lang = value value = find_attr_value_('version', node) if value is not None and 'version' not in already_processed: already_processed.append('version') self.version = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Exception': obj_ = ExceptionType.factory() obj_.build(child_) self.Exception.append(obj_) # end class ExceptionReport class ExceptionType(GeneratedsSuper): """An Exception element describes one detected error that a server chooses to convey to the client. A code representing the type of this exception, which shall be selected from a set of exceptionCode values specified for the specific service operation and server. When included, this locator shall indicate to the client where an exception was encountered in servicing the client's operation request. This locator should be included whenever meaningful information can be provided by the server. The contents of this locator will depend on the specific exceptionCode and OWS service, and shall be specified in the OWS Implementation Specification.""" subclass = None superclass = None def __init__(self, locator=None, exceptionCode=None, ExceptionText=None): self.locator = _cast(None, locator) self.exceptionCode = _cast(None, exceptionCode) if ExceptionText is None: self.ExceptionText = [] else: self.ExceptionText = ExceptionText def factory(*args_, **kwargs_): if ExceptionType.subclass: return ExceptionType.subclass(*args_, **kwargs_) else: return ExceptionType(*args_, **kwargs_) factory = staticmethod(factory) def get_ExceptionText(self): return self.ExceptionText def set_ExceptionText(self, ExceptionText): self.ExceptionText = ExceptionText def add_ExceptionText(self, value): self.ExceptionText.append(value) def insert_ExceptionText(self, index, value): self.ExceptionText[index] = value def get_locator(self): return self.locator def set_locator(self, locator): self.locator = locator def get_exceptionCode(self): return self.exceptionCode def set_exceptionCode(self, exceptionCode): self.exceptionCode = exceptionCode def export(self, outfile, level, namespace_='', name_='ExceptionType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ExceptionType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ExceptionType'): if self.locator is not None and 'locator' not in already_processed: already_processed.append('locator') outfile.write(' locator=%s' % (self.gds_format_string(quote_attrib(self.locator).encode(ExternalEncoding), input_name='locator'), )) if self.exceptionCode is not None and 'exceptionCode' not in already_processed: already_processed.append('exceptionCode') outfile.write(' exceptionCode=%s' % (self.gds_format_string(quote_attrib(self.exceptionCode).encode(ExternalEncoding), input_name='exceptionCode'), )) def exportChildren(self, outfile, level, namespace_='', name_='ExceptionType', fromsubclass_=False): for ExceptionText_ in self.ExceptionText: showIndent(outfile, level) outfile.write('<%sExceptionText>%s</%sExceptionText>\n' % (namespace_, self.gds_format_string(quote_xml(ExceptionText_).encode(ExternalEncoding), input_name='ExceptionText'), namespace_)) def hasContent_(self): if ( self.ExceptionText ): return True else: return False def exportLiteral(self, outfile, level, name_='ExceptionType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.locator is not None and 'locator' not in already_processed: already_processed.append('locator') showIndent(outfile, level) outfile.write('locator = "%s",\n' % (self.locator,)) if self.exceptionCode is not None and 'exceptionCode' not in already_processed: already_processed.append('exceptionCode') showIndent(outfile, level) outfile.write('exceptionCode = "%s",\n' % (self.exceptionCode,)) def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('ExceptionText=[\n') level += 1 for ExceptionText_ in self.ExceptionText: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(ExceptionText_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('locator', node) if value is not None and 'locator' not in already_processed: already_processed.append('locator') self.locator = value value = find_attr_value_('exceptionCode', node) if value is not None and 'exceptionCode' not in already_processed: already_processed.append('exceptionCode') self.exceptionCode = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ExceptionText': ExceptionText_ = child_.text ExceptionText_ = self.gds_validate_string(ExceptionText_, node, 'ExceptionText') self.ExceptionText.append(ExceptionText_) # end class ExceptionType class ContentsBaseType(GeneratedsSuper): """Contents of typical Contents section of an OWS service metadata (Capabilities) document. This type shall be extended and/or restricted if needed for specific OWS use to include the specific metadata needed.""" subclass = None superclass = None def __init__(self, DatasetDescriptionSummary=None, OtherSource=None): if DatasetDescriptionSummary is None: self.DatasetDescriptionSummary = [] else: self.DatasetDescriptionSummary = DatasetDescriptionSummary if OtherSource is None: self.OtherSource = [] else: self.OtherSource = OtherSource def factory(*args_, **kwargs_): if ContentsBaseType.subclass: return ContentsBaseType.subclass(*args_, **kwargs_) else: return ContentsBaseType(*args_, **kwargs_) factory = staticmethod(factory) def get_DatasetDescriptionSummary(self): return self.DatasetDescriptionSummary def set_DatasetDescriptionSummary(self, DatasetDescriptionSummary): self.DatasetDescriptionSummary = DatasetDescriptionSummary def add_DatasetDescriptionSummary(self, value): self.DatasetDescriptionSummary.append(value) def insert_DatasetDescriptionSummary(self, index, value): self.DatasetDescriptionSummary[index] = value def get_OtherSource(self): return self.OtherSource def set_OtherSource(self, OtherSource): self.OtherSource = OtherSource def add_OtherSource(self, value): self.OtherSource.append(value) def insert_OtherSource(self, index, value): self.OtherSource[index] = value def export(self, outfile, level, namespace_='', name_='ContentsBaseType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ContentsBaseType') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ContentsBaseType'): pass def exportChildren(self, outfile, level, namespace_='', name_='ContentsBaseType', fromsubclass_=False): for DatasetDescriptionSummary_ in self.DatasetDescriptionSummary: DatasetDescriptionSummary_.export(outfile, level, namespace_, name_='Layer') for OtherSource_ in self.OtherSource: OtherSource_.export(outfile, level, namespace_, name_='OtherSource') def hasContent_(self): if ( self.DatasetDescriptionSummary or self.OtherSource ): return True else: return False def exportLiteral(self, outfile, level, name_='ContentsBaseType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): pass def exportLiteralChildren(self, outfile, level, name_): showIndent(outfile, level) outfile.write('DatasetDescriptionSummary=[\n') level += 1 for DatasetDescriptionSummary_ in self.DatasetDescriptionSummary: showIndent(outfile, level) outfile.write('model_.DatasetDescriptionSummary(\n') DatasetDescriptionSummary_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('OtherSource=[\n') level += 1 for OtherSource_ in self.OtherSource: showIndent(outfile, level) outfile.write('model_.OtherSource(\n') OtherSource_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): pass def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'DatasetDescriptionSummary': obj_ = DatasetDescriptionSummaryBaseType.factory() obj_.build(child_) self.DatasetDescriptionSummary.append(obj_) elif nodeName_ == 'OtherSource': obj_ = MetadataType.factory() obj_.build(child_) self.OtherSource.append(obj_) # end class ContentsBaseType class DatasetDescriptionSummaryBaseType(DescriptionType): """Typical dataset metadata in typical Contents section of an OWS service metadata (Capabilities) document. This type shall be extended and/or restricted if needed for specific OWS use, to include the specific Dataset description metadata needed.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, WGS84BoundingBox=None, Identifier=None, BoundingBox=None, Metadata=None, DatasetDescriptionSummary=None): super(DatasetDescriptionSummaryBaseType, self).__init__(Title, Abstract, Keywords, ) if WGS84BoundingBox is None: self.WGS84BoundingBox = [] else: self.WGS84BoundingBox = WGS84BoundingBox self.Identifier = Identifier if BoundingBox is None: self.BoundingBox = [] else: self.BoundingBox = BoundingBox if Metadata is None: self.Metadata = [] else: self.Metadata = Metadata if DatasetDescriptionSummary is None: self.DatasetDescriptionSummary = [] else: self.DatasetDescriptionSummary = DatasetDescriptionSummary def factory(*args_, **kwargs_): if DatasetDescriptionSummaryBaseType.subclass: return DatasetDescriptionSummaryBaseType.subclass(*args_, **kwargs_) else: return DatasetDescriptionSummaryBaseType(*args_, **kwargs_) factory = staticmethod(factory) def get_WGS84BoundingBox(self): return self.WGS84BoundingBox def set_WGS84BoundingBox(self, WGS84BoundingBox): self.WGS84BoundingBox = WGS84BoundingBox def add_WGS84BoundingBox(self, value): self.WGS84BoundingBox.append(value) def insert_WGS84BoundingBox(self, index, value): self.WGS84BoundingBox[index] = value def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_BoundingBox(self): return self.BoundingBox def set_BoundingBox(self, BoundingBox): self.BoundingBox = BoundingBox def add_BoundingBox(self, value): self.BoundingBox.append(value) def insert_BoundingBox(self, index, value): self.BoundingBox[index] = value def get_Metadata(self): return self.Metadata def set_Metadata(self, Metadata): self.Metadata = Metadata def add_Metadata(self, value): self.Metadata.append(value) def insert_Metadata(self, index, value): self.Metadata[index] = value def get_DatasetDescriptionSummary(self): return self.DatasetDescriptionSummary def set_DatasetDescriptionSummary(self, DatasetDescriptionSummary): self.DatasetDescriptionSummary = DatasetDescriptionSummary def add_DatasetDescriptionSummary(self, value): self.DatasetDescriptionSummary.append(value) def insert_DatasetDescriptionSummary(self, index, value): self.DatasetDescriptionSummary[index] = value def export(self, outfile, level, namespace_='', name_='DatasetDescriptionSummaryBaseType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='DatasetDescriptionSummaryBaseType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="DatasetDescriptionSummaryBaseType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='DatasetDescriptionSummaryBaseType'): super(DatasetDescriptionSummaryBaseType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='DatasetDescriptionSummaryBaseType') def exportChildren(self, outfile, level, namespace_='', name_='DatasetDescriptionSummaryBaseType', fromsubclass_=False): super(DatasetDescriptionSummaryBaseType, self).exportChildren(outfile, level, namespace_, name_, True) for WGS84BoundingBox_ in self.WGS84BoundingBox: WGS84BoundingBox_.export(outfile, level, namespace_, name_='WGS84BoundingBox') if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) for BoundingBox_ in self.BoundingBox: BoundingBox_.export(outfile, level, namespace_, name_='BoundingBox') for Metadata_ in self.Metadata: Metadata_.export(outfile, level, namespace_, name_='Metadata') for DatasetDescriptionSummary_ in self.DatasetDescriptionSummary: DatasetDescriptionSummary_.export(outfile, level, namespace_, name_='DatasetDescriptionSummary') def hasContent_(self): if ( self.WGS84BoundingBox or self.Identifier is not None or self.BoundingBox or self.Metadata or self.DatasetDescriptionSummary or super(DatasetDescriptionSummaryBaseType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='DatasetDescriptionSummaryBaseType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(DatasetDescriptionSummaryBaseType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(DatasetDescriptionSummaryBaseType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('WGS84BoundingBox=[\n') level += 1 for WGS84BoundingBox_ in self.WGS84BoundingBox: showIndent(outfile, level) outfile.write('model_.WGS84BoundingBox(\n') WGS84BoundingBox_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.CodeType(\n') self.Identifier.exportLiteral(outfile, level, name_='Identifier') showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('BoundingBox=[\n') level += 1 for BoundingBox_ in self.BoundingBox: showIndent(outfile, level) outfile.write('model_.BoundingBox(\n') BoundingBox_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Metadata=[\n') level += 1 for Metadata_ in self.Metadata: showIndent(outfile, level) outfile.write('model_.Metadata(\n') Metadata_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('DatasetDescriptionSummary=[\n') level += 1 for DatasetDescriptionSummary_ in self.DatasetDescriptionSummary: showIndent(outfile, level) outfile.write('model_.DatasetDescriptionSummary(\n') DatasetDescriptionSummary_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(DatasetDescriptionSummaryBaseType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'WGS84BoundingBox': obj_ = WGS84BoundingBoxType.factory() obj_.build(child_) self.WGS84BoundingBox.append(obj_) elif nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'BoundingBox': obj_ = BoundingBoxType.factory() obj_.build(child_) self.BoundingBox.append(obj_) elif nodeName_ == 'Metadata': obj_ = MetadataType.factory() obj_.build(child_) self.Metadata.append(obj_) elif nodeName_ == 'DatasetDescriptionSummary': obj_ = DatasetDescriptionSummaryBaseType.factory() obj_.build(child_) self.DatasetDescriptionSummary.append(obj_) super(DatasetDescriptionSummaryBaseType, self).buildChildren(child_, node, nodeName_, True) # end class DatasetDescriptionSummaryBaseType class AbstractReferenceBaseType(GeneratedsSuper): """Base for a reference to a remote or local resource. This type contains only a restricted and annotated set of the attributes from the xlink:simpleLink attributeGroup. Reference to a remote resource or local payload. A remote resource is typically addressed by a URL. For a local payload (such as a multipart mime message), the xlink:href must start with the prefix cid:. Reference to a resource that describes the role of this reference. When no value is supplied, no particular role value is to be inferred. Although allowed, this attribute is not expected to be useful in this application of xlink:simpleLink. Describes the meaning of the referenced resource in a human- readable fashion. Although allowed, this attribute is not expected to be useful in this application of xlink:simpleLink. Although allowed, this attribute is not expected to be useful in this application of xlink:simpleLink.""" subclass = None superclass = None def __init__(self, show=None, title=None, actuate=None, href=None, role=None, arcrole=None, type_=None, valueOf_=None): self.show = _cast(None, show) self.title = _cast(None, title) self.actuate = _cast(None, actuate) self.href = _cast(None, href) self.role = _cast(None, role) self.arcrole = _cast(None, arcrole) self.type_ = _cast(None, type_) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if AbstractReferenceBaseType.subclass: return AbstractReferenceBaseType.subclass(*args_, **kwargs_) else: return AbstractReferenceBaseType(*args_, **kwargs_) factory = staticmethod(factory) def get_show(self): return self.show def set_show(self, show): self.show = show def get_title(self): return self.title def set_title(self, title): self.title = title def get_actuate(self): return self.actuate def set_actuate(self, actuate): self.actuate = actuate def get_href(self): return self.href def set_href(self, href): self.href = href def get_role(self): return self.role def set_role(self, role): self.role = role def get_arcrole(self): return self.arcrole def set_arcrole(self, arcrole): self.arcrole = arcrole def get_type(self): return self.type_ def set_type(self, type_): self.type_ = type_ def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='AbstractReferenceBaseType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='AbstractReferenceBaseType') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='AbstractReferenceBaseType'): if self.show is not None and 'show' not in already_processed: already_processed.append('show') outfile.write(' show=%s' % (self.gds_format_string(quote_attrib(self.show).encode(ExternalEncoding), input_name='show'), )) if self.title is not None and 'title' not in already_processed: already_processed.append('title') outfile.write(' title=%s' % (self.gds_format_string(quote_attrib(self.title).encode(ExternalEncoding), input_name='title'), )) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') outfile.write(' actuate=%s' % (self.gds_format_string(quote_attrib(self.actuate).encode(ExternalEncoding), input_name='actuate'), )) if self.href is not None and 'href' not in already_processed: already_processed.append('href') outfile.write(' href=%s' % (self.gds_format_string(quote_attrib(self.href).encode(ExternalEncoding), input_name='href'), )) if self.role is not None and 'role' not in already_processed: already_processed.append('role') outfile.write(' role=%s' % (self.gds_format_string(quote_attrib(self.role).encode(ExternalEncoding), input_name='role'), )) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') outfile.write(' arcrole=%s' % (self.gds_format_string(quote_attrib(self.arcrole).encode(ExternalEncoding), input_name='arcrole'), )) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') outfile.write(' type=%s' % (self.gds_format_string(quote_attrib(self.type_).encode(ExternalEncoding), input_name='type'), )) def exportChildren(self, outfile, level, namespace_='', name_='AbstractReferenceBaseType', fromsubclass_=False): pass def hasContent_(self): if ( self.valueOf_ ): return True else: return False def exportLiteral(self, outfile, level, name_='AbstractReferenceBaseType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.show is not None and 'show' not in already_processed: already_processed.append('show') showIndent(outfile, level) outfile.write('show = "%s",\n' % (self.show,)) if self.title is not None and 'title' not in already_processed: already_processed.append('title') showIndent(outfile, level) outfile.write('title = "%s",\n' % (self.title,)) if self.actuate is not None and 'actuate' not in already_processed: already_processed.append('actuate') showIndent(outfile, level) outfile.write('actuate = "%s",\n' % (self.actuate,)) if self.href is not None and 'href' not in already_processed: already_processed.append('href') showIndent(outfile, level) outfile.write('href = "%s",\n' % (self.href,)) if self.role is not None and 'role' not in already_processed: already_processed.append('role') showIndent(outfile, level) outfile.write('role = "%s",\n' % (self.role,)) if self.arcrole is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') showIndent(outfile, level) outfile.write('arcrole = "%s",\n' % (self.arcrole,)) if self.type_ is not None and 'type_' not in already_processed: already_processed.append('type_') showIndent(outfile, level) outfile.write('type_ = "%s",\n' % (self.type_,)) def exportLiteralChildren(self, outfile, level, name_): pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('show', node) if value is not None and 'show' not in already_processed: already_processed.append('show') self.show = value value = find_attr_value_('title', node) if value is not None and 'title' not in already_processed: already_processed.append('title') self.title = value value = find_attr_value_('actuate', node) if value is not None and 'actuate' not in already_processed: already_processed.append('actuate') self.actuate = value value = find_attr_value_('href', node) if value is not None and 'href' not in already_processed: already_processed.append('href') self.href = value value = find_attr_value_('role', node) if value is not None and 'role' not in already_processed: already_processed.append('role') self.role = value value = find_attr_value_('arcrole', node) if value is not None and 'arcrole' not in already_processed: already_processed.append('arcrole') self.arcrole = value value = find_attr_value_('type', node) if value is not None and 'type' not in already_processed: already_processed.append('type') self.type_ = value def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): pass # end class AbstractReferenceBaseType class ReferenceType(AbstractReferenceBaseType): """Complete reference to a remote or local resource, allowing including metadata about that resource.""" subclass = None superclass = AbstractReferenceBaseType def __init__(self, show=None, title=None, actuate=None, href=None, role=None, arcrole=None, type_=None, Identifier=None, Abstract=None, Format=None, Metadata=None): super(ReferenceType, self).__init__(show, title, actuate, href, role, arcrole, type_, ) self.Identifier = Identifier if Abstract is None: self.Abstract = [] else: self.Abstract = Abstract self.Format = Format if Metadata is None: self.Metadata = [] else: self.Metadata = Metadata def factory(*args_, **kwargs_): if ReferenceType.subclass: return ReferenceType.subclass(*args_, **kwargs_) else: return ReferenceType(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_Abstract(self): return self.Abstract def set_Abstract(self, Abstract): self.Abstract = Abstract def add_Abstract(self, value): self.Abstract.append(value) def insert_Abstract(self, index, value): self.Abstract[index] = value def get_Format(self): return self.Format def set_Format(self, Format): self.Format = Format def validate_MimeType(self, value): # Validate type MimeType, a restriction on string. pass def get_Metadata(self): return self.Metadata def set_Metadata(self, Metadata): self.Metadata = Metadata def add_Metadata(self, value): self.Metadata.append(value) def insert_Metadata(self, index, value): self.Metadata[index] = value def export(self, outfile, level, namespace_='', name_='ReferenceType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ReferenceType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ReferenceType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ReferenceType'): super(ReferenceType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ReferenceType') def exportChildren(self, outfile, level, namespace_='', name_='ReferenceType', fromsubclass_=False): super(ReferenceType, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier') for Abstract_ in self.Abstract: Abstract_.export(outfile, level, namespace_, name_='Abstract') if self.Format is not None: showIndent(outfile, level) outfile.write('<%sFormat>%s</%sFormat>\n' % (namespace_, self.gds_format_string(quote_xml(self.Format).encode(ExternalEncoding), input_name='Format'), namespace_)) for Metadata_ in self.Metadata: Metadata_.export(outfile, level, namespace_, name_='Metadata') def hasContent_(self): if ( self.Identifier is not None or self.Abstract or self.Format is not None or self.Metadata or super(ReferenceType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ReferenceType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ReferenceType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ReferenceType, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('Abstract=[\n') level += 1 for Abstract_ in self.Abstract: showIndent(outfile, level) outfile.write('model_.Abstract(\n') Abstract_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') if self.Format is not None: showIndent(outfile, level) outfile.write('Format=%s,\n' % quote_python(self.Format).encode(ExternalEncoding)) showIndent(outfile, level) outfile.write('Metadata=[\n') level += 1 for Metadata_ in self.Metadata: showIndent(outfile, level) outfile.write('model_.Metadata(\n') Metadata_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ReferenceType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'Abstract': obj_ = LanguageStringType.factory() obj_.build(child_) self.Abstract.append(obj_) elif nodeName_ == 'Format': Format_ = child_.text Format_ = self.gds_validate_string(Format_, node, 'Format') self.Format = Format_ self.validate_MimeType(self.Format) # validate type MimeType elif nodeName_ == 'Metadata': obj_ = MetadataType.factory() obj_.build(child_) self.Metadata.append(obj_) super(ReferenceType, self).buildChildren(child_, node, nodeName_, True) # end class ReferenceType class ReferenceGroupType(BasicIdentificationType): """Logical group of one or more references to remote and/or local resources, allowing including metadata about that group. A Group can be used instead of a Manifest that can only contain one group.""" subclass = None superclass = BasicIdentificationType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, Metadata=None, AbstractReferenceBase=None): super(ReferenceGroupType, self).__init__(Title, Abstract, Keywords, Identifier, Metadata, ) if AbstractReferenceBase is None: self.AbstractReferenceBase = [] else: self.AbstractReferenceBase = AbstractReferenceBase def factory(*args_, **kwargs_): if ReferenceGroupType.subclass: return ReferenceGroupType.subclass(*args_, **kwargs_) else: return ReferenceGroupType(*args_, **kwargs_) factory = staticmethod(factory) def get_AbstractReferenceBase(self): return self.AbstractReferenceBase def set_AbstractReferenceBase(self, AbstractReferenceBase): self.AbstractReferenceBase = AbstractReferenceBase def add_AbstractReferenceBase(self, value): self.AbstractReferenceBase.append(value) def insert_AbstractReferenceBase(self, index, value): self.AbstractReferenceBase[index] = value def export(self, outfile, level, namespace_='', name_='ReferenceGroupType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ReferenceGroupType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ReferenceGroupType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ReferenceGroupType'): super(ReferenceGroupType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ReferenceGroupType') def exportChildren(self, outfile, level, namespace_='', name_='ReferenceGroupType', fromsubclass_=False): super(ReferenceGroupType, self).exportChildren(outfile, level, namespace_, name_, True) for AbstractReferenceBase_ in self.get_AbstractReferenceBase(): AbstractReferenceBase_.export(outfile, level, namespace_, name_='AbstractReferenceBase') def hasContent_(self): if ( self.AbstractReferenceBase or super(ReferenceGroupType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ReferenceGroupType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ReferenceGroupType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ReferenceGroupType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('AbstractReferenceBase=[\n') level += 1 for AbstractReferenceBase_ in self.AbstractReferenceBase: showIndent(outfile, level) outfile.write('model_.AbstractReferenceBase(\n') AbstractReferenceBase_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ReferenceGroupType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'AbstractReferenceBase': type_name_ = child_.attrib.get('{http://www.w3.org/2001/XMLSchema-instance}type') if type_name_ is None: type_name_ = child_.attrib.get('type') if type_name_ is not None: type_names_ = type_name_.split(':') if len(type_names_) == 1: type_name_ = type_names_[0] else: type_name_ = type_names_[1] class_ = globals()[type_name_] obj_ = class_.factory() obj_.build(child_) else: raise NotImplementedError( 'Class not implemented for <AbstractReferenceBase> element') self.AbstractReferenceBase.append(obj_) super(ReferenceGroupType, self).buildChildren(child_, node, nodeName_, True) # end class ReferenceGroupType class ManifestType(BasicIdentificationType): """Unordered list of one or more groups of references to remote and/or local resources.""" subclass = None superclass = BasicIdentificationType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, Metadata=None, ReferenceGroup=None): super(ManifestType, self).__init__(Title, Abstract, Keywords, Identifier, Metadata, ) if ReferenceGroup is None: self.ReferenceGroup = [] else: self.ReferenceGroup = ReferenceGroup def factory(*args_, **kwargs_): if ManifestType.subclass: return ManifestType.subclass(*args_, **kwargs_) else: return ManifestType(*args_, **kwargs_) factory = staticmethod(factory) def get_ReferenceGroup(self): return self.ReferenceGroup def set_ReferenceGroup(self, ReferenceGroup): self.ReferenceGroup = ReferenceGroup def add_ReferenceGroup(self, value): self.ReferenceGroup.append(value) def insert_ReferenceGroup(self, index, value): self.ReferenceGroup[index] = value def export(self, outfile, level, namespace_='', name_='ManifestType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ManifestType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ManifestType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ManifestType'): super(ManifestType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ManifestType') def exportChildren(self, outfile, level, namespace_='', name_='ManifestType', fromsubclass_=False): super(ManifestType, self).exportChildren(outfile, level, namespace_, name_, True) for ReferenceGroup_ in self.ReferenceGroup: ReferenceGroup_.export(outfile, level, namespace_, name_='ReferenceGroup') def hasContent_(self): if ( self.ReferenceGroup or super(ManifestType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ManifestType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ManifestType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ManifestType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('ReferenceGroup=[\n') level += 1 for ReferenceGroup_ in self.ReferenceGroup: showIndent(outfile, level) outfile.write('model_.ReferenceGroup(\n') ReferenceGroup_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ManifestType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'ReferenceGroup': obj_ = ReferenceGroupType.factory() obj_.build(child_) self.ReferenceGroup.append(obj_) super(ManifestType, self).buildChildren(child_, node, nodeName_, True) # end class ManifestType class ServiceReferenceType(ReferenceType): """Complete reference to a remote resource that needs to be retrieved from an OWS using an XML-encoded operation request. This element shall be used, within an InputData or Manifest element that is used for input data, when that input data needs to be retrieved from another web service using a XML-encoded OWS operation request. This element shall not be used for local payload input data or for requesting the resource from a web server using HTTP Get.""" subclass = None superclass = ReferenceType def __init__(self, show=None, title=None, actuate=None, href=None, role=None, arcrole=None, type_=None, Identifier=None, Abstract=None, Format=None, Metadata=None, RequestMessage=None, RequestMessageReference=None): super(ServiceReferenceType, self).__init__(show, title, actuate, href, role, arcrole, type_, Identifier, Abstract, Format, Metadata, ) self.RequestMessage = RequestMessage self.RequestMessageReference = RequestMessageReference def factory(*args_, **kwargs_): if ServiceReferenceType.subclass: return ServiceReferenceType.subclass(*args_, **kwargs_) else: return ServiceReferenceType(*args_, **kwargs_) factory = staticmethod(factory) def get_RequestMessage(self): return self.RequestMessage def set_RequestMessage(self, RequestMessage): self.RequestMessage = RequestMessage def get_RequestMessageReference(self): return self.RequestMessageReference def set_RequestMessageReference(self, RequestMessageReference): self.RequestMessageReference = RequestMessageReference def export(self, outfile, level, namespace_='', name_='ServiceReferenceType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ServiceReferenceType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ServiceReferenceType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ServiceReferenceType'): super(ServiceReferenceType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ServiceReferenceType') def exportChildren(self, outfile, level, namespace_='', name_='ServiceReferenceType', fromsubclass_=False): super(ServiceReferenceType, self).exportChildren(outfile, level, namespace_, name_, True) if self.RequestMessage is not None: showIndent(outfile, level) outfile.write('<%sRequestMessage>%s</%sRequestMessage>\n' % (namespace_, self.gds_format_string(quote_xml(self.RequestMessage).encode(ExternalEncoding), input_name='RequestMessage'), namespace_)) if self.RequestMessageReference is not None: showIndent(outfile, level) outfile.write('<%sRequestMessageReference>%s</%sRequestMessageReference>\n' % (namespace_, self.gds_format_string(quote_xml(self.RequestMessageReference).encode(ExternalEncoding), input_name='RequestMessageReference'), namespace_)) def hasContent_(self): if ( self.RequestMessage is not None or self.RequestMessageReference is not None or super(ServiceReferenceType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ServiceReferenceType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ServiceReferenceType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ServiceReferenceType, self).exportLiteralChildren(outfile, level, name_) if self.RequestMessage is not None: showIndent(outfile, level) outfile.write('RequestMessage=%s,\n' % quote_python(self.RequestMessage).encode(ExternalEncoding)) if self.RequestMessageReference is not None: showIndent(outfile, level) outfile.write('RequestMessageReference=%s,\n' % quote_python(self.RequestMessageReference).encode(ExternalEncoding)) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ServiceReferenceType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'RequestMessage': RequestMessage_ = child_.text RequestMessage_ = self.gds_validate_string(RequestMessage_, node, 'RequestMessage') self.RequestMessage = RequestMessage_ elif nodeName_ == 'RequestMessageReference': RequestMessageReference_ = child_.text RequestMessageReference_ = self.gds_validate_string(RequestMessageReference_, node, 'RequestMessageReference') self.RequestMessageReference = RequestMessageReference_ super(ServiceReferenceType, self).buildChildren(child_, node, nodeName_, True) # end class ServiceReferenceType class DomainType(UnNamedDomainType): """Valid domain (or allowed set of values) of one quantity, with its name or identifier. Name or identifier of this quantity.""" subclass = None superclass = UnNamedDomainType def __init__(self, AllowedValues=None, AnyValue=None, NoValues=None, ValuesReference=None, DefaultValue=None, Meaning=None, DataType=None, UOM=None, ReferenceSystem=None, Metadata=None, name=None): super(DomainType, self).__init__(AllowedValues, AnyValue, NoValues, ValuesReference, DefaultValue, Meaning, DataType, UOM, ReferenceSystem, Metadata, ) self.name = _cast(None, name) pass def factory(*args_, **kwargs_): if DomainType.subclass: return DomainType.subclass(*args_, **kwargs_) else: return DomainType(*args_, **kwargs_) factory = staticmethod(factory) def get_name(self): return self.name def set_name(self, name): self.name = name def export(self, outfile, level, namespace_='', name_='DomainType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='DomainType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="DomainType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='DomainType'): super(DomainType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='DomainType') if self.name is not None and 'name' not in already_processed: already_processed.append('name') outfile.write(' name=%s' % (self.gds_format_string(quote_attrib(self.name).encode(ExternalEncoding), input_name='name'), )) def exportChildren(self, outfile, level, namespace_='', name_='DomainType', fromsubclass_=False): super(DomainType, self).exportChildren(outfile, level, namespace_, name_, True) def hasContent_(self): if ( super(DomainType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='DomainType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.name is not None and 'name' not in already_processed: already_processed.append('name') showIndent(outfile, level) outfile.write('name = "%s",\n' % (self.name,)) super(DomainType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(DomainType, self).exportLiteralChildren(outfile, level, name_) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('name', node) if value is not None and 'name' not in already_processed: already_processed.append('name') self.name = value super(DomainType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): super(DomainType, self).buildChildren(child_, node, nodeName_, True) pass # end class DomainType class Theme(DescriptionType): subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, Theme=None, LayerRef=None): super(Theme, self).__init__(Title, Abstract, Keywords, ) self.Identifier = Identifier if Theme is None: self.Theme = [] else: self.Theme = Theme if LayerRef is None: self.LayerRef = [] else: self.LayerRef = LayerRef def factory(*args_, **kwargs_): if Theme.subclass: return Theme.subclass(*args_, **kwargs_) else: return Theme(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_Theme(self): return self.Theme def set_Theme(self, Theme): self.Theme = Theme def add_Theme(self, value): self.Theme.append(value) def insert_Theme(self, index, value): self.Theme[index] = value def get_LayerRef(self): return self.LayerRef def set_LayerRef(self, LayerRef): self.LayerRef = LayerRef def add_LayerRef(self, value): self.LayerRef.append(value) def insert_LayerRef(self, index, value): self.LayerRef[index] = value def export(self, outfile, level, namespace_='', name_='Theme', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Theme') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="Theme"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Theme'): super(Theme, self).exportAttributes(outfile, level, already_processed, namespace_, name_='Theme') def exportChildren(self, outfile, level, namespace_='', name_='Theme', fromsubclass_=False): super(Theme, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) for Theme_ in self.Theme: Theme_.export(outfile, level, namespace_, name_='Theme') for LayerRef_ in self.LayerRef: showIndent(outfile, level) outfile.write('<%sLayerRef>%s</%sLayerRef>\n' % (namespace_, self.gds_format_string(quote_xml(LayerRef_).encode(ExternalEncoding), input_name='LayerRef'), namespace_)) def hasContent_(self): if ( self.Identifier is not None or self.Theme or self.LayerRef or super(Theme, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='Theme'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(Theme, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(Theme, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('Theme=[\n') level += 1 for Theme_ in self.Theme: showIndent(outfile, level) outfile.write('model_.Theme(\n') Theme_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('LayerRef=[\n') level += 1 for LayerRef_ in self.LayerRef: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(LayerRef_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(Theme, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'Theme': obj_ = Theme.factory() obj_.build(child_) self.Theme.append(obj_) elif nodeName_ == 'LayerRef': LayerRef_ = child_.text LayerRef_ = self.gds_validate_string(LayerRef_, node, 'LayerRef') self.LayerRef.append(LayerRef_) super(Theme, self).buildChildren(child_, node, nodeName_, True) # end class Theme class TileMatrix(DescriptionType): """Describes a particular tile matrix.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, ScaleDenominator=None, TopLeftCorner=None, TileWidth=None, TileHeight=None, MatrixWidth=None, MatrixHeight=None): super(TileMatrix, self).__init__(Title, Abstract, Keywords, ) self.Identifier = Identifier self.ScaleDenominator = ScaleDenominator self.TopLeftCorner = TopLeftCorner self.TileWidth = TileWidth self.TileHeight = TileHeight self.MatrixWidth = MatrixWidth self.MatrixHeight = MatrixHeight def factory(*args_, **kwargs_): if TileMatrix.subclass: return TileMatrix.subclass(*args_, **kwargs_) else: return TileMatrix(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_ScaleDenominator(self): return self.ScaleDenominator def set_ScaleDenominator(self, ScaleDenominator): self.ScaleDenominator = ScaleDenominator def get_TopLeftCorner(self): return self.TopLeftCorner def set_TopLeftCorner(self, TopLeftCorner): self.TopLeftCorner = TopLeftCorner def validate_PositionType(self, value): # Validate type PositionType, a restriction on double. pass def get_TileWidth(self): return self.TileWidth def set_TileWidth(self, TileWidth): self.TileWidth = TileWidth def get_TileHeight(self): return self.TileHeight def set_TileHeight(self, TileHeight): self.TileHeight = TileHeight def get_MatrixWidth(self): return self.MatrixWidth def set_MatrixWidth(self, MatrixWidth): self.MatrixWidth = MatrixWidth def get_MatrixHeight(self): return self.MatrixHeight def set_MatrixHeight(self, MatrixHeight): self.MatrixHeight = MatrixHeight def export(self, outfile, level, namespace_='', name_='TileMatrix', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TileMatrix') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="TileMatrix"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TileMatrix'): super(TileMatrix, self).exportAttributes(outfile, level, already_processed, namespace_, name_='TileMatrix') def exportChildren(self, outfile, level, namespace_='', name_='TileMatrix', fromsubclass_=False): super(TileMatrix, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) if self.ScaleDenominator is not None: showIndent(outfile, level) outfile.write('<%sScaleDenominator>%s</%sScaleDenominator>\n' % (namespace_, self.gds_format_double(self.ScaleDenominator, input_name='ScaleDenominator'), namespace_)) if self.TopLeftCorner is not None: showIndent(outfile, level) outfile.write('<%sTopLeftCorner>%s</%sTopLeftCorner>\n' % (namespace_, self.gds_format_double_list(self.TopLeftCorner, input_name='TopLeftCorner'), namespace_)) if self.TileWidth is not None: showIndent(outfile, level) outfile.write('<%sTileWidth>%s</%sTileWidth>\n' % (namespace_, self.gds_format_integer(self.TileWidth, input_name='TileWidth'), namespace_)) if self.TileHeight is not None: showIndent(outfile, level) outfile.write('<%sTileHeight>%s</%sTileHeight>\n' % (namespace_, self.gds_format_integer(self.TileHeight, input_name='TileHeight'), namespace_)) if self.MatrixWidth is not None: showIndent(outfile, level) outfile.write('<%sMatrixWidth>%s</%sMatrixWidth>\n' % (namespace_, self.gds_format_integer(self.MatrixWidth, input_name='MatrixWidth'), namespace_)) if self.MatrixHeight is not None: showIndent(outfile, level) outfile.write('<%sMatrixHeight>%s</%sMatrixHeight>\n' % (namespace_, self.gds_format_integer(self.MatrixHeight, input_name='MatrixHeight'), namespace_)) def hasContent_(self): if ( self.Identifier is not None or self.ScaleDenominator is not None or self.TopLeftCorner is not None or self.TileWidth is not None or self.TileHeight is not None or self.MatrixWidth is not None or self.MatrixHeight is not None or super(TileMatrix, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='TileMatrix'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(TileMatrix, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(TileMatrix, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.ScaleDenominator is not None: showIndent(outfile, level) outfile.write('ScaleDenominator=%e,\n' % self.ScaleDenominator) if self.TopLeftCorner is not None: showIndent(outfile, level) outfile.write('TopLeftCorner=%e,\n' % self.TopLeftCorner) if self.TileWidth is not None: showIndent(outfile, level) outfile.write('TileWidth=%d,\n' % self.TileWidth) if self.TileHeight is not None: showIndent(outfile, level) outfile.write('TileHeight=%d,\n' % self.TileHeight) if self.MatrixWidth is not None: showIndent(outfile, level) outfile.write('MatrixWidth=%d,\n' % self.MatrixWidth) if self.MatrixHeight is not None: showIndent(outfile, level) outfile.write('MatrixHeight=%d,\n' % self.MatrixHeight) def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(TileMatrix, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'ScaleDenominator': sval_ = child_.text try: fval_ = float(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires float or double: %s' % exp) fval_ = self.gds_validate_float(fval_, node, 'ScaleDenominator') self.ScaleDenominator = fval_ elif nodeName_ == 'TopLeftCorner': TopLeftCorner_ = child_.text TopLeftCorner_ = self.gds_validate_double_list(TopLeftCorner_, node, 'TopLeftCorner') self.TopLeftCorner = TopLeftCorner_ self.TopLeftCorner = self.TopLeftCorner.split() self.validate_PositionType(self.TopLeftCorner) # validate type PositionType elif nodeName_ == 'TileWidth': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'TileWidth') self.TileWidth = ival_ elif nodeName_ == 'TileHeight': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'TileHeight') self.TileHeight = ival_ elif nodeName_ == 'MatrixWidth': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MatrixWidth') self.MatrixWidth = ival_ elif nodeName_ == 'MatrixHeight': sval_ = child_.text try: ival_ = int(sval_) except (TypeError, ValueError), exp: raise_parse_error(child_, 'requires integer: %s' % exp) if ival_ <= 0: raise_parse_error(child_, 'requires positiveInteger') ival_ = self.gds_validate_integer(ival_, node, 'MatrixHeight') self.MatrixHeight = ival_ super(TileMatrix, self).buildChildren(child_, node, nodeName_, True) # end class TileMatrix class TileMatrixSet(DescriptionType): """Describes a particular set of tile matrices.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, BoundingBox=None, SupportedCRS=None, WellKnownScaleSet=None, TileMatrix=None): super(TileMatrixSet, self).__init__(Title, Abstract, Keywords, ) self.Identifier = Identifier self.BoundingBox = BoundingBox self.SupportedCRS = SupportedCRS self.WellKnownScaleSet = WellKnownScaleSet if TileMatrix is None: self.TileMatrix = [] else: self.TileMatrix = TileMatrix def factory(*args_, **kwargs_): if TileMatrixSet.subclass: return TileMatrixSet.subclass(*args_, **kwargs_) else: return TileMatrixSet(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_BoundingBox(self): return self.BoundingBox def set_BoundingBox(self, BoundingBox): self.BoundingBox = BoundingBox def get_SupportedCRS(self): return self.SupportedCRS def set_SupportedCRS(self, SupportedCRS): self.SupportedCRS = SupportedCRS def get_WellKnownScaleSet(self): return self.WellKnownScaleSet def set_WellKnownScaleSet(self, WellKnownScaleSet): self.WellKnownScaleSet = WellKnownScaleSet def get_TileMatrix(self): return self.TileMatrix def set_TileMatrix(self, TileMatrix): self.TileMatrix = TileMatrix def add_TileMatrix(self, value): self.TileMatrix.append(value) def insert_TileMatrix(self, index, value): self.TileMatrix[index] = value def export(self, outfile, level, namespace_='', name_='TileMatrixSet', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='TileMatrixSet') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="TileMatrixSet"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='TileMatrixSet'): super(TileMatrixSet, self).exportAttributes(outfile, level, already_processed, namespace_, name_='TileMatrixSet') def exportChildren(self, outfile, level, namespace_='', name_='TileMatrixSet', fromsubclass_=False): super(TileMatrixSet, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) if self.BoundingBox: self.BoundingBox.export(outfile, level, namespace_, name_='BoundingBox') if self.SupportedCRS is not None: showIndent(outfile, level) outfile.write('<%sows:SupportedCRS>%s</%sows:SupportedCRS>\n' % (namespace_, self.gds_format_string(quote_xml(self.SupportedCRS).encode(ExternalEncoding), input_name='SupportedCRS'), namespace_)) if self.WellKnownScaleSet is not None: showIndent(outfile, level) outfile.write('<%sWellKnownScaleSet>%s</%sWellKnownScaleSet>\n' % (namespace_, self.gds_format_string(quote_xml(self.WellKnownScaleSet).encode(ExternalEncoding), input_name='WellKnownScaleSet'), namespace_)) for TileMatrix_ in self.TileMatrix: TileMatrix_.export(outfile, level, namespace_, name_='TileMatrix') def hasContent_(self): if ( self.Identifier is not None or self.BoundingBox is not None or self.SupportedCRS is not None or self.WellKnownScaleSet is not None or self.TileMatrix or super(TileMatrixSet, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='TileMatrixSet'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(TileMatrixSet, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(TileMatrixSet, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.BoundingBox is not None: showIndent(outfile, level) outfile.write('BoundingBox=model_.BoundingBox(\n') self.BoundingBox.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.SupportedCRS is not None: showIndent(outfile, level) outfile.write('SupportedCRS=%s,\n' % quote_python(self.SupportedCRS).encode(ExternalEncoding)) if self.WellKnownScaleSet is not None: showIndent(outfile, level) outfile.write('WellKnownScaleSet=%s,\n' % quote_python(self.WellKnownScaleSet).encode(ExternalEncoding)) showIndent(outfile, level) outfile.write('TileMatrix=[\n') level += 1 for TileMatrix_ in self.TileMatrix: showIndent(outfile, level) outfile.write('model_.TileMatrix(\n') TileMatrix_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(TileMatrixSet, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'BoundingBox': obj_ = BoundingBoxType.factory() obj_.build(child_) self.set_BoundingBox(obj_) elif nodeName_ == 'SupportedCRS': SupportedCRS_ = child_.text SupportedCRS_ = self.gds_validate_string(SupportedCRS_, node, 'SupportedCRS') self.SupportedCRS = SupportedCRS_ elif nodeName_ == 'WellKnownScaleSet': WellKnownScaleSet_ = child_.text WellKnownScaleSet_ = self.gds_validate_string(WellKnownScaleSet_, node, 'WellKnownScaleSet') self.WellKnownScaleSet = WellKnownScaleSet_ elif nodeName_ == 'TileMatrix': obj_ = TileMatrix.factory() obj_.build(child_) self.TileMatrix.append(obj_) super(TileMatrixSet, self).buildChildren(child_, node, nodeName_, True) # end class TileMatrixSet class Dimension(DescriptionType): """Metadata about a particular dimension that the tiles of a layer are available.""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, Identifier=None, UOM=None, UnitSymbol=None, Default=None, Current=None, Value=None): super(Dimension, self).__init__(Title, Abstract, Keywords, ) self.Identifier = Identifier self.UOM = UOM self.UnitSymbol = UnitSymbol self.Default = Default self.Current = Current if Value is None: self.Value = [] else: self.Value = Value def factory(*args_, **kwargs_): if Dimension.subclass: return Dimension.subclass(*args_, **kwargs_) else: return Dimension(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_UOM(self): return self.UOM def set_UOM(self, UOM): self.UOM = UOM def get_UnitSymbol(self): return self.UnitSymbol def set_UnitSymbol(self, UnitSymbol): self.UnitSymbol = UnitSymbol def get_Default(self): return self.Default def set_Default(self, Default): self.Default = Default def get_Current(self): return self.Current def set_Current(self, Current): self.Current = Current def get_Value(self): return self.Value def set_Value(self, Value): self.Value = Value def add_Value(self, value): self.Value.append(value) def insert_Value(self, index, value): self.Value[index] = value def export(self, outfile, level, namespace_='', name_='Dimension', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Dimension') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="Dimension"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Dimension'): super(Dimension, self).exportAttributes(outfile, level, already_processed, namespace_, name_='Dimension') def exportChildren(self, outfile, level, namespace_='', name_='Dimension', fromsubclass_=False): super(Dimension, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) if self.UOM: self.UOM.export(outfile, level, namespace_, name_='UOM') if self.UnitSymbol is not None: showIndent(outfile, level) outfile.write('<%sUnitSymbol>%s</%sUnitSymbol>\n' % (namespace_, self.gds_format_string(quote_xml(self.UnitSymbol).encode(ExternalEncoding), input_name='UnitSymbol'), namespace_)) if self.Default is not None: showIndent(outfile, level) outfile.write('<%sDefault>%s</%sDefault>\n' % (namespace_, self.gds_format_string(quote_xml(self.Default).encode(ExternalEncoding), input_name='Default'), namespace_)) if self.Current is not None: showIndent(outfile, level) outfile.write('<%sCurrent>%s</%sCurrent>\n' % (namespace_, self.gds_format_boolean(self.gds_str_lower(str(self.Current)), input_name='Current'), namespace_)) for Value_ in self.Value: showIndent(outfile, level) outfile.write('<%sValue>%s</%sValue>\n' % (namespace_, self.gds_format_string(quote_xml(Value_).encode(ExternalEncoding), input_name='Value'), namespace_)) def hasContent_(self): if ( self.Identifier is not None or self.UOM is not None or self.UnitSymbol is not None or self.Default is not None or self.Current is not None or self.Value or super(Dimension, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='Dimension'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(Dimension, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(Dimension, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.UOM is not None: showIndent(outfile, level) outfile.write('UOM=model_.UOM(\n') self.UOM.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') if self.UnitSymbol is not None: showIndent(outfile, level) outfile.write('UnitSymbol=%s,\n' % quote_python(self.UnitSymbol).encode(ExternalEncoding)) if self.Default is not None: showIndent(outfile, level) outfile.write('Default=%s,\n' % quote_python(self.Default).encode(ExternalEncoding)) if self.Current is not None: showIndent(outfile, level) outfile.write('Current=%s,\n' % self.Current) showIndent(outfile, level) outfile.write('Value=[\n') level += 1 for Value_ in self.Value: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Value_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(Dimension, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'UOM': obj_ = DomainMetadataType.factory() obj_.build(child_) self.set_UOM(obj_) elif nodeName_ == 'UnitSymbol': UnitSymbol_ = child_.text UnitSymbol_ = self.gds_validate_string(UnitSymbol_, node, 'UnitSymbol') self.UnitSymbol = UnitSymbol_ elif nodeName_ == 'Default': Default_ = child_.text Default_ = self.gds_validate_string(Default_, node, 'Default') self.Default = Default_ elif nodeName_ == 'Current': sval_ = child_.text if sval_ in ('true', '1'): ival_ = True elif sval_ in ('false', '0'): ival_ = False else: raise_parse_error(child_, 'requires boolean') ival_ = self.gds_validate_boolean(ival_, node, 'Current') self.Current = ival_ elif nodeName_ == 'Value': Value_ = child_.text Value_ = self.gds_validate_string(Value_, node, 'Value') self.Value.append(Value_) super(Dimension, self).buildChildren(child_, node, nodeName_, True) # end class Dimension class LegendURL(OnlineResourceType): """Zero or more LegendURL elements may be provided, providing an image(s) of a legend relevant to each Style of a Layer. The Format element indicates the MIME type of the legend. minScaleDenominator and maxScaleDenominator attributes may be provided to indicate to the client which scale(s) (inclusive) the legend image is appropriate for. (If provided, these values must exactly match the scale denominators of available TileMatrixes.) width and height attributes may be provided to assist client applications in laying out space to display the legend. The URL from which the legend image can be retrievedA supported output format for the legend imageDenominator of the minimum scale (inclusive) for which this legend image is validDenominator of the maximum scale (exclusive) for which this legend image is validWidth (in pixels) of the legend imageHeight (in pixels) of the legend image""" subclass = None superclass = OnlineResourceType def __init__(self, title=None, arcrole=None, actuate=None, href=None, role=None, show=None, type_=None, height=None, minScaleDenominator=None, maxScaleDenominator=None, width=None, format=None, valueOf_=None): super(LegendURL, self).__init__(title, arcrole, actuate, href, role, show, type_, valueOf_, ) self.height = _cast(int, height) self.minScaleDenominator = _cast(float, minScaleDenominator) self.maxScaleDenominator = _cast(float, maxScaleDenominator) self.width = _cast(int, width) self.format = _cast(None, format) self.valueOf_ = valueOf_ def factory(*args_, **kwargs_): if LegendURL.subclass: return LegendURL.subclass(*args_, **kwargs_) else: return LegendURL(*args_, **kwargs_) factory = staticmethod(factory) def get_height(self): return self.height def set_height(self, height): self.height = height def get_minScaleDenominator(self): return self.minScaleDenominator def set_minScaleDenominator(self, minScaleDenominator): self.minScaleDenominator = minScaleDenominator def get_maxScaleDenominator(self): return self.maxScaleDenominator def set_maxScaleDenominator(self, maxScaleDenominator): self.maxScaleDenominator = maxScaleDenominator def get_width(self): return self.width def set_width(self, width): self.width = width def get_format(self): return self.format def set_format(self, format): self.format = format def get_valueOf_(self): return self.valueOf_ def set_valueOf_(self, valueOf_): self.valueOf_ = valueOf_ def export(self, outfile, level, namespace_='', name_='LegendURL', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='LegendURL') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="LegendURL"') if self.hasContent_(): outfile.write('>') outfile.write(self.valueOf_.encode(ExternalEncoding)) self.exportChildren(outfile, level + 1, namespace_, name_) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='LegendURL'): super(LegendURL, self).exportAttributes(outfile, level, already_processed, namespace_, name_='LegendURL') if self.height is not None and 'height' not in already_processed: already_processed.append('height') outfile.write(' height="%s"' % self.gds_format_integer(self.height, input_name='height')) if self.minScaleDenominator is not None and 'minScaleDenominator' not in already_processed: already_processed.append('minScaleDenominator') outfile.write(' minScaleDenominator="%s"' % self.gds_format_double(self.minScaleDenominator, input_name='minScaleDenominator')) if self.maxScaleDenominator is not None and 'maxScaleDenominator' not in already_processed: already_processed.append('maxScaleDenominator') outfile.write(' maxScaleDenominator="%s"' % self.gds_format_double(self.maxScaleDenominator, input_name='maxScaleDenominator')) if self.width is not None and 'width' not in already_processed: already_processed.append('width') outfile.write(' width="%s"' % self.gds_format_integer(self.width, input_name='width')) if self.format is not None and 'format' not in already_processed: already_processed.append('format') outfile.write(' format=%s' % (quote_attrib(self.format), )) def exportChildren(self, outfile, level, namespace_='', name_='LegendURL', fromsubclass_=False): super(LegendURL, self).exportChildren(outfile, level, namespace_, name_, True) pass def hasContent_(self): if ( self.valueOf_ or super(LegendURL, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='LegendURL'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('valueOf_ = """%s""",\n' % (self.valueOf_,)) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.height is not None and 'height' not in already_processed: already_processed.append('height') showIndent(outfile, level) outfile.write('height = %d,\n' % (self.height,)) if self.minScaleDenominator is not None and 'minScaleDenominator' not in already_processed: already_processed.append('minScaleDenominator') showIndent(outfile, level) outfile.write('minScaleDenominator = %e,\n' % (self.minScaleDenominator,)) if self.maxScaleDenominator is not None and 'maxScaleDenominator' not in already_processed: already_processed.append('maxScaleDenominator') showIndent(outfile, level) outfile.write('maxScaleDenominator = %e,\n' % (self.maxScaleDenominator,)) if self.width is not None and 'width' not in already_processed: already_processed.append('width') showIndent(outfile, level) outfile.write('width = %d,\n' % (self.width,)) if self.format is not None and 'format' not in already_processed: already_processed.append('format') showIndent(outfile, level) outfile.write('format = %s,\n' % (self.format,)) super(LegendURL, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(LegendURL, self).exportLiteralChildren(outfile, level, name_) pass def build(self, node): self.buildAttributes(node, node.attrib, []) self.valueOf_ = get_all_text_(node) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('height', node) if value is not None and 'height' not in already_processed: already_processed.append('height') try: self.height = int(value) except ValueError, exp: raise_parse_error(node, 'Bad integer attribute: %s' % exp) if self.height <= 0: raise_parse_error(node, 'Invalid PositiveInteger') value = find_attr_value_('minScaleDenominator', node) if value is not None and 'minScaleDenominator' not in already_processed: already_processed.append('minScaleDenominator') try: self.minScaleDenominator = float(value) except ValueError, exp: raise ValueError('Bad float/double attribute (minScaleDenominator): %s' % exp) value = find_attr_value_('maxScaleDenominator', node) if value is not None and 'maxScaleDenominator' not in already_processed: already_processed.append('maxScaleDenominator') try: self.maxScaleDenominator = float(value) except ValueError, exp: raise ValueError('Bad float/double attribute (maxScaleDenominator): %s' % exp) value = find_attr_value_('width', node) if value is not None and 'width' not in already_processed: already_processed.append('width') try: self.width = int(value) except ValueError, exp: raise_parse_error(node, 'Bad integer attribute: %s' % exp) if self.width <= 0: raise_parse_error(node, 'Invalid PositiveInteger') value = find_attr_value_('format', node) if value is not None and 'format' not in already_processed: already_processed.append('format') self.format = value super(LegendURL, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): super(LegendURL, self).buildChildren(child_, node, nodeName_, True) pass # end class LegendURL class Style(DescriptionType): """This style is used when no style is specified""" subclass = None superclass = DescriptionType def __init__(self, Title=None, Abstract=None, Keywords=None, isDefault=None, Identifier=None, LegendURL=None): super(Style, self).__init__(Title, Abstract, Keywords, ) self.isDefault = _cast(bool, isDefault) self.Identifier = Identifier if LegendURL is None: self.LegendURL = [] else: self.LegendURL = LegendURL def factory(*args_, **kwargs_): if Style.subclass: return Style.subclass(*args_, **kwargs_) else: return Style(*args_, **kwargs_) factory = staticmethod(factory) def get_Identifier(self): return self.Identifier def set_Identifier(self, Identifier): self.Identifier = Identifier def get_LegendURL(self): return self.LegendURL def set_LegendURL(self, LegendURL): self.LegendURL = LegendURL def add_LegendURL(self, value): self.LegendURL.append(value) def insert_LegendURL(self, index, value): self.LegendURL[index] = value def get_isDefault(self): return self.isDefault def set_isDefault(self, isDefault): self.isDefault = isDefault def export(self, outfile, level, namespace_='', name_='Style', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Style') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="Style"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Style'): super(Style, self).exportAttributes(outfile, level, already_processed, namespace_, name_='Style') if self.isDefault is not None and 'isDefault' not in already_processed: already_processed.append('isDefault') outfile.write(' isDefault="%s"' % self.gds_format_boolean(self.gds_str_lower(str(self.isDefault)), input_name='isDefault')) def exportChildren(self, outfile, level, namespace_='', name_='Style', fromsubclass_=False): super(Style, self).exportChildren(outfile, level, namespace_, name_, True) if self.Identifier: self.Identifier.export(outfile, level, namespace_, name_='Identifier', ) for LegendURL_ in self.LegendURL: LegendURL_.export(outfile, level, namespace_, name_='LegendURL') def hasContent_(self): if ( self.Identifier is not None or self.LegendURL or super(Style, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='Style'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): if self.isDefault is not None and 'isDefault' not in already_processed: already_processed.append('isDefault') showIndent(outfile, level) outfile.write('isDefault = %s,\n' % (self.isDefault,)) super(Style, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(Style, self).exportLiteralChildren(outfile, level, name_) if self.Identifier is not None: showIndent(outfile, level) outfile.write('Identifier=model_.Identifier(\n') self.Identifier.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('LegendURL=[\n') level += 1 for LegendURL_ in self.LegendURL: showIndent(outfile, level) outfile.write('model_.LegendURL(\n') LegendURL_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): value = find_attr_value_('isDefault', node) if value is not None and 'isDefault' not in already_processed: already_processed.append('isDefault') if value in ('true', '1'): self.isDefault = True elif value in ('false', '0'): self.isDefault = False else: raise_parse_error(node, 'Bad boolean attribute') super(Style, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Identifier': obj_ = CodeType.factory() obj_.build(child_) self.set_Identifier(obj_) elif nodeName_ == 'LegendURL': obj_ = LegendURL.factory() obj_.build(child_) self.LegendURL.append(obj_) super(Style, self).buildChildren(child_, node, nodeName_, True) # end class Style class LayerType(DatasetDescriptionSummaryBaseType): subclass = None superclass = DatasetDescriptionSummaryBaseType def __init__(self, Title=None, Abstract=None, Keywords=None, WGS84BoundingBox=None, Identifier=None, BoundingBox=None, Metadata=None, DatasetDescriptionSummary=None, Style=None, Format=None, InfoFormat=None, Dimension=None, TileMatrixSetLink=None, ResourceURL=None): super(LayerType, self).__init__(Title, Abstract, Keywords, WGS84BoundingBox, Identifier, BoundingBox, Metadata, DatasetDescriptionSummary, ) if Style is None: self.Style = [] else: self.Style = Style if Format is None: self.Format = [] else: self.Format = Format if InfoFormat is None: self.InfoFormat = [] else: self.InfoFormat = InfoFormat if Dimension is None: self.Dimension = [] else: self.Dimension = Dimension if TileMatrixSetLink is None: self.TileMatrixSetLink = [] else: self.TileMatrixSetLink = TileMatrixSetLink if ResourceURL is None: self.ResourceURL = [] else: self.ResourceURL = ResourceURL def factory(*args_, **kwargs_): if LayerType.subclass: return LayerType.subclass(*args_, **kwargs_) else: return LayerType(*args_, **kwargs_) factory = staticmethod(factory) def get_Style(self): return self.Style def set_Style(self, Style): self.Style = Style def add_Style(self, value): self.Style.append(value) def insert_Style(self, index, value): self.Style[index] = value def get_Format(self): return self.Format def set_Format(self, Format): self.Format = Format def add_Format(self, value): self.Format.append(value) def insert_Format(self, index, value): self.Format[index] = value def validate_MimeType(self, value): # Validate type MimeType, a restriction on string. pass def get_InfoFormat(self): return self.InfoFormat def set_InfoFormat(self, InfoFormat): self.InfoFormat = InfoFormat def add_InfoFormat(self, value): self.InfoFormat.append(value) def insert_InfoFormat(self, index, value): self.InfoFormat[index] = value def get_Dimension(self): return self.Dimension def set_Dimension(self, Dimension): self.Dimension = Dimension def add_Dimension(self, value): self.Dimension.append(value) def insert_Dimension(self, index, value): self.Dimension[index] = value def get_TileMatrixSetLink(self): return self.TileMatrixSetLink def set_TileMatrixSetLink(self, TileMatrixSetLink): self.TileMatrixSetLink = TileMatrixSetLink def add_TileMatrixSetLink(self, value): self.TileMatrixSetLink.append(value) def insert_TileMatrixSetLink(self, index, value): self.TileMatrixSetLink[index] = value def get_ResourceURL(self): return self.ResourceURL def set_ResourceURL(self, ResourceURL): self.ResourceURL = ResourceURL def add_ResourceURL(self, value): self.ResourceURL.append(value) def insert_ResourceURL(self, index, value): self.ResourceURL[index] = value def export(self, outfile, level, namespace_='', name_='LayerType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='LayerType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="LayerType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='LayerType'): super(LayerType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='LayerType') def exportChildren(self, outfile, level, namespace_='', name_='LayerType', fromsubclass_=False): super(LayerType, self).exportChildren(outfile, level, namespace_, name_, True) for Style_ in self.Style: Style_.export(outfile, level, namespace_, name_='Style') for Format_ in self.Format: showIndent(outfile, level) outfile.write('<%sFormat>%s</%sFormat>\n' % (namespace_, self.gds_format_string(quote_xml(Format_).encode(ExternalEncoding), input_name='Format'), namespace_)) for InfoFormat_ in self.InfoFormat: showIndent(outfile, level) outfile.write('<%sInfoFormat>%s</%sInfoFormat>\n' % (namespace_, self.gds_format_string(quote_xml(InfoFormat_).encode(ExternalEncoding), input_name='InfoFormat'), namespace_)) for Dimension_ in self.Dimension: Dimension_.export(outfile, level, namespace_, name_='Dimension') for TileMatrixSetLink_ in self.TileMatrixSetLink: TileMatrixSetLink_.export(outfile, level, namespace_, name_='TileMatrixSetLink') for ResourceURL_ in self.ResourceURL: ResourceURL_.export(outfile, level, namespace_, name_='ResourceURL') def hasContent_(self): if ( self.Style or self.Format or self.InfoFormat or self.Dimension or self.TileMatrixSetLink or self.ResourceURL or super(LayerType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='LayerType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(LayerType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(LayerType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('Style=[\n') level += 1 for Style_ in self.Style: showIndent(outfile, level) outfile.write('model_.Style(\n') Style_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Format=[\n') level += 1 for Format_ in self.Format: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(Format_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('InfoFormat=[\n') level += 1 for InfoFormat_ in self.InfoFormat: showIndent(outfile, level) outfile.write('%s,\n' % quote_python(InfoFormat_).encode(ExternalEncoding)) level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('Dimension=[\n') level += 1 for Dimension_ in self.Dimension: showIndent(outfile, level) outfile.write('model_.Dimension(\n') Dimension_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('TileMatrixSetLink=[\n') level += 1 for TileMatrixSetLink_ in self.TileMatrixSetLink: showIndent(outfile, level) outfile.write('model_.TileMatrixSetLink(\n') TileMatrixSetLink_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('ResourceURL=[\n') level += 1 for ResourceURL_ in self.ResourceURL: showIndent(outfile, level) outfile.write('model_.URLTemplateType(\n') ResourceURL_.exportLiteral(outfile, level, name_='URLTemplateType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(LayerType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Style': obj_ = Style.factory() obj_.build(child_) self.Style.append(obj_) elif nodeName_ == 'Format': Format_ = child_.text Format_ = self.gds_validate_string(Format_, node, 'Format') self.Format.append(Format_) self.validate_MimeType(self.Format) # validate type MimeType elif nodeName_ == 'InfoFormat': InfoFormat_ = child_.text InfoFormat_ = self.gds_validate_string(InfoFormat_, node, 'InfoFormat') self.InfoFormat.append(InfoFormat_) self.validate_MimeType(self.InfoFormat) # validate type MimeType elif nodeName_ == 'Dimension': obj_ = Dimension.factory() obj_.build(child_) self.Dimension.append(obj_) elif nodeName_ == 'TileMatrixSetLink': obj_ = TileMatrixSetLink.factory() obj_.build(child_) self.TileMatrixSetLink.append(obj_) elif nodeName_ == 'ResourceURL': obj_ = URLTemplateType.factory() obj_.build(child_) self.ResourceURL.append(obj_) super(LayerType, self).buildChildren(child_, node, nodeName_, True) # end class LayerType class ContentsType(ContentsBaseType): subclass = None superclass = ContentsBaseType def __init__(self, DatasetDescriptionSummary=None, OtherSource=None, TileMatrixSet=None): super(ContentsType, self).__init__(DatasetDescriptionSummary, OtherSource, ) if TileMatrixSet is None: self.TileMatrixSet = [] else: self.TileMatrixSet = TileMatrixSet def factory(*args_, **kwargs_): if ContentsType.subclass: return ContentsType.subclass(*args_, **kwargs_) else: return ContentsType(*args_, **kwargs_) factory = staticmethod(factory) def get_TileMatrixSet(self): return self.TileMatrixSet def set_TileMatrixSet(self, TileMatrixSet): self.TileMatrixSet = TileMatrixSet def add_TileMatrixSet(self, value): self.TileMatrixSet.append(value) def insert_TileMatrixSet(self, index, value): self.TileMatrixSet[index] = value def export(self, outfile, level, namespace_='', name_='ContentsType', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='ContentsType') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') # outfile.write(' xsi:type="ContentsType"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='ContentsType'): super(ContentsType, self).exportAttributes(outfile, level, already_processed, namespace_, name_='ContentsType') def exportChildren(self, outfile, level, namespace_='', name_='ContentsType', fromsubclass_=False): super(ContentsType, self).exportChildren(outfile, level, namespace_, name_, True) for TileMatrixSet_ in self.TileMatrixSet: TileMatrixSet_.export(outfile, level, namespace_, name_='TileMatrixSet') def hasContent_(self): if ( self.TileMatrixSet or super(ContentsType, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='ContentsType'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(ContentsType, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(ContentsType, self).exportLiteralChildren(outfile, level, name_) showIndent(outfile, level) outfile.write('TileMatrixSet=[\n') level += 1 for TileMatrixSet_ in self.TileMatrixSet: showIndent(outfile, level) outfile.write('model_.TileMatrixSet(\n') TileMatrixSet_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(ContentsType, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'TileMatrixSet': obj_ = TileMatrixSet.factory() obj_.build(child_) self.TileMatrixSet.append(obj_) super(ContentsType, self).buildChildren(child_, node, nodeName_, True) # end class ContentsType class Capabilities(CapabilitiesBaseType): """XML defines the WMTS GetCapabilities operation response. ServiceMetadata document provides clients with service metadata about a specific service instance, including metadata about the tightly-coupled data served. If the server does not implement the updateSequence parameter, the server SHALL always return the complete Capabilities document, without the updateSequence parameter. When the server implements the updateSequence parameter and the GetCapabilities operation request included the updateSequence parameter with the current value, the server SHALL return this element with only the "version" and "updateSequence" attributes. Otherwise, all optional elements SHALL be included or not depending on the actual value of the Contents parameter in the GetCapabilities operation request.""" subclass = None superclass = CapabilitiesBaseType def __init__(self, updateSequence=None, version=None, ServiceIdentification=None, ServiceProvider=None, OperationsMetadata=None, Contents=None, Themes=None, WSDL=None, ServiceMetadataURL=None): super(Capabilities, self).__init__(updateSequence, version, ServiceIdentification, ServiceProvider, OperationsMetadata, ) self.Contents = Contents if Themes is None: self.Themes = [] else: self.Themes = Themes if WSDL is None: self.WSDL = [] else: self.WSDL = WSDL if ServiceMetadataURL is None: self.ServiceMetadataURL = [] else: self.ServiceMetadataURL = ServiceMetadataURL def factory(*args_, **kwargs_): if Capabilities.subclass: return Capabilities.subclass(*args_, **kwargs_) else: return Capabilities(*args_, **kwargs_) factory = staticmethod(factory) def get_Contents(self): return self.Contents def set_Contents(self, Contents): self.Contents = Contents def get_Themes(self): return self.Themes def set_Themes(self, Themes): self.Themes = Themes def add_Themes(self, value): self.Themes.append(value) def insert_Themes(self, index, value): self.Themes[index] = value def get_WSDL(self): return self.WSDL def set_WSDL(self, WSDL): self.WSDL = WSDL def add_WSDL(self, value): self.WSDL.append(value) def insert_WSDL(self, index, value): self.WSDL[index] = value def get_ServiceMetadataURL(self): return self.ServiceMetadataURL def set_ServiceMetadataURL(self, ServiceMetadataURL): self.ServiceMetadataURL = ServiceMetadataURL def add_ServiceMetadataURL(self, value): self.ServiceMetadataURL.append(value) def insert_ServiceMetadataURL(self, index, value): self.ServiceMetadataURL[index] = value def export(self, outfile, level, namespace_='', name_='Capabilities', namespacedef_=''): showIndent(outfile, level) outfile.write('<%s%s%s' % (namespace_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) self.exportAttributes(outfile, level, [], namespace_, name_='Capabilities') outfile.write(' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"') outfile.write(' xmlns="http://www.opengis.net/wmts/1.0"') outfile.write(' xmlns:ows="http://www.opengis.net/ows/1.1"') outfile.write(' xmlns:xlink="http://www.w3.org/1999/xlink"') outfile.write(' xmlns:gml="http://www.opengis.net/gml"') outfile.write(' xsi:schemaLocation="http://www.opengis.net/wmts/1.0 http://schemas.opengis.net/wmts/1.0/wmtsGetCapabilities_response.xsd"') # outfile.write(' xsi:type="Capabilities"') if self.hasContent_(): outfile.write('>\n') self.exportChildren(outfile, level + 1, namespace_, name_) showIndent(outfile, level) outfile.write('</%s%s>\n' % (namespace_, name_)) else: outfile.write('/>\n') def exportAttributes(self, outfile, level, already_processed, namespace_='', name_='Capabilities'): super(Capabilities, self).exportAttributes(outfile, level, already_processed, namespace_, name_='Capabilities') def exportChildren(self, outfile, level, namespace_='', name_='Capabilities', fromsubclass_=False): super(Capabilities, self).exportChildren(outfile, level, namespace_, name_, True) if self.Contents: self.Contents.export(outfile, level, namespace_, name_='Contents') for Themes_ in self.Themes: Themes_.export(outfile, level, namespace_, name_='Themes') for WSDL_ in self.WSDL: WSDL_.export(outfile, level, namespace_, name_='WSDL') for ServiceMetadataURL_ in self.ServiceMetadataURL: ServiceMetadataURL_.export(outfile, level, namespace_, name_='ServiceMetadataURL') def hasContent_(self): if ( self.Contents is not None or self.Themes or self.WSDL or self.ServiceMetadataURL or super(Capabilities, self).hasContent_() ): return True else: return False def exportLiteral(self, outfile, level, name_='Capabilities'): level += 1 self.exportLiteralAttributes(outfile, level, [], name_) if self.hasContent_(): self.exportLiteralChildren(outfile, level, name_) def exportLiteralAttributes(self, outfile, level, already_processed, name_): super(Capabilities, self).exportLiteralAttributes(outfile, level, already_processed, name_) def exportLiteralChildren(self, outfile, level, name_): super(Capabilities, self).exportLiteralChildren(outfile, level, name_) if self.Contents is not None: showIndent(outfile, level) outfile.write('Contents=model_.ContentsType(\n') self.Contents.exportLiteral(outfile, level, name_='Contents') showIndent(outfile, level) outfile.write('),\n') showIndent(outfile, level) outfile.write('Themes=[\n') level += 1 for Themes_ in self.Themes: showIndent(outfile, level) outfile.write('model_.Themes(\n') Themes_.exportLiteral(outfile, level) showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('WSDL=[\n') level += 1 for WSDL_ in self.WSDL: showIndent(outfile, level) outfile.write('model_.OnlineResourceType(\n') WSDL_.exportLiteral(outfile, level, name_='OnlineResourceType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') showIndent(outfile, level) outfile.write('ServiceMetadataURL=[\n') level += 1 for ServiceMetadataURL_ in self.ServiceMetadataURL: showIndent(outfile, level) outfile.write('model_.OnlineResourceType(\n') ServiceMetadataURL_.exportLiteral(outfile, level, name_='OnlineResourceType') showIndent(outfile, level) outfile.write('),\n') level -= 1 showIndent(outfile, level) outfile.write('],\n') def build(self, node): self.buildAttributes(node, node.attrib, []) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child, node, nodeName_) def buildAttributes(self, node, attrs, already_processed): super(Capabilities, self).buildAttributes(node, attrs, already_processed) def buildChildren(self, child_, node, nodeName_, fromsubclass_=False): if nodeName_ == 'Contents': obj_ = ContentsType.factory() obj_.build(child_) self.set_Contents(obj_) elif nodeName_ == 'Themes': obj_ = Themes.factory() obj_.build(child_) self.Themes.append(obj_) elif nodeName_ == 'WSDL': obj_ = OnlineResourceType.factory() obj_.build(child_) self.WSDL.append(obj_) elif nodeName_ == 'ServiceMetadataURL': obj_ = OnlineResourceType.factory() obj_.build(child_) self.ServiceMetadataURL.append(obj_) super(Capabilities, self).buildChildren(child_, node, nodeName_, True) # end class Capabilities USAGE_TEXT = """ Usage: python <Parser>.py [ -s ] <in_xml_file> """ def usage(): print USAGE_TEXT sys.exit(1) def get_root_tag(node): tag = Tag_pattern_.match(node.tag).groups()[-1] rootClass = globals().get(tag) return tag, rootClass def parse(inFileName): doc = parsexml_(inFileName) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'Capabilities' rootClass = Capabilities rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export(sys.stdout, 0, name_=rootTag, namespacedef_='') return rootObj def parseString(inString): from StringIO import StringIO doc = parsexml_(StringIO(inString)) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'Capabilities' rootClass = Capabilities rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None sys.stdout.write('<?xml version="1.0" ?>\n') rootObj.export(sys.stdout, 0, name_="Capabilities", namespacedef_='') return rootObj def parseLiteral(inFileName): doc = parsexml_(inFileName) rootNode = doc.getroot() rootTag, rootClass = get_root_tag(rootNode) if rootClass is None: rootTag = 'Capabilities' rootClass = Capabilities rootObj = rootClass.factory() rootObj.build(rootNode) # Enable Python to collect the space used by the DOM. doc = None sys.stdout.write('#from capabilities import *\n\n') sys.stdout.write('import capabilities as model_\n\n') sys.stdout.write('rootObj = model_.rootTag(\n') rootObj.exportLiteral(sys.stdout, 0, name_=rootTag) sys.stdout.write(')\n') return rootObj def main(): args = sys.argv[1:] if len(args) == 1: parse(args[0]) else: usage() if __name__ == '__main__': #import pdb; pdb.set_trace() main() __all__ = [ "AbstractMetaData", "AbstractReferenceBaseType", "AcceptFormatsType", "AcceptVersionsType", "AddressType", "AllowedValues", "AnyValue", "BasicIdentificationType", "BoundingBoxType", "Capabilities", "CapabilitiesBaseType", "CodeType", "ContactType", "ContentsBaseType", "ContentsType", "DCP", "DatasetDescriptionSummaryBaseType", "DescriptionType", "Dimension", "DomainMetadataType", "DomainType", "ExceptionReport", "ExceptionType", "GetCapabilitiesType", "GetResourceByIdType", "HTTP", "IdentificationType", "KeywordsType", "LanguageStringType", "LayerType", "LegendURL", "ManifestType", "MetadataType", "NoValues", "OnlineResourceType", "Operation", "OperationsMetadata", "RangeType", "ReferenceGroupType", "ReferenceType", "RequestMethodType", "Resource", "ResponsiblePartySubsetType", "ResponsiblePartyType", "SectionsType", "ServiceIdentification", "ServiceProvider", "ServiceReferenceType", "Style", "TelephoneType", "Theme", "Themes", "TileMatrix", "TileMatrixLimits", "TileMatrixSet", "TileMatrixSetLimits", "TileMatrixSetLink", "URLTemplateType", "UnNamedDomainType", "ValueType", "ValuesReference", "WGS84BoundingBoxType" ]
apache-2.0
schets/scikit-learn
examples/cluster/plot_digits_linkage.py
366
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
roberttk01/TensorFlowTutorial
TensorFlowTutorial/pt35_handling_non-numerical_data.py
1
1098
import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') import numpy as np from sklearn.cluster import KMeans from sklearn import preprocessing, cross_validation import pandas as pd def handle_non_numerical_data(df): columns = df.columns.values for column in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_contents = df[column].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[column] = list(map(convert_to_int, df[column])) return df df = pd.read_excel('./etc/titanic.xls') # print(df.head()) df.drop(['body', 'name'], 1, inplace=True) df.convert_objects(convert_numeric=True) df.fillna(0, inplace=True) # print(df.head()) df = handle_non_numerical_data(df) print(df.head())
mit
moonbury/notebooks
github/MasteringMLWithScikit-learn/8365OS_10_Codes/learn-xor.py
4
1615
from pybrain.datasets import SupervisedDataSet from pybrain.structure import SigmoidLayer, LinearLayer, FullConnection, FeedForwardNetwork, RecurrentNetwork, Network from pybrain.supervised.trainers import BackpropTrainer network = Network() input_layer = LinearLayer(2) hidden_layer = SigmoidLayer(5) output_layer = LinearLayer(1) network.addInputModule(input_layer) network.addModule(hidden_layer) network.addOutputModule(output_layer) input_to_hidden = FullConnection(input_layer, hidden_layer) hidden_to_output = FullConnection(hidden_layer, output_layer) network.addConnection(input_to_hidden) network.addConnection(hidden_to_output) network.sortModules() xor_dataset = SupervisedDataSet(2,1) xor_dataset.addSample((0, 0), (0, )) xor_dataset.addSample((0, 1), (1, )) xor_dataset.addSample((1, 0), (1, )) xor_dataset.addSample((1, 1), (0, )) trainer = BackpropTrainer(module=network, dataset=xor_dataset, verbose=True, momentum=0.00, learningrate=0.10, weightdecay=0.0, lrdecay=1.0) error = 1 epochsToTrain = 0 while error > 0.0001: epochsToTrain += 1 error = trainer.train() print '' print 'Trained after', epochsToTrain, 'epochs' # The network has been trained, now test it against our original data. # Consider any number above 0.5 to be evaluated as 1, and below to be 0 print '' print 'Final Results' print '--------------' results = network.activateOnDataset(xor_dataset) for i in range(len(results)): print xor_dataset['input'][i], ' => ', (results[i] > 0.5), ' (',results[i],')'
gpl-3.0
rflamary/POT
examples/plot_compute_emd.py
2
2405
# -*- coding: utf-8 -*- """ ================= Plot multiple EMD ================= Shows how to compute multiple EMD and Sinkhorn with two differnt ground metrics and plot their values for diffeent distributions. """ # Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License import numpy as np import matplotlib.pylab as pl import ot from ot.datasets import make_1D_gauss as gauss ############################################################################## # Generate data # ------------- #%% parameters n = 100 # nb bins n_target = 50 # nb target distributions # bin positions x = np.arange(n, dtype=np.float64) lst_m = np.linspace(20, 90, n_target) # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std B = np.zeros((n, n_target)) for i, m in enumerate(lst_m): B[:, i] = gauss(n, m=m, s=5) # loss matrix and normalization M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean') M /= M.max() M2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean') M2 /= M2.max() ############################################################################## # Plot data # --------- #%% plot the distributions pl.figure(1) pl.subplot(2, 1, 1) pl.plot(x, a, 'b', label='Source distribution') pl.title('Source distribution') pl.subplot(2, 1, 2) pl.plot(x, B, label='Target distributions') pl.title('Target distributions') pl.tight_layout() ############################################################################## # Compute EMD for the different losses # ------------------------------------ #%% Compute and plot distributions and loss matrix d_emd = ot.emd2(a, B, M) # direct computation of EMD d_emd2 = ot.emd2(a, B, M2) # direct computation of EMD with loss M2 pl.figure(2) pl.plot(d_emd, label='Euclidean EMD') pl.plot(d_emd2, label='Squared Euclidean EMD') pl.title('EMD distances') pl.legend() ############################################################################## # Compute Sinkhorn for the different losses # ----------------------------------------- #%% reg = 1e-2 d_sinkhorn = ot.sinkhorn2(a, B, M, reg) d_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg) pl.figure(2) pl.clf() pl.plot(d_emd, label='Euclidean EMD') pl.plot(d_emd2, label='Squared Euclidean EMD') pl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn') pl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn') pl.title('EMD distances') pl.legend() pl.show()
mit
uglyboxer/learn_nums
depricated/learn_nums.py
1
1384
from sklearn import datasets from check_new import check_new from learn_loop import learn_loop """ A rudimentary implementation of a perceptron Takes in a data set with desired outputs & new unmatched data set Outputs guesses against new data """ def learn_nums(digits, answers): """ Takes in a data set and the appropriate answers Returns the appropriate weight set """ weight_set_of = [learn_loop(digits, answers, x) for x in range(10)] return weight_set_of def run_blind_data(digits, answers, weights): """ Brings in a pack of untested data and learned weights Returns guesses and success ratio """ successes = 0 for temp in range(len(digits)): guess = check_new(digits[temp], weights) actual = answers[temp] print("Computer's guess: {} Actual #: {}".format(guess, actual)) if guess == actual: successes += 1 success_ratio = successes/len(digits) return successes, success_ratio if __name__ == '__main__': digits = datasets.load_digits() answers, answers_to_test = digits.target[:1000], digits.target[1000:] sliced_digits, unlearned_digits = digits.data[:1000], digits.data[1000:] weights = learn_nums(sliced_digits, answers) results = run_blind_data(unlearned_digits, answers_to_test, weights) print("Computer was right {} times out of {}".format(results[0], len(digits.data)-1000)) print("For a correct percentage of {}%".format(results[1]))
unlicense
nhuntwalker/astroML
book_figures/chapter6/fig_great_wall.py
4
4280
""" Great Wall Density ------------------ Figure 6.4 Density estimation for galaxies within the SDSS "Great Wall." The upper-left panel shows points that are galaxies, projected by their spatial locations onto the equatorial plane (declination ~ 0 degrees). The remaining panels show estimates of the density of these points using kernel density estimation (with a Gaussian kernel with width 5Mpc), a K-nearest-neighbor estimator (eq. 6.15) optimized for a small-scale structure (with K = 5), and a K-nearest-neighbor estimator optimized for a large-scale structure (with K = 40). """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from scipy.spatial import cKDTree from astroML.datasets import fetch_great_wall from astroML.density_estimation import KDE, KNeighborsDensity #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the great wall data X = fetch_great_wall() #------------------------------------------------------------ # Create the grid on which to evaluate the results Nx = 50 Ny = 125 xmin, xmax = (-375, -175) ymin, ymax = (-300, 200) #------------------------------------------------------------ # Evaluate for several models Xgrid = np.vstack(map(np.ravel, np.meshgrid(np.linspace(xmin, xmax, Nx), np.linspace(ymin, ymax, Ny)))).T kde = KDE(metric='gaussian', h=5) dens_KDE = kde.fit(X).eval(Xgrid).reshape((Ny, Nx)) knn5 = KNeighborsDensity('bayesian', 5) dens_k5 = knn5.fit(X).eval(Xgrid).reshape((Ny, Nx)) knn40 = KNeighborsDensity('bayesian', 40) dens_k40 = knn40.fit(X).eval(Xgrid).reshape((Ny, Nx)) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 2.2)) fig.subplots_adjust(left=0.12, right=0.95, bottom=0.2, top=0.9, hspace=0.01, wspace=0.01) # First plot: scatter the points ax1 = plt.subplot(221, aspect='equal') ax1.scatter(X[:, 1], X[:, 0], s=1, lw=0, c='k') ax1.text(0.95, 0.9, "input", ha='right', va='top', transform=ax1.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Second plot: KDE ax2 = plt.subplot(222, aspect='equal') ax2.imshow(dens_KDE.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax2.text(0.95, 0.9, "KDE: Gaussian $(h=5)$", ha='right', va='top', transform=ax2.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Third plot: KNN, k=5 ax3 = plt.subplot(223, aspect='equal') ax3.imshow(dens_k5.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax3.text(0.95, 0.9, "$k$-neighbors $(k=5)$", ha='right', va='top', transform=ax3.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) # Fourth plot: KNN, k=40 ax4 = plt.subplot(224, aspect='equal') ax4.imshow(dens_k40.T, origin='lower', norm=LogNorm(), extent=(ymin, ymax, xmin, xmax), cmap=plt.cm.binary) ax4.text(0.95, 0.9, "$k$-neighbors $(k=40)$", ha='right', va='top', transform=ax4.transAxes, bbox=dict(boxstyle='round', ec='k', fc='w')) for ax in [ax1, ax2, ax3, ax4]: ax.set_xlim(ymin, ymax - 0.01) ax.set_ylim(xmin, xmax) for ax in [ax1, ax2]: ax.xaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax3, ax4]: ax.set_xlabel('$y$ (Mpc)') for ax in [ax2, ax4]: ax.yaxis.set_major_formatter(plt.NullFormatter()) for ax in [ax1, ax3]: ax.set_ylabel('$x$ (Mpc)') plt.show()
bsd-2-clause
GabrielRubin/TC2
Client/MLTests.py
1
2724
import numpy as np import pandas as pd import scipy.stats as stats import matplotlib.pyplot as plt import sklearn import csv import seaborn as sns from matplotlib import rcParams from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.neural_network import MLPRegressor from sklearn.svm import SVR from Tkinter import Tk from tkFileDialog import askopenfilename import cPickle class MyDataFile(): def __init__(self, data, target, featureNames): self.data = data self.target = target self.featureNames = featureNames def LoadDataset(path, fileName): with open("{0}/{1}.csv".format(path, fileName)) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, sample in enumerate(data_file): data[i] = np.asarray(sample[:-1], dtype=np.float64) target[i] = np.asarray(sample[-1], dtype=np.int) return MyDataFile(data=data, target=target, featureNames=temp[2:len(temp)-1]) sns.set_style("whitegrid") sns.set_context("poster") gameData = LoadDataset("GameData", "allCSVData") dataFrame = pd.DataFrame(gameData.data) dataFrame.columns = gameData.featureNames dataFrame['TargetVP'] = gameData.target X = dataFrame.drop('TargetVP', axis = 1) Y = dataFrame['TargetVP'] print(len(X)) X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X, Y, test_size = 0.33, random_state = 5) isNew = True lm = None if isNew: lm = MLPRegressor() lm.fit(X_train, Y_train) else: Tk().withdraw() filename = askopenfilename(filetypes=(("Model files", "*.mod"), ("All files", "*.*"))) with open('{0}'.format(filename), 'rb') as handle: lm = cPickle.load(handle) if lm is not None: lm.fit(X_train, Y_train) if lm is not None: Y_pred = lm.predict(X_test) pointsSize = [1 for n in range(len(X))] plt.scatter(Y_test, Y_pred, s=pointsSize) plt.xlabel("Total Victory Points (player - all) $Y_i$") plt.ylabel("Predicted Total VP $\hat{Y}_i$") plt.title("Total VP vs Predicted Total VP: $Y_i$ vs $\hat{Y}_i$") plt.show() mse = sklearn.metrics.mean_squared_error(Y_test, Y_pred) print(mse) yey = sklearn.metrics.r2_score(Y_test, Y_pred) print(yey) with open("Models/mainModel.mod", 'wb') as handle: cPickle.dump(lm, handle, protocol=cPickle.HIGHEST_PROTOCOL) else: print("Error! lm is None!")
gpl-3.0
pravsripad/mne-python
tutorials/preprocessing/59_head_positions.py
13
3722
# -*- coding: utf-8 -*- """ .. _tut-head-pos: ================================================ Extracting and visualizing subject head movement ================================================ Continuous head movement can be encoded during MEG recordings by use of HPI coils that continuously emit sinusoidal signals. These signals can then be extracted from the recording and used to estimate head position as a function of time. Here we show an example of how to do this, and how to visualize the result. HPI frequencies --------------- First let's load a short bit of raw data where the subject intentionally moved their head during the recording. Its power spectral density shows five peaks (most clearly visible in the gradiometers) corresponding to the HPI coil frequencies, plus other peaks related to power line interference (60 Hz and harmonics). """ # Authors: Eric Larson <larson.eric.d@gmail.com> # Richard Höchenberger <richard.hoechenberger@gmail.com> # Daniel McCloy <dan@mccloy.info> # # License: BSD-3-Clause # %% from os import path as op import mne data_path = op.join(mne.datasets.testing.data_path(verbose=True), 'SSS') fname_raw = op.join(data_path, 'test_move_anon_raw.fif') raw = mne.io.read_raw_fif(fname_raw, allow_maxshield='yes').load_data() raw.plot_psd() # %% # We can use `mne.chpi.get_chpi_info` to retrieve the coil frequencies, # the index of the channel indicating when which coil was switched on, and the # respective "event codes" associated with each coil's activity. chpi_freqs, ch_idx, chpi_codes = mne.chpi.get_chpi_info(info=raw.info) print(f'cHPI coil frequencies extracted from raw: {chpi_freqs} Hz') # %% # Estimating continuous head position # ----------------------------------- # # First, let's extract the HPI coil amplitudes as a function of time: chpi_amplitudes = mne.chpi.compute_chpi_amplitudes(raw) # %% # Second, let's compute time-varying HPI coil locations from these: chpi_locs = mne.chpi.compute_chpi_locs(raw.info, chpi_amplitudes) # %% # Lastly, compute head positions from the coil locations: head_pos = mne.chpi.compute_head_pos(raw.info, chpi_locs, verbose=True) # %% # Note that these can then be written to disk or read from disk with # :func:`mne.chpi.write_head_pos` and :func:`mne.chpi.read_head_pos`, # respectively. # # Visualizing continuous head position # ------------------------------------ # # We can plot as traces, which is especially useful for long recordings: # sphinx_gallery_thumbnail_number = 2 mne.viz.plot_head_positions(head_pos, mode='traces') # %% # Or we can visualize them as a continuous field (with the vectors pointing # in the head-upward direction): mne.viz.plot_head_positions(head_pos, mode='field') # %% # These head positions can then be used with # :func:`mne.preprocessing.maxwell_filter` to compensate for movement, # or with :func:`mne.preprocessing.annotate_movement` to mark segments as # bad that deviate too much from the average head position. # # # Computing SNR of the HPI signal # ------------------------------- # # It is also possible to compute the SNR of the continuous HPI measurements. # This can be a useful proxy for head position along the vertical dimension, # i.e., it can indicate the distance between the HPI coils and the MEG sensors. # Using `~mne.chpi.compute_chpi_snr`, the HPI power and SNR are computed # separately for each MEG sensor type and each HPI coil (frequency), along with # the residual power for each sensor type. The results can then be visualized # with `~mne.viz.plot_chpi_snr`. Here we'll just show a few seconds, for speed: raw.crop(tmin=5, tmax=10) snr_dict = mne.chpi.compute_chpi_snr(raw) fig = mne.viz.plot_chpi_snr(snr_dict)
bsd-3-clause
google/paxml
paxml/base_experiment.py
1
4624
# coding=utf-8 # Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of a ML experiment. Specifically, BaseExperiment encapsulates all the hyperparameters related to a specific ML experiment. """ import abc from typing import Dict, List, Type, TypeVar from paxml import automl from paxml import base_task from praxis import base_input _BaseExperimentT = TypeVar('_BaseExperimentT', bound='BaseExperiment') BaseExperimentT = Type[_BaseExperimentT] class BaseExperiment(metaclass=abc.ABCMeta): """Encapsulates the hyperparameters of an experiment.""" # p.is_training on each input param is used to determine whether # the dataset is used for training or eval. # All training and eval datasets must have unique names. @abc.abstractmethod def datasets(self) -> List[base_input.BaseInput.HParams]: """Returns the list of dataset parameters.""" def training_dataset(self) -> base_input.BaseInput.HParams: """Returns the tentatively unique training split. Raises a ValueError exception if there is no training split or there are multiple of them. """ training_splits = [s for s in self.datasets() if s.is_training] if not training_splits: raise ValueError( 'Could not find any training split dataset in this experiment ' f'config (`{self.datasets()}`).') if len(training_splits) > 1: raise ValueError( 'Found multiple training split datasets in this experiment ' f'config (`{self.datasets()}`).') return training_splits[0] # Optional. Returns a list of datasets to be decoded. # When specified, all decoder datasets must have unique names. def decoder_datasets(self) -> List[base_input.BaseInput.HParams]: """Returns the list of dataset parameters for decoder.""" return [] @abc.abstractmethod def task(self) -> base_task.BaseTask.HParams: """Returns the task parameters.""" def get_input_specs_provider_params( self) -> base_input.BaseInputSpecsProvider.HParams: """Returns the hparams of the input specs provider. By default, it retrieves the input specs from the training input pipeline (hence, required to exist). But the method can be overridden in derived classes to return a different input specs provider, which directly returns the specs. Returns: An InputSpecsProvider instance. Raises: A ValueError if there is no training set. In this case, the user must override this method to provide the input specs for model weight initialization. """ # TODO(b/236417790): Make this method fully abstract and enforce users to # provide input specs. input_p = self.training_dataset() return base_input.DatasetInputSpecsProvider.HParams(input_p=input_p) def validate(self) -> None: """Validates the experiment config but raises if misconfigured.""" return def search(self) -> automl.SearchHParams: """Returns the parameters for AutoML search.""" raise NotImplementedError( 'Please implement `search` method for your experiment for tuning.') def sub_experiments(self) -> Dict[str, Type['BaseExperiment']]: """Creates sub-experiments for joint tuning. A PAX experiment can have multiple sub-experiments during tuning, which will be included in a single trial and run in sequence. Each sub-experiment is described by an ID (str) and a `BaseExperiment` subclass, therefore, PAX users can include multiple PAX experiments in the same tuning task and use their metrics to compute tuning rewards. Please note that when a PAX experiment class is included as a sub-experiment of other experiment, its own sub-experiments will not be included. Users can also programmatically create new classes based on current class, by overriding class attributes or overriding its method. Returns: A dict of sub-experiment ID to sub-experiment class. """ return {'': self.__class__} def __init_subclass__(cls): """Modifications to the subclasses.""" automl.enable_class_level_hyper_primitives(cls)
apache-2.0
nhuntwalker/astroML
book_figures/chapter7/fig_spec_decompositions.py
4
4673
""" SDSS spectra Decompositions --------------------------- Figure 7.4 A comparison of the decomposition of SDSS spectra using PCA (left panel - see Section 7.3.1), ICA (middle panel - see Section 7.6) and NMF (right panel - see Section 7.4). The rank of the component increases from top to bottom. For the ICA and PCA the first component is the mean spectrum (NMF does not require mean subtraction). All of these techniques isolate a common set of spectral features (identifying features associated with the continuum and line emission). The ordering of the spectral components is technique dependent. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import NMF from sklearn.decomposition import FastICA from sklearn.decomposition import RandomizedPCA from astroML.datasets import sdss_corrected_spectra from astroML.decorators import pickle_results #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Download data data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) wavelengths = sdss_corrected_spectra.compute_wavelengths(data) #---------------------------------------------------------------------- # Compute PCA, ICA, and NMF components # we'll save the results so that they can be re-used @pickle_results('spec_decompositions.pkl') def compute_PCA_ICA_NMF(n_components=5): spec_mean = spectra.mean(0) # PCA: use randomized PCA for speed pca = RandomizedPCA(n_components - 1, random_state=0) pca.fit(spectra) pca_comp = np.vstack([spec_mean, pca.components_]) # ICA treats sequential observations as related. Because of this, we need # to fit with the transpose of the spectra ica = FastICA(n_components - 1, random_state=0) ica.fit(spectra.T) ica_comp = np.vstack([spec_mean, ica.transform(spectra.T).T]) # NMF requires all elements of the input to be greater than zero spectra[spectra < 0] = 0 nmf = NMF(n_components, random_state=0) nmf.fit(spectra) nmf_comp = nmf.components_ return pca_comp, ica_comp, nmf_comp n_components = 5 decompositions = compute_PCA_ICA_NMF(n_components) #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(5, 4)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) titles = ['PCA components', 'ICA components', 'NMF components'] for i, comp in enumerate(decompositions): for j in range(n_components): ax = fig.add_subplot(n_components, 3, 3 * j + 1 + i) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < n_components - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: ax.xaxis.set_major_locator( plt.FixedLocator(list(range(3000, 7999, 1000)))) ax.set_xlabel(r'wavelength ${\rm (\AA)}$') ax.plot(wavelengths, comp[j], '-k', lw=1) # plot zero line xlim = [3000, 8000] ax.plot(xlim, [0, 0], '-', c='gray', lw=1) if j == 0: ax.set_title(titles[i]) if titles[i].startswith('PCA') or titles[i].startswith('ICA'): if j == 0: label = 'mean' else: label = 'component %i' % j else: label = 'component %i' % (j + 1) ax.text(0.03, 0.94, label, transform=ax.transAxes, ha='left', va='top') for l in ax.get_xticklines() + ax.get_yticklines(): l.set_markersize(2) # adjust y limits ylim = plt.ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + 4 * dy) ax.set_xlim(xlim) plt.show()
bsd-2-clause
xiaolonw/fast-rcnn-normal
lib/datasets/imdb.py
4
7114
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import os import os.path as osp import PIL from utils.cython_bbox import bbox_overlaps import numpy as np import scipy.sparse import datasets class imdb(object): """Image database.""" def __init__(self, name): self._name = name self._num_classes = 0 self._classes = [] self._image_index = [] self._obj_proposer = 'selective_search' self._roidb = None self._roidb_handler = self.default_roidb # Use this dict for storing dataset specific config options self.config = {} @property def name(self): return self._name @property def num_classes(self): return len(self._classes) @property def classes(self): return self._classes @property def image_index(self): return self._image_index @property def roidb_handler(self): return self._roidb_handler @roidb_handler.setter def roidb_handler(self, val): self._roidb_handler = val @property def roidb(self): # A roidb is a list of dictionaries, each with the following keys: # boxes # gt_overlaps # gt_classes # flipped if self._roidb is not None: return self._roidb self._roidb = self.roidb_handler() return self._roidb @property def cache_path(self): cache_path = osp.abspath(osp.join(datasets.ROOT_DIR, 'data', 'cache')) if not os.path.exists(cache_path): os.makedirs(cache_path) return cache_path @property def num_images(self): return len(self.image_index) def image_path_at(self, i): raise NotImplementedError def default_roidb(self): raise NotImplementedError def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ raise NotImplementedError def append_flipped_images(self): num_images = self.num_images # Load only the first image, for finding the size, # hopefully all the sizes are the same widths = [PIL.Image.open(self.image_path_at(i)[0]).size[0] for i in xrange(num_images)] for i in xrange(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 - 1 boxes[:, 2] = widths[i] - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes' : boxes, 'gt_overlaps' : self.roidb[i]['gt_overlaps'], 'gt_classes' : self.roidb[i]['gt_classes'], 'flipped' : True} self.roidb.append(entry) self._image_index = self._image_index * 2 def evaluate_recall(self, candidate_boxes, ar_thresh=0.5): # Record max overlap value for each gt box # Return vector of overlap values gt_overlaps = np.zeros(0) for i in xrange(self.num_images): gt_inds = np.where(self.roidb[i]['gt_classes'] > 0)[0] gt_boxes = self.roidb[i]['boxes'][gt_inds, :] boxes = candidate_boxes[i] if boxes.shape[0] == 0: continue overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) # gt_overlaps = np.hstack((gt_overlaps, overlaps.max(axis=0))) _gt_overlaps = np.zeros((gt_boxes.shape[0])) for j in xrange(gt_boxes.shape[0]): argmax_overlaps = overlaps.argmax(axis=0) max_overlaps = overlaps.max(axis=0) gt_ind = max_overlaps.argmax() gt_ovr = max_overlaps.max() assert(gt_ovr >= 0) box_ind = argmax_overlaps[gt_ind] _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert(_gt_overlaps[j] == gt_ovr) overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) num_pos = gt_overlaps.size gt_overlaps = np.sort(gt_overlaps) step = 0.001 thresholds = np.minimum(np.arange(0.5, 1.0 + step, step), 1.0) recalls = np.zeros_like(thresholds) for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).sum() / float(num_pos) ar = 2 * np.trapz(recalls, thresholds) return ar, gt_overlaps, recalls, thresholds def create_roidb_from_box_list(self, box_list, gt_roidb): assert len(box_list) == self.num_images, \ 'Number of boxes must match number of ground-truth images' roidb = [] for i in xrange(self.num_images): boxes = box_list[i] num_boxes = boxes.shape[0] overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32) if gt_roidb is not None: gt_boxes = gt_roidb[i]['boxes'] gt_classes = gt_roidb[i]['gt_classes'] gt_overlaps = bbox_overlaps(boxes.astype(np.float), gt_boxes.astype(np.float)) if gt_overlaps.shape[1] > 0: argmaxes = gt_overlaps.argmax(axis=1) maxes = gt_overlaps.max(axis=1) I = np.where(maxes > 0)[0] overlaps[I, gt_classes[argmaxes[I]]] = maxes[I] else: overlaps = np.zeros((num_boxes, self.num_classes), dtype=np.float32) overlaps = scipy.sparse.csr_matrix(overlaps) roidb.append({'boxes' : boxes, 'gt_classes' : np.zeros((num_boxes,), dtype=np.int32), 'gt_overlaps' : overlaps, 'flipped' : False}) return roidb @staticmethod def merge_roidbs(a, b): assert len(a) == len(b) for i in xrange(len(a)): a[i]['boxes'] = np.vstack((a[i]['boxes'], b[i]['boxes'])) a[i]['gt_classes'] = np.hstack((a[i]['gt_classes'], b[i]['gt_classes'])) if(a[i]['gt_overlaps'].shape[0] == 0): a[i]['gt_overlaps'] = b[i]['gt_overlaps'] else: a[i]['gt_overlaps'] = scipy.sparse.vstack([a[i]['gt_overlaps'], b[i]['gt_overlaps']]) return a def competition_mode(self, on): """Turn competition mode on or off.""" pass
mit
rhiever/sklearn-benchmarks
model_code/random_search_preprocessing/DecisionTreeClassifier.py
1
2499
import sys import pandas as pd import numpy as np from sklearn.preprocessing import Binarizer, MaxAbsScaler, MinMaxScaler from sklearn.preprocessing import Normalizer, PolynomialFeatures, RobustScaler, StandardScaler from sklearn.decomposition import FastICA, PCA from sklearn.kernel_approximation import RBFSampler, Nystroem from sklearn.cluster import FeatureAgglomeration from sklearn.feature_selection import SelectFwe, SelectPercentile, VarianceThreshold from sklearn.feature_selection import SelectFromModel, RFE from sklearn.ensemble import ExtraTreesClassifier from sklearn.tree import DecisionTreeClassifier from evaluate_model import evaluate_model dataset = sys.argv[1] num_param_combinations = int(sys.argv[2]) random_seed = int(sys.argv[3]) preprocessor_num = int(sys.argv[4]) np.random.seed(random_seed) preprocessor_list = [Binarizer, MaxAbsScaler, MinMaxScaler, Normalizer, PolynomialFeatures, RobustScaler, StandardScaler, FastICA, PCA, RBFSampler, Nystroem, FeatureAgglomeration, SelectFwe, SelectPercentile, VarianceThreshold, SelectFromModel, RFE] chosen_preprocessor = preprocessor_list[preprocessor_num] pipeline_components = [chosen_preprocessor, DecisionTreeClassifier] pipeline_parameters = {} min_impurity_decrease_values = np.random.exponential(scale=0.01, size=num_param_combinations) max_features_values = np.random.choice(list(np.arange(0.01, 1., 0.01)) + ['sqrt', 'log2', None], size=num_param_combinations) criterion_values = np.random.choice(['gini', 'entropy'], size=num_param_combinations) max_depth_values = np.random.choice(list(range(1, 51)) + [None], size=num_param_combinations) all_param_combinations = zip(min_impurity_decrease_values, max_features_values, criterion_values, max_depth_values) pipeline_parameters[DecisionTreeClassifier] = \ [{'min_impurity_decrease': min_impurity_decrease, 'max_features': max_features, 'criterion': criterion, 'max_depth': max_depth, 'random_state': 324089} for (min_impurity_decrease, max_features, criterion, max_depth) in all_param_combinations] if chosen_preprocessor is SelectFromModel: pipeline_parameters[SelectFromModel] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}] elif chosen_preprocessor is RFE: pipeline_parameters[RFE] = [{'estimator': ExtraTreesClassifier(n_estimators=100, random_state=324089)}] evaluate_model(dataset, pipeline_components, pipeline_parameters)
mit
pravsripad/mne-python
examples/decoding/decoding_spatio_temporal_source.py
11
4405
# -*- coding: utf-8 -*- """ .. _ex-dec-st-source: ========================== Decoding source space data ========================== Decoding to MEG data in source space on the left cortical surface. Here univariate feature selection is employed for speed purposes to confine the classification to a small number of potentially relevant features. The classifier then is trained to selected features of epochs in source space. """ # sphinx_gallery_thumbnail_number = 2 # Author: Denis A. Engemann <denis.engemann@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Jean-Remi King <jeanremi.king@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause # %% import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest, f_classif from sklearn.linear_model import LogisticRegression import mne from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator from mne.decoding import (cross_val_multiscore, LinearModel, SlidingEstimator, get_coef) print(__doc__) data_path = mne.datasets.sample.data_path() meg_path = data_path / 'MEG' / 'sample' fname_fwd = meg_path / 'sample_audvis-meg-oct-6-fwd.fif' fname_evoked = meg_path / 'sample_audvis-ave.fif' subjects_dir = data_path / 'subjects' # %% # Set parameters raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif' event_fname = meg_path / 'sample_audvis_filt-0-40_raw-eve.fif' fname_cov = meg_path / 'sample_audvis-cov.fif' fname_inv = meg_path / 'sample_audvis-meg-oct-6-meg-inv.fif' tmin, tmax = -0.2, 0.8 event_id = dict(aud_r=2, vis_r=4) # load contra-lateral conditions # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(None, 10., fir_design='firwin') events = mne.read_events(event_fname) # Set up pick list: MEG - bad channels (modify to your needs) raw.info['bads'] += ['MEG 2443'] # mark bads picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, eog=150e-6), decim=5) # decimate to save memory and increase speed # %% # Compute inverse solution snr = 3.0 noise_cov = mne.read_cov(fname_cov) inverse_operator = read_inverse_operator(fname_inv) stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2=1.0 / snr ** 2, verbose=False, method="dSPM", pick_ori="normal") # %% # Decoding in sensor space using a logistic regression # Retrieve source space data into an array X = np.array([stc.lh_data for stc in stcs]) # only keep left hemisphere y = epochs.events[:, 2] # prepare a series of classifier applied at each time sample clf = make_pipeline(StandardScaler(), # z-score normalization SelectKBest(f_classif, k=500), # select features for speed LinearModel(LogisticRegression(C=1, solver='liblinear'))) time_decod = SlidingEstimator(clf, scoring='roc_auc') # Run cross-validated decoding analyses: scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=None) # Plot average decoding scores of 5 splits fig, ax = plt.subplots(1) ax.plot(epochs.times, scores.mean(0), label='score') ax.axhline(.5, color='k', linestyle='--', label='chance') ax.axvline(0, color='k') plt.legend() # %% # To investigate weights, we need to retrieve the patterns of a fitted model # The fitting needs not be cross validated because the weights are based on # the training sets time_decod.fit(X, y) # Retrieve patterns after inversing the z-score normalization step: patterns = get_coef(time_decod, 'patterns_', inverse_transform=True) stc = stcs[0] # for convenience, lookup parameters from first stc vertices = [stc.lh_vertno, np.array([], int)] # empty array for right hemi stc_feat = mne.SourceEstimate(np.abs(patterns), vertices=vertices, tmin=stc.tmin, tstep=stc.tstep, subject='sample') brain = stc_feat.plot(views=['lat'], transparent=True, initial_time=0.1, time_unit='s', subjects_dir=subjects_dir)
bsd-3-clause
pravsripad/mne-python
examples/decoding/decoding_csp_eeg.py
11
4808
# -*- coding: utf-8 -*- """ .. _ex-decoding-csp-eeg: =========================================================================== Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP) =========================================================================== Decoding of motor imagery applied to EEG data decomposed using CSP. A classifier is then applied to features extracted on CSP-filtered signals. See https://en.wikipedia.org/wiki/Common_spatial_pattern and :footcite:`Koles1991`. The EEGBCI dataset is documented in :footcite:`SchalkEtAl2004` and is available at PhysioNet :footcite:`GoldbergerEtAl2000`. """ # Authors: Martin Billinger <martin.billinger@tugraz.at> # # License: BSD-3-Clause # %% import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import ShuffleSplit, cross_val_score from mne import Epochs, pick_types, events_from_annotations from mne.channels import make_standard_montage from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci from mne.decoding import CSP print(__doc__) # ############################################################################# # # Set parameters and read data # avoid classification of evoked responses by using epochs that start 1s after # cue onset. tmin, tmax = -1., 4. event_id = dict(hands=2, feet=3) subject = 1 runs = [6, 10, 14] # motor imagery: hands vs feet raw_fnames = eegbci.load_data(subject, runs) raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames]) eegbci.standardize(raw) # set channel names montage = make_standard_montage('standard_1005') raw.set_montage(montage) # Apply band-pass filter raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge') events, _ = events_from_annotations(raw, event_id=dict(T1=2, T2=3)) picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Read epochs (train will be done only between 1 and 2s) # Testing will be done with a running classifier epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True) epochs_train = epochs.copy().crop(tmin=1., tmax=2.) labels = epochs.events[:, -1] - 2 # %% # Classification with linear discrimant analysis # Define a monte-carlo cross-validation generator (reduce variance): scores = [] epochs_data = epochs.get_data() epochs_data_train = epochs_train.get_data() cv = ShuffleSplit(10, test_size=0.2, random_state=42) cv_split = cv.split(epochs_data_train) # Assemble a classifier lda = LinearDiscriminantAnalysis() csp = CSP(n_components=4, reg=None, log=True, norm_trace=False) # Use scikit-learn Pipeline with cross_val_score function clf = Pipeline([('CSP', csp), ('LDA', lda)]) scores = cross_val_score(clf, epochs_data_train, labels, cv=cv, n_jobs=None) # Printing the results class_balance = np.mean(labels == labels[0]) class_balance = max(class_balance, 1. - class_balance) print("Classification accuracy: %f / Chance level: %f" % (np.mean(scores), class_balance)) # plot CSP patterns estimated on full data for visualization csp.fit_transform(epochs_data, labels) csp.plot_patterns(epochs.info, ch_type='eeg', units='Patterns (AU)', size=1.5) # %% # Look at performance over time sfreq = raw.info['sfreq'] w_length = int(sfreq * 0.5) # running classifier: window length w_step = int(sfreq * 0.1) # running classifier: window step size w_start = np.arange(0, epochs_data.shape[2] - w_length, w_step) scores_windows = [] for train_idx, test_idx in cv_split: y_train, y_test = labels[train_idx], labels[test_idx] X_train = csp.fit_transform(epochs_data_train[train_idx], y_train) X_test = csp.transform(epochs_data_train[test_idx]) # fit classifier lda.fit(X_train, y_train) # running classifier: test classifier on sliding window score_this_window = [] for n in w_start: X_test = csp.transform(epochs_data[test_idx][:, :, n:(n + w_length)]) score_this_window.append(lda.score(X_test, y_test)) scores_windows.append(score_this_window) # Plot scores over time w_times = (w_start + w_length / 2.) / sfreq + epochs.tmin plt.figure() plt.plot(w_times, np.mean(scores_windows, 0), label='Score') plt.axvline(0, linestyle='--', color='k', label='Onset') plt.axhline(0.5, linestyle='-', color='k', label='Chance') plt.xlabel('time (s)') plt.ylabel('classification accuracy') plt.title('Classification score over time') plt.legend(loc='lower right') plt.show() ############################################################################## # References # ---------- # .. footbibliography::
bsd-3-clause
herilalaina/scikit-learn
sklearn/linear_model/coordinate_descent.py
7
84720
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import _preprocess_data from ..utils import check_array, check_X_y from ..utils.validation import check_random_state from ..model_selection import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..exceptions import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 < l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not supported) ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if l1_ratio == 0: raise ValueError("Automatic alpha grid generation is not supported for" " l1_ratio=0. Please supply a grid by providing " "your estimator with the appropriate `alphas=` " "argument.") n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = _preprocess_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_offset, _, X_scale = _preprocess_data(X, y, fit_intercept, normalize, return_mean=True) mean_dot = X_offset * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_scale[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. (Only allowed when ``y.ndim == 1``). **params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, return_n_iter=return_n_iter, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. (Only allowed when ``y.ndim == 1``). check_input : bool, default True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. **params : kwargs keyword arguments passed to the coordinate descent solver. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape if multi_output and positive: raise ValueError('positive=True is not allowed for multi-output' ' (y.ndim != 1)') # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1], dtype=X.dtype)) else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations.' + ' Fitting data with very small alpha' + ' may cause precision problems.', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter.``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | array-like Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn.linear_model import ElasticNet >>> from sklearn.datasets import make_regression >>> >>> X, y = make_regression(n_features=2, random_state=0) >>> regr = ElasticNet(random_state=0) >>> regr.fit(X, y) ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=0, selection='cyclic', tol=0.0001, warm_start=False) >>> print(regr.coef_) # doctest: +ELLIPSIS [ 18.83816048 64.55968825] >>> print(regr.intercept_) # doctest: +ELLIPSIS 1.45126075617 >>> print(regr.predict([[0, 0]])) # doctest: +ELLIPSIS [ 1.45126076] Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- ElasticNetCV : Elastic net model with best model selection by cross-validation. SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target. Will be cast to X's dtype if necessary check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if isinstance(self.precompute, six.string_types): raise ValueError('precompute should be one of True, False or' ' array-like. Got %r' % self.precompute) # We expect X and y to be float64 or float32 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', order='F', dtype=[np.float64, np.float32], copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) y = check_array(y, order='F', copy=False, dtype=X.dtype.type, ensure_2d=False) X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or not hasattr(self, "coef_"): coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=X.dtype) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_offset=X_offset, X_scale=X_scale, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_offset, y_offset, X_scale) # workaround since _set_intercept will cast self.coef_ into X.dtype self.coef_ = np.asarray(self.coef_, dtype=X.dtype) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted ``coef_`` """ return sparse.csr_matrix(self.coef_) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | array-like, default=False Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_offset'] = X_offset path_params['X_scale'] = X_scale path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_offset = np.atleast_1d(y_offset) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_scale) coefs[:, nonzeros] /= X_scale[nonzeros][:, np.newaxis] intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matrices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = check_array(y, copy=False, dtype=[np.float64, np.float32], ensure_2d=False) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if (hasattr(reference_to_old_X, "data") and not np.may_share_memory(reference_to_old_X.data, X.data)): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv.split(X, y)) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=X.dtype.type) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_model_selection.py <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float or array of floats, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn.linear_model import ElasticNetCV >>> from sklearn.datasets import make_regression >>> >>> X, y = make_regression(n_features=2, random_state=0) >>> regr = ElasticNetCV(cv=5, random_state=0) >>> regr.fit(X, y) ElasticNetCV(alphas=None, copy_X=True, cv=5, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False, precompute='auto', random_state=0, selection='cyclic', tol=0.0001, verbose=0) >>> print(regr.alpha_) # doctest: +ELLIPSIS 0.19947279427 >>> print(regr.intercept_) # doctest: +ELLIPSIS 0.398882965428 >>> print(regr.predict([[0, 0]])) # doctest: +ELLIPSIS [ 0.39888297] Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_model_selection.py <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array. Note that ``coef_`` stores the transpose of ``W``, ``W.T``. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- MultiTaskElasticNet : Multi-task L1/L2 ElasticNet with built-in cross-validation. ElasticNet MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target. Will be cast to X's dtype if necessary Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ X = check_array(X, dtype=[np.float64, np.float32], order='F', copy=self.copy_X and self.fit_intercept) y = check_array(y, dtype=X.dtype.type, ensure_2d=False) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=X.dtype.type, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_offset, y_offset, X_scale) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations', ConvergenceWarning) # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 Attributes ---------- coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- MultiTaskLasso : Multi-task L1/L2 Lasso with built-in cross-validation Lasso MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_elastic_net>`. Parameters ---------- l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random' selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
sangwook236/general-development-and-testing
sw_dev/python/rnd/test/machine_learning/pytorch/pytorch_transfer_learning.py
2
8058
#!/usr/bin/env python # -*- coding: UTF-8 -*- import os, time, copy import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models, transforms plt.ion() # Interactive mode. def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # Pause a bit so that plots are updated. def train_model(model, dataloaders, device, dataset_sizes, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase. for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() # Set model to training mode. else: model.eval() # Set model to evaluate mode. running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: # NOTE [info] >> Errors incluing "photoshop" occurred in pillow 6.0.0. inputs = inputs.to(device) labels = labels.to(device) # Zero the parameter gradients. optimizer.zero_grad() # Forward. # Track history if only in train. with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # Backward + optimize only if in training phase. if phase == 'train': loss.backward() optimizer.step() # Statistics. running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) # Deep copy the model. if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # Load best model weights. model.load_state_dict(best_model_wts) return model def visualize_model(model, device, dataloaders, class_names, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images // 2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) # REF [site] >> https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html def finetuning_example(): # Load Data. # Data augmentation and normalization for training. # Just normalization for validation. data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'data/hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Visualize a few images. if False: # Get a batch of training data. inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch. out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) #-------------------- # Finetune the convnet. # Show a model architecture. #print(torchvision.models.resnet18(pretrained=True)) model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized. optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs. exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # Train and evaluate. model_ft = train_model(model_ft, dataloaders, device, dataset_sizes, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) visualize_model(model_ft, device, dataloaders, class_names) # REF [site] >> https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html def convnet_as_fixed_feature_extractor_example(): # Load Data. # Data augmentation and normalization for training. # Just normalization for validation. data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'data/hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Visualize a few images. if False: # Get a batch of training data. inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch. out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) #-------------------- model_conv = torchvision.models.resnet18(pretrained=True) # Freeze weights. for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default. num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as opposed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs. exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) #-------------------- # Train and evaluate. model_conv = train_model(model_conv, dataloaders, device, dataset_sizes, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25) visualize_model(model_conv, device, dataloaders, class_names) plt.ioff() plt.show() def main(): finetuning_example() convnet_as_fixed_feature_extractor_example() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-2.0
h2oai/h2o
py/testdir_single_jvm/test_GLM2_covtype_train_predict_all_all.py
9
4367
import unittest, random, sys, time sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_import as h2i, h2o_exec, h2o_glm, h2o_gbm, h2o_exec as h2e class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): h2o.init(java_heap_GB=10) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GLM2_covtype_train_predict_all_all(self): importFolderPath = "standard" csvFilename = 'covtype.shuffled.data' csvPathname = importFolderPath + "/" + csvFilename hex_key = csvFilename + ".hex" # Parse and Exec************************************************ parseResult = h2i.import_parse(bucket='home-0xdiag-datasets', path=csvPathname, schema='put', hex_key=hex_key, timeoutSecs=180) execExpr="A.hex=%s" % parseResult['destination_key'] h2e.exec_expr(execExpr=execExpr, timeoutSecs=30) # use exec to change the output col to binary, case_mode/case_val doesn't work if we use predict # will have to live with random extract. will create variance # class 4 = 1, everything else 0 y = 54 execExpr="A.hex[,%s]=(A.hex[,%s]==%s)" % (y+1, y+1, 1) # class 1 h2e.exec_expr(execExpr=execExpr, timeoutSecs=30) inspect = h2o_cmd.runInspect(key="A.hex") print "\n" + csvPathname, \ " numRows:", "{:,}".format(inspect['numRows']), \ " numCols:", "{:,}".format(inspect['numCols']) print "Use same data (full) for train and test" trainDataKey = "A.hex" testDataKey = "A.hex" # start at 90% rows + 1 # GLM, predict, CM*******************************************************8 kwargs = { 'response': 'C' + str(y+1), 'max_iter': 20, 'n_folds': 0, # 'alpha': 0.1, # 'lambda': 1e-5, 'alpha': 0.0, 'lambda': None, 'family': 'binomial', } timeoutSecs = 60 for trial in range(1): # test/train split **********************************************8 aHack = {'destination_key': trainDataKey} # GLM **********************************************8 start = time.time() glm = h2o_cmd.runGLM(parseResult=aHack, timeoutSecs=timeoutSecs, pollTimeoutSecs=180, **kwargs) print "glm end on ", parseResult['destination_key'], 'took', time.time() - start, 'seconds' h2o_glm.simpleCheckGLM(self, glm, None, **kwargs) modelKey = glm['glm_model']['_key'] submodels = glm['glm_model']['submodels'] # hackery to make it work when there's just one validation = submodels[-1]['validation'] best_threshold = validation['best_threshold'] thresholds = validation['thresholds'] # have to look up the index for the cm, from the thresholds list best_index = None for i,t in enumerate(thresholds): if t == best_threshold: best_index = i break cms = validation['_cms'] cm = cms[best_index] trainPctWrong = h2o_gbm.pp_cm_summary(cm['_arr']); # Score ********************************************** predictKey = 'Predict.hex' start = time.time() predictResult = h2o_cmd.runPredict( data_key=testDataKey, model_key=modelKey, destination_key=predictKey, timeoutSecs=timeoutSecs) predictCMResult = h2o.nodes[0].predict_confusion_matrix( actual=testDataKey, vactual='C' + str(y+1), predict=predictKey, vpredict='predict', ) cm = predictCMResult['cm'] # These will move into the h2o_gbm.py pctWrong = h2o_gbm.pp_cm_summary(cm); self.assertEqual(pctWrong, trainPctWrong,"Should see the same error rate on train and predict? (same data set)") print "\nTest\n==========\n" print h2o_gbm.pp_cm(cm) print "Trial #", trial, "completed" if __name__ == '__main__': h2o.unit_main()
apache-2.0
schets/scikit-learn
sklearn/utils/graph.py
50
6169
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <hagberg@lanl.gov> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Jake Vanderplas <vanderplas@astro.washington.edu> # License: BSD 3 clause import numpy as np from scipy import sparse from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = csgraph.astype(np.float) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
rubasben/namebench
nb_third_party/dns/node.py
215
5914
# Copyright (C) 2001-2007, 2009, 2010 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """DNS nodes. A node is a set of rdatasets.""" import StringIO import dns.rdataset import dns.rdatatype import dns.renderer class Node(object): """A DNS node. A node is a set of rdatasets @ivar rdatasets: the node's rdatasets @type rdatasets: list of dns.rdataset.Rdataset objects""" __slots__ = ['rdatasets'] def __init__(self): """Initialize a DNS node. """ self.rdatasets = []; def to_text(self, name, **kw): """Convert a node to text format. Each rdataset at the node is printed. Any keyword arguments to this method are passed on to the rdataset's to_text() method. @param name: the owner name of the rdatasets @type name: dns.name.Name object @rtype: string """ s = StringIO.StringIO() for rds in self.rdatasets: print >> s, rds.to_text(name, **kw) return s.getvalue()[:-1] def __repr__(self): return '<DNS node ' + str(id(self)) + '>' def __eq__(self, other): """Two nodes are equal if they have the same rdatasets. @rtype: bool """ # # This is inefficient. Good thing we don't need to do it much. # for rd in self.rdatasets: if rd not in other.rdatasets: return False for rd in other.rdatasets: if rd not in self.rdatasets: return False return True def __ne__(self, other): return not self.__eq__(other) def __len__(self): return len(self.rdatasets) def __iter__(self): return iter(self.rdatasets) def find_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE, create=False): """Find an rdataset matching the specified properties in the current node. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. Usually this value is dns.rdatatype.NONE, but if the rdtype is dns.rdatatype.SIG or dns.rdatatype.RRSIG, then the covers value will be the rdata type the SIG/RRSIG covers. The library treats the SIG and RRSIG types as if they were a family of types, e.g. RRSIG(A), RRSIG(NS), RRSIG(SOA). This makes RRSIGs much easier to work with than if RRSIGs covering different rdata types were aggregated into a single RRSIG rdataset. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @raises KeyError: An rdataset of the desired type and class does not exist and I{create} is not True. @rtype: dns.rdataset.Rdataset object """ for rds in self.rdatasets: if rds.match(rdclass, rdtype, covers): return rds if not create: raise KeyError rds = dns.rdataset.Rdataset(rdclass, rdtype) self.rdatasets.append(rds) return rds def get_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE, create=False): """Get an rdataset matching the specified properties in the current node. None is returned if an rdataset of the specified type and class does not exist and I{create} is not True. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int @param create: If True, create the rdataset if it is not found. @type create: bool @rtype: dns.rdataset.Rdataset object or None """ try: rds = self.find_rdataset(rdclass, rdtype, covers, create) except KeyError: rds = None return rds def delete_rdataset(self, rdclass, rdtype, covers=dns.rdatatype.NONE): """Delete the rdataset matching the specified properties in the current node. If a matching rdataset does not exist, it is not an error. @param rdclass: The class of the rdataset @type rdclass: int @param rdtype: The type of the rdataset @type rdtype: int @param covers: The covered type. @type covers: int """ rds = self.get_rdataset(rdclass, rdtype, covers) if not rds is None: self.rdatasets.remove(rds) def replace_rdataset(self, replacement): """Replace an rdataset. It is not an error if there is no rdataset matching I{replacement}. Ownership of the I{replacement} object is transferred to the node; in other words, this method does not store a copy of I{replacement} at the node, it stores I{replacement} itself. """ self.delete_rdataset(replacement.rdclass, replacement.rdtype, replacement.covers) self.rdatasets.append(replacement)
apache-2.0
schets/scikit-learn
sklearn/neighbors/tests/test_approximate.py
141
18692
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) lshf.fit(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)] neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) lshf.fit(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)] # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)] mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [1., 0.] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slighltly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() lshf.fit(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)] distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) lshf.fit(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consitent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator lshf.partial_fit(X) assert_array_equal(X, lshf._fit_X) lshf.fit(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) lshf.partial_fit(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) lshf.fit(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32) # For zero candidates lshf = LSHForest(min_hash_match=32) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) lshf.fit(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) lshf.fit(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
luoyetx/mxnet
example/stochastic-depth/sd_cifar10.py
19
10326
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ########################################################################################### # Implementation of the stochastic depth algorithm described in the paper # # Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016). # # Reference torch implementation can be found at https://github.com/yueatsprograms/Stochastic_Depth # # There are some differences in the implementation: # - A BN->ReLU->Conv is used for skip connection when input and output shapes are different, # as oppose to a padding layer. # - The residual block is different: we use BN->ReLU->Conv->BN->ReLU->Conv, as oppose to # Conv->BN->ReLU->Conv->BN (->ReLU also applied to skip connection). # - We did not try to match with the same initialization, learning rate scheduling, etc. # #-------------------------------------------------------------------------------- # A sample from the running log (We achieved ~9.4% error after 500 epochs, some # more careful tuning of the hyper parameters and maybe also the arch is needed # to achieve the reported numbers in the paper): # # INFO:root:Epoch[80] Batch [50] Speed: 1020.95 samples/sec Train-accuracy=0.910080 # INFO:root:Epoch[80] Batch [100] Speed: 1013.41 samples/sec Train-accuracy=0.912031 # INFO:root:Epoch[80] Batch [150] Speed: 1035.48 samples/sec Train-accuracy=0.913438 # INFO:root:Epoch[80] Batch [200] Speed: 1045.00 samples/sec Train-accuracy=0.907344 # INFO:root:Epoch[80] Batch [250] Speed: 1055.32 samples/sec Train-accuracy=0.905937 # INFO:root:Epoch[80] Batch [300] Speed: 1071.71 samples/sec Train-accuracy=0.912500 # INFO:root:Epoch[80] Batch [350] Speed: 1033.73 samples/sec Train-accuracy=0.910937 # INFO:root:Epoch[80] Train-accuracy=0.919922 # INFO:root:Epoch[80] Time cost=48.348 # INFO:root:Saved checkpoint to "sd-110-0081.params" # INFO:root:Epoch[80] Validation-accuracy=0.880142 # ... # INFO:root:Epoch[115] Batch [50] Speed: 1037.04 samples/sec Train-accuracy=0.937040 # INFO:root:Epoch[115] Batch [100] Speed: 1041.12 samples/sec Train-accuracy=0.934219 # INFO:root:Epoch[115] Batch [150] Speed: 1036.02 samples/sec Train-accuracy=0.933125 # INFO:root:Epoch[115] Batch [200] Speed: 1057.49 samples/sec Train-accuracy=0.938125 # INFO:root:Epoch[115] Batch [250] Speed: 1060.56 samples/sec Train-accuracy=0.933438 # INFO:root:Epoch[115] Batch [300] Speed: 1046.25 samples/sec Train-accuracy=0.935625 # INFO:root:Epoch[115] Batch [350] Speed: 1043.83 samples/sec Train-accuracy=0.927188 # INFO:root:Epoch[115] Train-accuracy=0.938477 # INFO:root:Epoch[115] Time cost=47.815 # INFO:root:Saved checkpoint to "sd-110-0116.params" # INFO:root:Epoch[115] Validation-accuracy=0.884415 # ... # INFO:root:Saved checkpoint to "sd-110-0499.params" # INFO:root:Epoch[498] Validation-accuracy=0.908554 # INFO:root:Epoch[499] Batch [50] Speed: 1068.28 samples/sec Train-accuracy=0.991422 # INFO:root:Epoch[499] Batch [100] Speed: 1053.10 samples/sec Train-accuracy=0.991094 # INFO:root:Epoch[499] Batch [150] Speed: 1042.89 samples/sec Train-accuracy=0.995156 # INFO:root:Epoch[499] Batch [200] Speed: 1066.22 samples/sec Train-accuracy=0.991406 # INFO:root:Epoch[499] Batch [250] Speed: 1050.56 samples/sec Train-accuracy=0.990781 # INFO:root:Epoch[499] Batch [300] Speed: 1032.02 samples/sec Train-accuracy=0.992500 # INFO:root:Epoch[499] Batch [350] Speed: 1062.16 samples/sec Train-accuracy=0.992969 # INFO:root:Epoch[499] Train-accuracy=0.994141 # INFO:root:Epoch[499] Time cost=47.401 # INFO:root:Saved checkpoint to "sd-110-0500.params" # INFO:root:Epoch[499] Validation-accuracy=0.906050 # ########################################################################################### import os import sys import mxnet as mx import logging sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from utils import get_data import sd_module def residual_module(death_rate, n_channel, name_scope, context, stride=1, bn_momentum=0.9): data = mx.sym.Variable(name_scope + '_data') # computation branch: # BN -> ReLU -> Conv -> BN -> ReLU -> Conv bn1 = mx.symbol.BatchNorm(data=data, name=name_scope + '_bn1', fix_gamma=False, momentum=bn_momentum, # Same with https://github.com/soumith/cudnn.torch/blob/master/BatchNormalization.lua # cuDNN v5 don't allow a small eps of 1e-5 eps=2e-5 ) relu1 = mx.symbol.Activation(data=bn1, act_type='relu', name=name_scope+'_relu1') conv1 = mx.symbol.Convolution(data=relu1, num_filter=n_channel, kernel=(3, 3), pad=(1,1), stride=(stride, stride), name=name_scope+'_conv1') bn2 = mx.symbol.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_momentum, eps=2e-5, name=name_scope+'_bn2') relu2 = mx.symbol.Activation(data=bn2, act_type='relu', name=name_scope+'_relu2') conv2 = mx.symbol.Convolution(data=relu2, num_filter=n_channel, kernel=(3, 3), pad=(1,1), stride=(1, 1), name=name_scope+'_conv2') sym_compute = conv2 # skip branch if stride > 1: sym_skip = mx.symbol.BatchNorm(data=data, fix_gamma=False, momentum=bn_momentum, eps=2e-5, name=name_scope+'_skip_bn') sym_skip = mx.symbol.Activation(data=sym_skip, act_type='relu', name=name_scope+'_skip_relu') sym_skip = mx.symbol.Convolution(data=sym_skip, num_filter=n_channel, kernel=(3, 3), pad=(1, 1), stride=(stride, stride), name=name_scope+'_skip_conv') else: sym_skip = None mod = sd_module.StochasticDepthModule(sym_compute, sym_skip, data_names=[name_scope+'_data'], context=context, death_rate=death_rate) return mod ################################################################################# # Build architecture # Configurations bn_momentum = 0.9 contexts = [mx.context.gpu(i) for i in range(1)] n_residual_blocks = 18 death_rate = 0.5 death_mode = 'linear_decay' # 'linear_decay' or 'uniform' n_classes = 10 def get_death_rate(i_res_block): n_total_res_blocks = n_residual_blocks * 3 if death_mode == 'linear_decay': my_death_rate = float(i_res_block) / n_total_res_blocks * death_rate else: my_death_rate = death_rate return my_death_rate # 0. base ConvNet sym_base = mx.sym.Variable('data') sym_base = mx.sym.Convolution(data=sym_base, num_filter=16, kernel=(3, 3), pad=(1, 1), name='conv1') sym_base = mx.sym.BatchNorm(data=sym_base, name='bn1', fix_gamma=False, momentum=bn_momentum, eps=2e-5) sym_base = mx.sym.Activation(data=sym_base, name='relu1', act_type='relu') mod_base = mx.mod.Module(sym_base, context=contexts, label_names=None) # 1. container mod_seq = mx.mod.SequentialModule() mod_seq.add(mod_base) # 2. first group, 16 x 28 x 28 i_res_block = 0 for i in range(n_residual_blocks): mod_seq.add(residual_module(get_death_rate(i_res_block), 16, 'res_A_%d' % i, contexts), auto_wiring=True) i_res_block += 1 # 3. second group, 32 x 14 x 14 mod_seq.add(residual_module(get_death_rate(i_res_block), 32, 'res_AB', contexts, stride=2), auto_wiring=True) i_res_block += 1 for i in range(n_residual_blocks-1): mod_seq.add(residual_module(get_death_rate(i_res_block), 32, 'res_B_%d' % i, contexts), auto_wiring=True) i_res_block += 1 # 4. third group, 64 x 7 x 7 mod_seq.add(residual_module(get_death_rate(i_res_block), 64, 'res_BC', contexts, stride=2), auto_wiring=True) i_res_block += 1 for i in range(n_residual_blocks-1): mod_seq.add(residual_module(get_death_rate(i_res_block), 64, 'res_C_%d' % i, contexts), auto_wiring=True) i_res_block += 1 # 5. final module sym_final = mx.sym.Variable('data') sym_final = mx.sym.Pooling(data=sym_final, kernel=(7, 7), pool_type='avg', name='global_pool') sym_final = mx.sym.FullyConnected(data=sym_final, num_hidden=n_classes, name='logits') sym_final = mx.sym.SoftmaxOutput(data=sym_final, name='softmax') mod_final = mx.mod.Module(sym_final, context=contexts) mod_seq.add(mod_final, auto_wiring=True, take_labels=True) ################################################################################# # Training num_examples = 60000 batch_size = 128 base_lr = 0.008 lr_factor = 0.5 lr_factor_epoch = 100 momentum = 0.9 weight_decay = 0.00001 kv_store = 'local' initializer = mx.init.Xavier(factor_type="in", magnitude=2.34) num_epochs = 500 epoch_size = num_examples // batch_size lr_scheduler = mx.lr_scheduler.FactorScheduler(step=max(int(epoch_size * lr_factor_epoch), 1), factor=lr_factor) batch_end_callbacks = [mx.callback.Speedometer(batch_size, 50)] epoch_end_callbacks = [mx.callback.do_checkpoint('sd-%d' % (n_residual_blocks * 6 + 2))] args = type('', (), {})() args.batch_size = batch_size args.data_dir = os.path.join(os.path.dirname(__file__), "data") kv = mx.kvstore.create(kv_store) train, val = get_data.get_cifar10_iterator(args, kv) logging.basicConfig(level=logging.DEBUG) mod_seq.fit(train, val, optimizer_params={'learning_rate': base_lr, 'momentum': momentum, 'lr_scheduler': lr_scheduler, 'wd': weight_decay}, num_epoch=num_epochs, batch_end_callback=batch_end_callbacks, epoch_end_callback=epoch_end_callbacks, initializer=initializer)
apache-2.0
herilalaina/scikit-learn
examples/plot_feature_stacker.py
78
1911
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way too high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
h2oai/h2o
py/testdir_single_jvm/test_speedrf_params_rand2.py
9
3800
import unittest, random, sys, time sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_rf, h2o_import as h2i, h2o_util paramDict = { # 2 new 'destination_key': ['model_keyA', '012345', '__hello'], 'cols': [None, None, None, None, None, '0,1,2,3,4,5,6,7,8','C1,C2,C3,C4,C5,C6,C7,C8'], # exclusion handled below, otherwise exception: # ...Arguments 'cols', 'ignored_cols_by_name', and 'ignored_cols' are exclusive 'ignored_cols_by_name': [None, None, None, None, 'C1','C2','C3','C4','C5','C6','C7','C8','C9'], # probably can't deal with mixtures of cols and ignore, so just use cols for now # could handle exclusion below # 'ignored_cols': [None, None, None, None, None, '0,1,2,3,4,5,6,7,8','C1,C2,C3,C4,C5,C6,C7,C8'], 'n_folds': [None, 2, 5], # has to be >= 2? 'keep_cross_validation_splits': [None, 0, 1], # 'classification': [None, 0, 1], # doesn't support regression yet 'classification': [None, 1], 'balance_classes': [None, 0, 1], # never run with unconstrained balance_classes size if random sets balance_classes..too slow 'max_after_balance_size': [.1, 1, 2], 'oobee': [None, 0, 1], 'sampling_strategy': [None, 'RANDOM'], 'select_stat_type': [None, 'ENTROPY', 'GINI'], 'response': [54, 'C55'], # equivalent. None is not legal 'validation': [None, 'covtype.data.hex'], 'ntrees': [1], # just do one tree 'importance': [None, 0, 1], 'max_depth': [None, 1,10,20,100], 'nbins': [None,5,10,100,1000], 'sample_rate': [None,0.20,0.40,0.60,0.80,0.90], 'seed': [None,'0','1','11111','19823134','1231231'], # Can't have more mtries than cols..force to 4 if cols is not None? 'mtries': [1,3,5,7], } class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED SEED = h2o.setup_random_seed() h2o.init(java_heap_GB=10) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_speedrf_params_rand2_fvec(self): csvPathname = 'standard/covtype.data' hex_key = 'covtype.data.hex' for trial in range(10): # params is mutable. This is default. # response is required for SpeeERF params = { 'response': 'C55', 'ntrees': 1, 'mtries': 7, 'balance_classes': 0, # never run with unconstrained balance_classes size if random sets balance_classes..too slow 'max_after_balance_size': 2, 'importance': 0} colX = h2o_util.pickRandParams(paramDict, params) if 'cols' in params and params['cols']: # exclusion if 'ignored_cols_by_name' in params: params['ignored_cols_by_name'] = None else: if 'ignored_cols_by_name' in params and params['ignored_cols_by_name']: params['mtries'] = random.randint(1,53) else: params['mtries'] = random.randint(1,54) kwargs = params.copy() # adjust timeoutSecs with the number of trees timeoutSecs = 80 + ((kwargs['ntrees']*80) * max(1,kwargs['mtries']/60) ) start = time.time() parseResult = h2i.import_parse(bucket='home-0xdiag-datasets', path=csvPathname, schema='put', hex_key=hex_key) h2o_cmd.runSpeeDRF(parseResult=parseResult, timeoutSecs=timeoutSecs, retryDelaySecs=1, **kwargs) elapsed = time.time()-start print "Trial #", trial, "completed in", elapsed, "seconds.", "%d pct. of timeout" % ((elapsed*100)/timeoutSecs) if __name__ == '__main__': h2o.unit_main()
apache-2.0
schets/scikit-learn
sklearn/linear_model/tests/test_randomized_l1.py
213
4690
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.linear_model.randomized_l1 import (lasso_stability_path, RandomizedLasso, RandomizedLogisticRegression) from sklearn.datasets import load_diabetes, load_iris from sklearn.feature_selection import f_regression, f_classif from sklearn.preprocessing import StandardScaler from sklearn.linear_model.base import center_data diabetes = load_diabetes() X = diabetes.data y = diabetes.target X = StandardScaler().fit_transform(X) X = X[:, [2, 3, 6, 7, 8]] # test that the feature score of the best features F, _ = f_regression(X, y) def test_lasso_stability_path(): # Check lasso stability path # Load diabetes data and add noisy features scaling = 0.3 coef_grid, scores_path = lasso_stability_path(X, y, scaling=scaling, random_state=42, n_resampling=30) assert_array_equal(np.argsort(F)[-3:], np.argsort(np.sum(scores_path, axis=1))[-3:]) def test_randomized_lasso(): # Check randomized lasso scaling = 0.3 selection_threshold = 0.5 # or with 1 alpha clf = RandomizedLasso(verbose=False, alpha=1, random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) # or with many alphas clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42, scaling=scaling, selection_threshold=selection_threshold) feature_scores = clf.fit(X, y).scores_ assert_equal(clf.all_scores_.shape, (X.shape[1], 2)) assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:]) X_r = clf.transform(X) X_full = clf.inverse_transform(X_r) assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold)) assert_equal(X_full.shape, X.shape) clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42, scaling=scaling) feature_scores = clf.fit(X, y).scores_ assert_array_equal(feature_scores, X.shape[1] * [1.]) clf = RandomizedLasso(verbose=False, scaling=-0.1) assert_raises(ValueError, clf.fit, X, y) clf = RandomizedLasso(verbose=False, scaling=1.1) assert_raises(ValueError, clf.fit, X, y) def test_randomized_logistic(): # Check randomized sparse logistic regression iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) X_orig = X.copy() feature_scores = clf.fit(X, y).scores_ assert_array_equal(X, X_orig) # fit does not modify X assert_array_equal(np.argsort(F), np.argsort(feature_scores)) clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5], random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ assert_array_equal(np.argsort(F), np.argsort(feature_scores)) def test_randomized_logistic_sparse(): # Check randomized sparse logistic regression on sparse data iris = load_iris() X = iris.data[:, [0, 2]] y = iris.target X = X[y != 2] y = y[y != 2] # center here because sparse matrices are usually not centered X, y, _, _, _ = center_data(X, y, True, True) X_sp = sparse.csr_matrix(X) F, _ = f_classif(X, y) scaling = 0.3 clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores = clf.fit(X, y).scores_ clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42, scaling=scaling, n_resampling=50, tol=1e-3) feature_scores_sp = clf.fit(X_sp, y).scores_ assert_array_equal(feature_scores, feature_scores_sp)
bsd-3-clause
h2oai/h2o
py/testdir_multi_jvm/test_GLM2_catdata.py
9
2066
import unittest, time, sys, copy sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_glm, h2o_browse as h2b, h2o_import as h2i class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): h2o.init(3,java_heap_GB=4) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_GLM2_catdata_hosts(self): # these are still in /home/kevin/scikit/datasets/logreg # FIX! just two for now.. csvFilenameList = [ "1_100kx7_logreg.data.gz", "2_100kx7_logreg.data.gz" ] # pop open a browser on the cloud ### h2b.browseTheCloud() # save the first, for all comparisions, to avoid slow drift with each iteration validation1 = {} for csvFilename in csvFilenameList: csvPathname = csvFilename parseResult = h2i.import_parse(bucket='smalldata', path=csvPathname, schema='put') print "\n" + csvPathname start = time.time() # FIX! why can't I include 0 here? it keeps getting 'unable to solve" if 0 is included # 0 by itself is okay? kwargs = {'response': 7, 'family': "binomial", 'n_folds': 3, 'lambda': 1e-4} timeoutSecs = 200 glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **kwargs) h2o_glm.simpleCheckGLM(self, glm, 'C7', **kwargs) print "glm end on ", csvPathname, 'took', time.time() - start, 'seconds' ### h2b.browseJsonHistoryAsUrlLastMatch("GLM") # compare this glm to the first one. since the files are replications, the results # should be similar? validation = glm['glm_model']['submodels'][0]['validation'] if validation1: h2o_glm.compareToFirstGlm(self, 'auc', validation, validation1) else: validation1 = copy.deepcopy(validation) if __name__ == '__main__': h2o.unit_main()
apache-2.0
nhuntwalker/astroML
book_figures/chapter10/fig_LINEAR_SVM.py
4
6143
""" SVM classification of LINEAR data --------------------------------- Figure 10.23 Supervised classification of periodic variable stars from the LINEAR data set using a support vector machines method. The training sample includes five input classes. The top row shows clusters derived using two attributes (g - i and log P) and the bottom row shows analogous diagrams for classification based on seven attributes (colors u - g, g - i, i - K, and J - K; log P, light-curve amplitude, and light-curve skewness). See table 10.3 for the classification performance. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import print_function import numpy as np from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import train_test_split from astroML.decorators import pickle_results from astroML.datasets import fetch_LINEAR_geneva #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) data = fetch_LINEAR_geneva() attributes = [('gi', 'logP'), ('gi', 'logP', 'ug', 'iK', 'JK', 'amp', 'skew')] labels = ['$u-g$', '$g-i$', '$i-K$', '$J-K$', r'$\log(P)$', 'amplitude', 'skew'] cls = 'LCtype' Ntrain = 3000 #------------------------------------------------------------ # Create attribute arrays X = [] y = [] for attr in attributes: X.append(np.vstack([data[a] for a in attr]).T) LCtype = data[cls].copy() # there is no #3. For a better color scheme in plots, # we'll set 6->3 LCtype[LCtype == 6] = 3 y.append(LCtype) #@pickle_results('LINEAR_SVM.pkl') def compute_SVM_results(i_train, i_test): classifiers = [] predictions = [] Xtests = [] ytests = [] Xtrains = [] ytrains = [] for i in range(len(attributes)): Xtrain = X[i][i_train] Xtest = X[i][i_test] ytrain = y[i][i_train] ytest = y[i][i_test] clf = SVC(kernel='linear', class_weight=None) clf.fit(Xtrain, ytrain) y_pred = clf.predict(Xtest) classifiers.append(clf) predictions.append(y_pred) return classifiers, predictions i = np.arange(len(data)) i_train, i_test = train_test_split(i, random_state=0, train_size=2000) clfs, ypred = compute_SVM_results(i_train, i_test) #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(hspace=0.1, wspace=0.1) class_labels = [] for i in range(2): Xtest = X[i][i_test] ytest = y[i][i_test] amp = data['amp'][i_test] # Plot the resulting classifications ax1 = fig.add_subplot(221 + 2 * i) ax1.scatter(Xtest[:, 0], Xtest[:, 1], c=ypred[i], edgecolors='none', s=4, linewidths=0) ax1.set_ylabel(r'$\log(P)$') ax2 = plt.subplot(222 + 2 * i) ax2.scatter(amp, Xtest[:, 1], c=ypred[i], edgecolors='none', s=4, lw=0) #------------------------------ # set axis limits ax1.set_xlim(-0.6, 2.1) ax2.set_xlim(0.1, 1.5) ax1.set_ylim(-1.5, 0.5) ax2.set_ylim(-1.5, 0.5) ax2.yaxis.set_major_formatter(plt.NullFormatter()) if i == 0: ax1.xaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_major_formatter(plt.NullFormatter()) else: ax1.set_xlabel(r'$g-i$') ax2.set_xlabel(r'$A$') #------------------------------------------------------------ # Second figure fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(left=0.11, right=0.95, wspace=0.3) attrs = ['skew', 'ug', 'iK', 'JK'] labels = ['skew', '$u-g$', '$i-K$', '$J-K$'] ylims = [(-1.8, 2.2), (0.6, 2.9), (0.1, 2.6), (-0.2, 1.2)] for i in range(4): ax = fig.add_subplot(221 + i) ax.scatter(data['gi'][i_test], data[attrs[i]][i_test], c=ypred[1], edgecolors='none', s=4, lw=0) ax.set_xlabel('$g-i$') ax.set_ylabel(labels[i]) ax.set_xlim(-0.6, 2.1) ax.set_ylim(ylims[i]) #------------------------------------------------------------ # Save the results # # run the script as # # >$ python fig_LINEAR_clustering.py --save # # to output the data file showing the cluster labels of each point import sys if len(sys.argv) > 1 and sys.argv[1] == '--save': filename = 'cluster_labels_svm.dat' print("Saving cluster labels to", filename) from astroML.datasets.LINEAR_sample import ARCHIVE_DTYPE new_data = np.zeros(len(data), dtype=(ARCHIVE_DTYPE + [('2D_cluster_ID', 'i4'), ('7D_cluster_ID', 'i4')])) # switch the labels back 3->6 for i in range(2): ypred[i][ypred[i] == 3] = 6 # need to put labels back in order class_labels = [-999 * np.ones(len(data)) for i in range(2)] for i in range(2): class_labels[i][i_test] = ypred[i] for name in data.dtype.names: new_data[name] = data[name] new_data['2D_cluster_ID'] = class_labels[0] new_data['7D_cluster_ID'] = class_labels[1] fmt = ('%.6f %.6f %.3f %.3f %.3f %.3f %.7f %.3f %.3f ' '%.3f %.2f %i %i %s %i %i\n') F = open(filename, 'w') F.write('# ra dec ug gi iK JK ' 'logP Ampl skew kurt magMed nObs LCtype ' 'LINEARobjectID 2D_cluster_ID 7D_cluster_ID\n') for line in new_data: F.write(fmt % tuple(line[col] for col in line.dtype.names)) F.close() plt.show()
bsd-2-clause
herilalaina/scikit-learn
sklearn/cluster/bicluster.py
23
20266
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.linalg import norm from scipy.sparse import dia_matrix, issparse from scipy.sparse.linalg import eigsh, svds from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils import check_random_state from ..utils.extmath import (make_nonnegative, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X, y=None): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) y : Ignored """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) return self def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. A = safe_sparse_dot(array.T, array) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0) vt = v.T if np.any(np.isnan(u)): A = safe_sparse_dot(array, array.T) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
pravsripad/mne-python
mne/tests/test_source_estimate.py
2
77080
# -*- coding: utf-8 -*- # # License: BSD-3-Clause from contextlib import nullcontext from copy import deepcopy import os import os.path as op import re from shutil import copyfile import numpy as np from numpy.fft import fft from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal, assert_array_less) import pytest from scipy import sparse from scipy.optimize import fmin_cobyla from scipy.spatial.distance import cdist import mne from mne import (stats, SourceEstimate, VectorSourceEstimate, VolSourceEstimate, Label, read_source_spaces, read_evokeds, MixedSourceEstimate, find_events, Epochs, read_source_estimate, extract_label_time_course, spatio_temporal_tris_adjacency, stc_near_sensors, spatio_temporal_src_adjacency, read_cov, EvokedArray, spatial_inter_hemi_adjacency, read_forward_solution, spatial_src_adjacency, spatial_tris_adjacency, pick_info, SourceSpaces, VolVectorSourceEstimate, read_trans, pick_types, MixedVectorSourceEstimate, setup_volume_source_space, convert_forward_solution, pick_types_forward, compute_source_morph, labels_to_stc, scale_mri, write_source_spaces) from mne.datasets import testing from mne.fixes import _get_img_fdata from mne.io import read_info from mne.io.constants import FIFF from mne.morph_map import _make_morph_map_hemi from mne.source_estimate import grade_to_tris, _get_vol_mask from mne.source_space import _get_src_nn from mne.transforms import apply_trans, invert_transform, transform_surface_to from mne.minimum_norm import (read_inverse_operator, apply_inverse, apply_inverse_epochs, make_inverse_operator) from mne.label import read_labels_from_annot, label_sign_flip from mne.utils import (requires_pandas, requires_sklearn, catch_logging, requires_nibabel, requires_version, _record_warnings) from mne.io import read_raw_fif data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') fname_inv = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif') fname_inv_fixed = op.join( data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-4-meg-fixed-inv.fif') fname_fwd = op.join( data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif') fname_cov = op.join( data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif') fname_evoked = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-ave.fif') fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') fname_t1 = op.join(data_path, 'subjects', 'sample', 'mri', 'T1.mgz') fname_fs_t1 = op.join(data_path, 'subjects', 'fsaverage', 'mri', 'T1.mgz') fname_aseg = op.join(data_path, 'subjects', 'sample', 'mri', 'aseg.mgz') fname_src = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') fname_src_fs = op.join(data_path, 'subjects', 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') bem_path = op.join(data_path, 'subjects', 'sample', 'bem') fname_src_3 = op.join(bem_path, 'sample-oct-4-src.fif') fname_src_vol = op.join(bem_path, 'sample-volume-7mm-src.fif') fname_stc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg') fname_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w') fname_vsrc = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-vol-7-fwd.fif') fname_inv_vol = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-vol-7-meg-inv.fif') fname_nirx = op.join(data_path, 'NIRx', 'nirscout', 'nirx_15_0_recording') rng = np.random.RandomState(0) @testing.requires_testing_data def test_stc_baseline_correction(): """Test baseline correction for source estimate objects.""" # test on different source estimates stcs = [read_source_estimate(fname_stc), read_source_estimate(fname_vol, 'sample')] # test on different "baseline" intervals baselines = [(0., 0.1), (None, None)] for stc in stcs: times = stc.times for (start, stop) in baselines: # apply baseline correction, then check if it worked stc = stc.apply_baseline(baseline=(start, stop)) t0 = start or stc.times[0] t1 = stop or stc.times[-1] # index for baseline interval (include boundary latencies) imin = np.abs(times - t0).argmin() imax = np.abs(times - t1).argmin() + 1 # data matrix from baseline interval data_base = stc.data[:, imin:imax] mean_base = data_base.mean(axis=1) zero_array = np.zeros(mean_base.shape[0]) # test if baseline properly subtracted (mean=zero for all sources) assert_array_almost_equal(mean_base, zero_array) @testing.requires_testing_data def test_spatial_inter_hemi_adjacency(): """Test spatial adjacency between hemispheres.""" # trivial cases conn = spatial_inter_hemi_adjacency(fname_src_3, 5e-6) assert_equal(conn.data.size, 0) conn = spatial_inter_hemi_adjacency(fname_src_3, 5e6) assert_equal(conn.data.size, np.prod(conn.shape) // 2) # actually interesting case (1cm), should be between 2 and 10% of verts src = read_source_spaces(fname_src_3) conn = spatial_inter_hemi_adjacency(src, 10e-3) conn = conn.tocsr() n_src = conn.shape[0] assert (n_src * 0.02 < conn.data.size < n_src * 0.10) assert_equal(conn[:src[0]['nuse'], :src[0]['nuse']].data.size, 0) assert_equal(conn[-src[1]['nuse']:, -src[1]['nuse']:].data.size, 0) c = (conn.T + conn) / 2. - conn c.eliminate_zeros() assert_equal(c.data.size, 0) # check locations upper_right = conn[:src[0]['nuse'], src[0]['nuse']:].toarray() assert_equal(upper_right.sum(), conn.sum() // 2) good_labels = ['S_pericallosal', 'Unknown', 'G_and_S_cingul-Mid-Post', 'G_cuneus'] for hi, hemi in enumerate(('lh', 'rh')): has_neighbors = src[hi]['vertno'][np.where(np.any(upper_right, axis=1 - hi))[0]] labels = read_labels_from_annot('sample', 'aparc.a2009s', hemi, subjects_dir=subjects_dir) use_labels = [label.name[:-3] for label in labels if np.in1d(label.vertices, has_neighbors).any()] assert (set(use_labels) - set(good_labels) == set()) @pytest.mark.slowtest @testing.requires_testing_data @requires_version('h5io') def test_volume_stc(tmp_path): """Test volume STCs.""" from h5io import write_hdf5 N = 100 data = np.arange(N)[:, np.newaxis] datas = [data, data, np.arange(2)[:, np.newaxis], np.arange(6).reshape(2, 3, 1)] vertno = np.arange(N) vertnos = [vertno, vertno[:, np.newaxis], np.arange(2)[:, np.newaxis], np.arange(2)] vertno_reads = [vertno, vertno, np.arange(2), np.arange(2)] for data, vertno, vertno_read in zip(datas, vertnos, vertno_reads): if data.ndim in (1, 2): stc = VolSourceEstimate(data, [vertno], 0, 1) ext = 'stc' klass = VolSourceEstimate else: assert data.ndim == 3 stc = VolVectorSourceEstimate(data, [vertno], 0, 1) ext = 'h5' klass = VolVectorSourceEstimate fname_temp = tmp_path / ('temp-vl.' + ext) stc_new = stc n = 3 if ext == 'h5' else 2 for ii in range(n): if ii < 2: stc_new.save(fname_temp, overwrite=True) else: # Pass stc.vertices[0], an ndarray, to ensure support for # the way we used to write volume STCs write_hdf5( str(fname_temp), dict( vertices=stc.vertices[0], data=stc.data, tmin=stc.tmin, tstep=stc.tstep, subject=stc.subject, src_type=stc._src_type), title='mnepython', overwrite=True) stc_new = read_source_estimate(fname_temp) assert isinstance(stc_new, klass) assert_array_equal(vertno_read, stc_new.vertices[0]) assert_array_almost_equal(stc.data, stc_new.data) # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert isinstance(stc, VolSourceEstimate) assert 'sample' in repr(stc) assert ' kB' in repr(stc) stc_new = stc fname_temp = tmp_path / ('temp-vl.stc') with pytest.raises(ValueError, match="'ftype' parameter"): stc.save(fname_vol, ftype='whatever', overwrite=True) for ftype in ['w', 'h5']: for _ in range(2): fname_temp = tmp_path / ('temp-vol.%s' % ftype) stc_new.save(fname_temp, ftype=ftype, overwrite=True) stc_new = read_source_estimate(fname_temp) assert (isinstance(stc_new, VolSourceEstimate)) assert_array_equal(stc.vertices[0], stc_new.vertices[0]) assert_array_almost_equal(stc.data, stc_new.data) @requires_nibabel() @testing.requires_testing_data def test_stc_as_volume(): """Test previous volume source estimate morph.""" import nibabel as nib inverse_operator_vol = read_inverse_operator(fname_inv_vol) # Apply inverse operator stc_vol = read_source_estimate(fname_vol, 'sample') img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=True, dest='42') t1_img = nib.load(fname_t1) # always assure nifti and dimensionality assert isinstance(img, nib.Nifti1Image) assert img.header.get_zooms()[:3] == t1_img.header.get_zooms()[:3] img = stc_vol.as_volume(inverse_operator_vol['src'], mri_resolution=False) assert isinstance(img, nib.Nifti1Image) assert img.shape[:3] == inverse_operator_vol['src'][0]['shape'][:3] with pytest.raises(ValueError, match='Invalid value.*output.*'): stc_vol.as_volume(inverse_operator_vol['src'], format='42') @testing.requires_testing_data @requires_nibabel() def test_save_vol_stc_as_nifti(tmp_path): """Save the stc as a nifti file and export.""" import nibabel as nib src = read_source_spaces(fname_vsrc) vol_fname = tmp_path / 'stc.nii.gz' # now let's actually read a MNE-C processed file stc = read_source_estimate(fname_vol, 'sample') assert (isinstance(stc, VolSourceEstimate)) stc.save_as_volume(vol_fname, src, dest='surf', mri_resolution=False) with _record_warnings(): # nib<->numpy img = nib.load(str(vol_fname)) assert (img.shape == src[0]['shape'] + (len(stc.times),)) with _record_warnings(): # nib<->numpy t1_img = nib.load(fname_t1) stc.save_as_volume(vol_fname, src, dest='mri', mri_resolution=True, overwrite=True) with _record_warnings(): # nib<->numpy img = nib.load(str(vol_fname)) assert (img.shape == t1_img.shape + (len(stc.times),)) assert_allclose(img.affine, t1_img.affine, atol=1e-5) # export without saving img = stc.as_volume(src, dest='mri', mri_resolution=True) assert (img.shape == t1_img.shape + (len(stc.times),)) assert_allclose(img.affine, t1_img.affine, atol=1e-5) src = SourceSpaces([src[0], src[0]]) stc = VolSourceEstimate(np.r_[stc.data, stc.data], [stc.vertices[0], stc.vertices[0]], tmin=stc.tmin, tstep=stc.tstep, subject='sample') img = stc.as_volume(src, dest='mri', mri_resolution=False) assert (img.shape == src[0]['shape'] + (len(stc.times),)) @testing.requires_testing_data def test_expand(): """Test stc expansion.""" stc_ = read_source_estimate(fname_stc, 'sample') vec_stc_ = VectorSourceEstimate(np.zeros((stc_.data.shape[0], 3, stc_.data.shape[1])), stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject) for stc in [stc_, vec_stc_]: assert ('sample' in repr(stc)) labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) new_label = labels_lh[0] + labels_lh[1] stc_limited = stc.in_label(new_label) stc_new = stc_limited.copy() stc_new.data.fill(0) for label in labels_lh[:2]: stc_new += stc.in_label(label).expand(stc_limited.vertices) pytest.raises(TypeError, stc_new.expand, stc_limited.vertices[0]) pytest.raises(ValueError, stc_new.expand, [stc_limited.vertices[0]]) # make sure we can't add unless vertno agree pytest.raises(ValueError, stc.__add__, stc.in_label(labels_lh[0])) def _fake_stc(n_time=10, is_complex=False): np.random.seed(7) verts = [np.arange(10), np.arange(90)] data = np.random.rand(100, n_time) if is_complex: data.astype(complex) return SourceEstimate(data, verts, 0, 1e-1, 'foo') def _fake_vec_stc(n_time=10, is_complex=False): np.random.seed(7) verts = [np.arange(10), np.arange(90)] data = np.random.rand(100, 3, n_time) if is_complex: data.astype(complex) return VectorSourceEstimate(data, verts, 0, 1e-1, 'foo') @testing.requires_testing_data def test_stc_snr(): """Test computing SNR from a STC.""" inv = read_inverse_operator(fname_inv_fixed) fwd = read_forward_solution(fname_fwd) cov = read_cov(fname_cov) evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01) stc = apply_inverse(evoked, inv) assert (stc.data < 0).any() with pytest.warns(RuntimeWarning, match='nAm'): stc.estimate_snr(evoked.info, fwd, cov) # dSPM with pytest.warns(RuntimeWarning, match='free ori'): abs(stc).estimate_snr(evoked.info, fwd, cov) stc = apply_inverse(evoked, inv, method='MNE') snr = stc.estimate_snr(evoked.info, fwd, cov) assert_allclose(snr.times, evoked.times) snr = snr.data assert snr.max() < -10 assert snr.min() > -120 def test_stc_attributes(): """Test STC attributes.""" stc = _fake_stc(n_time=10) vec_stc = _fake_vec_stc(n_time=10) n_times = len(stc.times) assert_equal(stc._data.shape[-1], n_times) assert_array_equal(stc.times, stc.tmin + np.arange(n_times) * stc.tstep) assert_array_almost_equal( stc.times, [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) def attempt_times_mutation(stc): stc.times -= 1 def attempt_assignment(stc, attr, val): setattr(stc, attr, val) # .times is read-only pytest.raises(ValueError, attempt_times_mutation, stc) pytest.raises(ValueError, attempt_assignment, stc, 'times', [1]) # Changing .tmin or .tstep re-computes .times stc.tmin = 1 assert (type(stc.tmin) == float) assert_array_almost_equal( stc.times, [1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]) stc.tstep = 1 assert (type(stc.tstep) == float) assert_array_almost_equal( stc.times, [1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) # tstep <= 0 is not allowed pytest.raises(ValueError, attempt_assignment, stc, 'tstep', 0) pytest.raises(ValueError, attempt_assignment, stc, 'tstep', -1) # Changing .data re-computes .times stc.data = np.random.rand(100, 5) assert_array_almost_equal( stc.times, [1., 2., 3., 4., 5.]) # .data must match the number of vertices pytest.raises(ValueError, attempt_assignment, stc, 'data', [[1]]) pytest.raises(ValueError, attempt_assignment, stc, 'data', None) # .data much match number of dimensions pytest.raises(ValueError, attempt_assignment, stc, 'data', np.arange(100)) pytest.raises(ValueError, attempt_assignment, vec_stc, 'data', [np.arange(100)]) pytest.raises(ValueError, attempt_assignment, vec_stc, 'data', [[[np.arange(100)]]]) # .shape attribute must also work when ._data is None stc._kernel = np.zeros((2, 2)) stc._sens_data = np.zeros((2, 3)) stc._data = None assert_equal(stc.shape, (2, 3)) # bad size of data stc = _fake_stc() data = stc.data[:, np.newaxis, :] with pytest.raises(ValueError, match='2 dimensions for SourceEstimate'): SourceEstimate(data, stc.vertices, 0, 1) stc = SourceEstimate(data[:, 0, 0], stc.vertices, 0, 1) assert stc.data.shape == (len(data), 1) def test_io_stc(tmp_path): """Test IO for STC files.""" stc = _fake_stc() stc.save(tmp_path / "tmp.stc") stc2 = read_source_estimate(tmp_path / "tmp.stc") assert_array_almost_equal(stc.data, stc2.data) assert_array_almost_equal(stc.tmin, stc2.tmin) assert_equal(len(stc.vertices), len(stc2.vertices)) for v1, v2 in zip(stc.vertices, stc2.vertices): assert_array_almost_equal(v1, v2) assert_array_almost_equal(stc.tstep, stc2.tstep) # test warning for complex data stc2.data = stc2.data.astype(np.complex128) with pytest.raises(ValueError, match='Cannot save complex-valued STC'): stc2.save(tmp_path / 'complex.stc') @requires_version('h5io') @pytest.mark.parametrize('is_complex', (True, False)) @pytest.mark.parametrize('vector', (True, False)) def test_io_stc_h5(tmp_path, is_complex, vector): """Test IO for STC files using HDF5.""" if vector: stc = _fake_vec_stc(is_complex=is_complex) else: stc = _fake_stc(is_complex=is_complex) match = 'can only be written' if vector else "Invalid value for the 'ftype" with pytest.raises(ValueError, match=match): stc.save(tmp_path / 'tmp.h5', ftype='foo') out_name = str(tmp_path / 'tmp') stc.save(out_name, ftype='h5') # test overwrite assert op.isfile(out_name + '-stc.h5') with pytest.raises(FileExistsError, match='Destination file exists'): stc.save(out_name, ftype='h5') stc.save(out_name, ftype='h5', overwrite=True) stc3 = read_source_estimate(out_name) stc4 = read_source_estimate(out_name + '-stc') stc5 = read_source_estimate(out_name + '-stc.h5') pytest.raises(RuntimeError, read_source_estimate, out_name, subject='bar') for stc_new in stc3, stc4, stc5: assert_equal(stc_new.subject, stc.subject) assert_array_equal(stc_new.data, stc.data) assert_array_equal(stc_new.tmin, stc.tmin) assert_array_equal(stc_new.tstep, stc.tstep) assert_equal(len(stc_new.vertices), len(stc.vertices)) for v1, v2 in zip(stc_new.vertices, stc.vertices): assert_array_equal(v1, v2) def test_io_w(tmp_path): """Test IO for w files.""" stc = _fake_stc(n_time=1) w_fname = tmp_path / 'fake' stc.save(w_fname, ftype='w') src = read_source_estimate(w_fname) src.save(tmp_path / 'tmp', ftype='w') src2 = read_source_estimate(tmp_path / 'tmp-lh.w') assert_array_almost_equal(src.data, src2.data) assert_array_almost_equal(src.lh_vertno, src2.lh_vertno) assert_array_almost_equal(src.rh_vertno, src2.rh_vertno) def test_stc_arithmetic(): """Test arithmetic for STC files.""" stc = _fake_stc() data = stc.data.copy() vec_stc = _fake_vec_stc() vec_data = vec_stc.data.copy() out = list() for a in [data, stc, vec_data, vec_stc]: a = a + a * 3 + 3 * a - a ** 2 / 2 a += a a -= a with np.errstate(invalid='ignore'): a /= 2 * a a *= -a a += 2 a -= 1 a *= -1 a /= 2 b = 2 + a b = 2 - a b = +a assert_array_equal(b.data, a.data) with np.errstate(invalid='ignore'): a **= 3 out.append(a) assert_array_equal(out[0], out[1].data) assert_array_equal(out[2], out[3].data) assert_array_equal(stc.sqrt().data, np.sqrt(stc.data)) assert_array_equal(vec_stc.sqrt().data, np.sqrt(vec_stc.data)) assert_array_equal(abs(stc).data, abs(stc.data)) assert_array_equal(abs(vec_stc).data, abs(vec_stc.data)) stc_sum = stc.sum() assert_array_equal(stc_sum.data, stc.data.sum(1, keepdims=True)) stc_mean = stc.mean() assert_array_equal(stc_mean.data, stc.data.mean(1, keepdims=True)) vec_stc_mean = vec_stc.mean() assert_array_equal(vec_stc_mean.data, vec_stc.data.mean(2, keepdims=True)) @pytest.mark.slowtest @testing.requires_testing_data def test_stc_methods(): """Test stc methods lh_data, rh_data, bin(), resample().""" stc_ = read_source_estimate(fname_stc) # Make a vector version of the above source estimate x = stc_.data[:, np.newaxis, :] yz = np.zeros((x.shape[0], 2, x.shape[2])) vec_stc_ = VectorSourceEstimate( np.concatenate((x, yz), 1), stc_.vertices, stc_.tmin, stc_.tstep, stc_.subject ) for stc in [stc_, vec_stc_]: # lh_data / rh_data assert_array_equal(stc.lh_data, stc.data[:len(stc.lh_vertno)]) assert_array_equal(stc.rh_data, stc.data[len(stc.lh_vertno):]) # bin binned = stc.bin(.12) a = np.mean(stc.data[..., :np.searchsorted(stc.times, .12)], axis=-1) assert_array_equal(a, binned.data[..., 0]) stc = read_source_estimate(fname_stc) stc.subject = 'sample' label_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir)[0] label_rh = read_labels_from_annot('sample', 'aparc', 'rh', subjects_dir=subjects_dir)[0] label_both = label_lh + label_rh for label in (label_lh, label_rh, label_both): assert (isinstance(stc.shape, tuple) and len(stc.shape) == 2) stc_label = stc.in_label(label) if label.hemi != 'both': if label.hemi == 'lh': verts = stc_label.vertices[0] else: # label.hemi == 'rh': verts = stc_label.vertices[1] n_vertices_used = len(label.get_vertices_used(verts)) assert_equal(len(stc_label.data), n_vertices_used) stc_lh = stc.in_label(label_lh) pytest.raises(ValueError, stc_lh.in_label, label_rh) label_lh.subject = 'foo' pytest.raises(RuntimeError, stc.in_label, label_lh) stc_new = deepcopy(stc) o_sfreq = 1.0 / stc.tstep # note that using no padding for this STC reduces edge ringing... stc_new.resample(2 * o_sfreq, npad=0) assert (stc_new.data.shape[1] == 2 * stc.data.shape[1]) assert (stc_new.tstep == stc.tstep / 2) stc_new.resample(o_sfreq, npad=0) assert (stc_new.data.shape[1] == stc.data.shape[1]) assert (stc_new.tstep == stc.tstep) assert_array_almost_equal(stc_new.data, stc.data, 5) @testing.requires_testing_data def test_center_of_mass(): """Test computing the center of mass on an stc.""" stc = read_source_estimate(fname_stc) pytest.raises(ValueError, stc.center_of_mass, 'sample') stc.lh_data[:] = 0 vertex, hemi, t = stc.center_of_mass('sample', subjects_dir=subjects_dir) assert (hemi == 1) # XXX Should design a fool-proof test case, but here were the # results: assert_equal(vertex, 124791) assert_equal(np.round(t, 2), 0.12) @testing.requires_testing_data @pytest.mark.parametrize('kind', ('surface', 'mixed')) @pytest.mark.parametrize('vector', (False, True)) def test_extract_label_time_course(kind, vector): """Test extraction of label time courses from (Mixed)SourceEstimate.""" n_stcs = 3 n_times = 50 src = read_inverse_operator(fname_inv)['src'] if kind == 'mixed': pytest.importorskip('nibabel') label_names = ('Left-Cerebellum-Cortex', 'Right-Cerebellum-Cortex') src += setup_volume_source_space( 'sample', pos=20., volume_label=label_names, subjects_dir=subjects_dir, add_interpolator=False) klass = MixedVectorSourceEstimate else: klass = VectorSourceEstimate if not vector: klass = klass._scalar_class vertices = [s['vertno'] for s in src] n_verts = np.array([len(v) for v in vertices]) vol_means = np.arange(-1, 1 - len(src), -1) vol_means_t = np.repeat(vol_means[:, np.newaxis], n_times, axis=1) # get some labels labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) labels_rh = read_labels_from_annot('sample', hemi='rh', subjects_dir=subjects_dir) labels = list() labels.extend(labels_lh[:5]) labels.extend(labels_rh[:4]) n_labels = len(labels) label_tcs = dict( mean=np.arange(n_labels)[:, None] * np.ones((n_labels, n_times))) label_tcs['max'] = label_tcs['mean'] # compute the mean with sign flip label_tcs['mean_flip'] = np.zeros_like(label_tcs['mean']) for i, label in enumerate(labels): label_tcs['mean_flip'][i] = i * np.mean( label_sign_flip(label, src[:2])) # generate some stc's with known data stcs = list() pad = (((0, 0), (2, 0), (0, 0)), 'constant') for i in range(n_stcs): data = np.zeros((n_verts.sum(), n_times)) # set the value of the stc within each label for j, label in enumerate(labels): if label.hemi == 'lh': idx = np.intersect1d(vertices[0], label.vertices) idx = np.searchsorted(vertices[0], idx) elif label.hemi == 'rh': idx = np.intersect1d(vertices[1], label.vertices) idx = len(vertices[0]) + np.searchsorted(vertices[1], idx) data[idx] = label_tcs['mean'][j] for j in range(len(vol_means)): offset = n_verts[:2 + j].sum() data[offset:offset + n_verts[j]] = vol_means[j] if vector: # the values it on the Z axis data = np.pad(data[:, np.newaxis], *pad) this_stc = klass(data, vertices, 0, 1) stcs.append(this_stc) if vector: for key in label_tcs: label_tcs[key] = np.pad(label_tcs[key][:, np.newaxis], *pad) vol_means_t = np.pad(vol_means_t[:, np.newaxis], *pad) # test some invalid inputs with pytest.raises(ValueError, match="Invalid value for the 'mode'"): extract_label_time_course(stcs, labels, src, mode='notamode') # have an empty label empty_label = labels[0].copy() empty_label.vertices += 1000000 with pytest.raises(ValueError, match='does not contain any vertices'): extract_label_time_course(stcs, empty_label, src) # but this works: with pytest.warns(RuntimeWarning, match='does not contain any vertices'): tc = extract_label_time_course(stcs, empty_label, src, allow_empty=True) end_shape = (3, n_times) if vector else (n_times,) for arr in tc: assert arr.shape == (1 + len(vol_means),) + end_shape assert_array_equal(arr[:1], np.zeros((1,) + end_shape)) if len(vol_means): assert_array_equal(arr[1:], vol_means_t) # test the different modes modes = ['mean', 'mean_flip', 'pca_flip', 'max', 'auto'] for mode in modes: if vector and mode not in ('mean', 'max', 'auto'): with pytest.raises(ValueError, match='when using a vector'): extract_label_time_course(stcs, labels, src, mode=mode) continue with _record_warnings(): # SVD convergence on arm64 label_tc = extract_label_time_course(stcs, labels, src, mode=mode) label_tc_method = [stc.extract_label_time_course(labels, src, mode=mode) for stc in stcs] assert (len(label_tc) == n_stcs) assert (len(label_tc_method) == n_stcs) for tc1, tc2 in zip(label_tc, label_tc_method): assert tc1.shape == (n_labels + len(vol_means),) + end_shape assert tc2.shape == (n_labels + len(vol_means),) + end_shape assert_allclose(tc1, tc2, rtol=1e-8, atol=1e-16) if mode == 'auto': use_mode = 'mean' if vector else 'mean_flip' else: use_mode = mode # XXX we don't check pca_flip, probably should someday... if use_mode in ('mean', 'max', 'mean_flip'): assert_array_almost_equal(tc1[:n_labels], label_tcs[use_mode]) assert_array_almost_equal(tc1[n_labels:], vol_means_t) # test label with very few vertices (check SVD conditionals) label = Label(vertices=src[0]['vertno'][:2], hemi='lh') x = label_sign_flip(label, src[:2]) assert (len(x) == 2) label = Label(vertices=[], hemi='lh') x = label_sign_flip(label, src[:2]) assert (x.size == 0) @testing.requires_testing_data @pytest.mark.parametrize('label_type, mri_res, vector, test_label, cf, call', [ (str, False, False, False, 'head', 'meth'), # head frame (str, False, False, str, 'mri', 'func'), # fastest, default for testing (str, False, True, int, 'mri', 'func'), # vector (str, True, False, False, 'mri', 'func'), # mri_resolution (list, True, False, False, 'mri', 'func'), # volume label as list (dict, True, False, False, 'mri', 'func'), # volume label as dict ]) def test_extract_label_time_course_volume( src_volume_labels, label_type, mri_res, vector, test_label, cf, call): """Test extraction of label time courses from Vol(Vector)SourceEstimate.""" src_labels, volume_labels, lut = src_volume_labels n_tot = 46 assert n_tot == len(src_labels) inv = read_inverse_operator(fname_inv_vol) if cf == 'head': src = inv['src'] assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD rr = apply_trans(invert_transform(inv['mri_head_t']), src[0]['rr']) else: assert cf == 'mri' src = read_source_spaces(fname_src_vol) assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_MRI rr = src[0]['rr'] for s in src_labels: assert_allclose(s['rr'], rr, atol=1e-7) assert len(src) == 1 and src.kind == 'volume' klass = VolVectorSourceEstimate if not vector: klass = klass._scalar_class vertices = [src[0]['vertno']] n_verts = len(src[0]['vertno']) n_times = 50 data = vertex_values = np.arange(1, n_verts + 1) end_shape = (n_times,) if vector: end_shape = (3,) + end_shape data = np.pad(data[:, np.newaxis], ((0, 0), (2, 0)), 'constant') data = np.repeat(data[..., np.newaxis], n_times, -1) stcs = [klass(data.astype(float), vertices, 0, 1)] def eltc(*args, **kwargs): if call == 'func': return extract_label_time_course(stcs, *args, **kwargs) else: assert call == 'meth' return [stcs[0].extract_label_time_course(*args, **kwargs)] with pytest.raises(RuntimeError, match='atlas vox_mri_t does not match'): eltc(fname_fs_t1, src, mri_resolution=mri_res) assert len(src_labels) == 46 # includes unknown assert_array_equal( src[0]['vertno'], # src includes some in "unknown" space np.sort(np.concatenate([s['vertno'] for s in src_labels]))) # spot check assert src_labels[-1]['seg_name'] == 'CC_Anterior' assert src[0]['nuse'] == 4157 assert len(src[0]['vertno']) == 4157 assert sum(s['nuse'] for s in src_labels) == 4157 assert_array_equal(src_labels[-1]['vertno'], [8011, 8032, 8557]) assert_array_equal( np.where(np.in1d(src[0]['vertno'], [8011, 8032, 8557]))[0], [2672, 2688, 2995]) # triage "labels" argument if mri_res: # All should be there missing = [] else: # Nearest misses these missing = ['Left-vessel', 'Right-vessel', '5th-Ventricle', 'non-WM-hypointensities'] n_want = len(src_labels) if label_type is str: labels = fname_aseg elif label_type is list: labels = (fname_aseg, volume_labels) else: assert label_type is dict labels = (fname_aseg, {k: lut[k] for k in volume_labels}) assert mri_res assert len(missing) == 0 # we're going to add one that won't exist missing = ['intentionally_bad'] labels[1][missing[0]] = 10000 n_want += 1 n_tot += 1 n_want -= len(missing) # actually do the testing if cf == 'head' and not mri_res: # some missing with pytest.warns(RuntimeWarning, match='any vertices'): eltc(labels, src, allow_empty=True, mri_resolution=mri_res) for mode in ('mean', 'max'): with catch_logging() as log: label_tc = eltc(labels, src, mode=mode, allow_empty='ignore', mri_resolution=mri_res, verbose=True) log = log.getvalue() assert re.search('^Reading atlas.*aseg\\.mgz\n', log) is not None if len(missing): # assert that the missing ones get logged assert 'does not contain' in log assert repr(missing) in log else: assert 'does not contain' not in log assert '\n%d/%d atlas regions had at least' % (n_want, n_tot) in log assert len(label_tc) == 1 label_tc = label_tc[0] assert label_tc.shape == (n_tot,) + end_shape if vector: assert_array_equal(label_tc[:, :2], 0.) label_tc = label_tc[:, 2] assert label_tc.shape == (n_tot, n_times) # let's test some actual values by trusting the masks provided by # setup_volume_source_space. mri_resolution=True does some # interpolation so we should not expect equivalence, False does # nearest so we should. if mri_res: rtol = 0.2 if mode == 'mean' else 0.8 # max much more sensitive else: rtol = 0. for si, s in enumerate(src_labels): func = dict(mean=np.mean, max=np.max)[mode] these = vertex_values[np.in1d(src[0]['vertno'], s['vertno'])] assert len(these) == s['nuse'] if si == 0 and s['seg_name'] == 'Unknown': continue # unknown is crappy if s['nuse'] == 0: want = 0. if mri_res: # this one is totally due to interpolation, so no easy # test here continue else: want = func(these) assert_allclose(label_tc[si], want, atol=1e-6, rtol=rtol) # compare with in_label, only on every fourth for speed if test_label is not False and si % 4 == 0: label = s['seg_name'] if test_label is int: label = lut[label] in_label = stcs[0].in_label( label, fname_aseg, src).data assert in_label.shape == (s['nuse'],) + end_shape if vector: assert_array_equal(in_label[:, :2], 0.) in_label = in_label[:, 2] if want == 0: assert in_label.shape[0] == 0 else: in_label = func(in_label) assert_allclose(in_label, want, atol=1e-6, rtol=rtol) if mode == 'mean' and not vector: # check the reverse if label_type is dict: ctx = pytest.warns(RuntimeWarning, match='does not contain') else: ctx = nullcontext() with ctx: stc_back = labels_to_stc(labels, label_tc, src=src) assert stc_back.data.shape == stcs[0].data.shape corr = np.corrcoef(stc_back.data.ravel(), stcs[0].data.ravel())[0, 1] assert 0.6 < corr < 0.63 assert_allclose(_varexp(label_tc, label_tc), 1.) ve = _varexp(stc_back.data, stcs[0].data) assert 0.83 < ve < 0.85 with _record_warnings(): # ignore no output label_tc_rt = extract_label_time_course( stc_back, labels, src=src, mri_resolution=mri_res, allow_empty=True) assert label_tc_rt.shape == label_tc.shape corr = np.corrcoef(label_tc.ravel(), label_tc_rt.ravel())[0, 1] lower, upper = (0.99, 0.999) if mri_res else (0.95, 0.97) assert lower < corr < upper ve = _varexp(label_tc_rt, label_tc) lower, upper = (0.99, 0.999) if mri_res else (0.97, 0.99) assert lower < ve < upper def _varexp(got, want): return max( 1 - np.linalg.norm(got.ravel() - want.ravel()) ** 2 / np.linalg.norm(want) ** 2, 0.) @testing.requires_testing_data def test_extract_label_time_course_equiv(): """Test extraction of label time courses from stc equivalences.""" label = read_labels_from_annot('sample', 'aparc', 'lh', regexp='transv', subjects_dir=subjects_dir) assert len(label) == 1 label = label[0] inv = read_inverse_operator(fname_inv) evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01) stc = apply_inverse(evoked, inv, pick_ori='normal', label=label) stc_full = apply_inverse(evoked, inv, pick_ori='normal') stc_in_label = stc_full.in_label(label) mean = stc.extract_label_time_course(label, inv['src']) mean_2 = stc_in_label.extract_label_time_course(label, inv['src']) assert_allclose(mean, mean_2) inv['src'][0]['vertno'] = np.array([], int) assert len(stc_in_label.vertices[0]) == 22 with pytest.raises(ValueError, match='22/22 left hemisphere.*missing'): stc_in_label.extract_label_time_course(label, inv['src']) def _my_trans(data): """FFT that adds an additional dimension by repeating result.""" data_t = fft(data) data_t = np.concatenate([data_t[:, :, None], data_t[:, :, None]], axis=2) return data_t, None def test_transform_data(): """Test applying linear (time) transform to data.""" # make up some data n_sensors, n_vertices, n_times = 10, 20, 4 kernel = rng.randn(n_vertices, n_sensors) sens_data = rng.randn(n_sensors, n_times) vertices = [np.arange(n_vertices)] data = np.dot(kernel, sens_data) for idx, tmin_idx, tmax_idx in\ zip([None, np.arange(n_vertices // 2, n_vertices)], [None, 1], [None, 3]): if idx is None: idx_use = slice(None, None) else: idx_use = idx data_f, _ = _my_trans(data[idx_use, tmin_idx:tmax_idx]) for stc_data in (data, (kernel, sens_data)): stc = VolSourceEstimate(stc_data, vertices=vertices, tmin=0., tstep=1.) stc_data_t = stc.transform_data(_my_trans, idx=idx, tmin_idx=tmin_idx, tmax_idx=tmax_idx) assert_allclose(data_f, stc_data_t) # bad sens_data sens_data = sens_data[..., np.newaxis] with pytest.raises(ValueError, match='sensor data must have 2'): VolSourceEstimate((kernel, sens_data), vertices, 0, 1) def test_transform(): """Test applying linear (time) transform to data.""" # make up some data n_verts_lh, n_verts_rh, n_times = 10, 10, 10 vertices = [np.arange(n_verts_lh), n_verts_lh + np.arange(n_verts_rh)] data = rng.randn(n_verts_lh + n_verts_rh, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=-0.1, tstep=0.1) # data_t.ndim > 2 & copy is True stcs_t = stc.transform(_my_trans, copy=True) assert (isinstance(stcs_t, list)) assert_array_equal(stc.times, stcs_t[0].times) assert_equal(stc.vertices, stcs_t[0].vertices) data = np.concatenate((stcs_t[0].data[:, :, None], stcs_t[1].data[:, :, None]), axis=2) data_t = stc.transform_data(_my_trans) assert_array_equal(data, data_t) # check against stc.transform_data() # data_t.ndim > 2 & copy is False pytest.raises(ValueError, stc.transform, _my_trans, copy=False) # data_t.ndim = 2 & copy is True tmp = deepcopy(stc) stc_t = stc.transform(np.abs, copy=True) assert (isinstance(stc_t, SourceEstimate)) assert_array_equal(stc.data, tmp.data) # xfrm doesn't modify original? # data_t.ndim = 2 & copy is False times = np.round(1000 * stc.times) verts = np.arange(len(stc.lh_vertno), len(stc.lh_vertno) + len(stc.rh_vertno), 1) verts_rh = stc.rh_vertno tmin_idx = np.searchsorted(times, 0) tmax_idx = np.searchsorted(times, 501) # Include 500ms in the range data_t = stc.transform_data(np.abs, idx=verts, tmin_idx=tmin_idx, tmax_idx=tmax_idx) stc.transform(np.abs, idx=verts, tmin=-50, tmax=500, copy=False) assert (isinstance(stc, SourceEstimate)) assert_equal(stc.tmin, 0.) assert_equal(stc.times[-1], 0.5) assert_equal(len(stc.vertices[0]), 0) assert_equal(stc.vertices[1], verts_rh) assert_array_equal(stc.data, data_t) times = np.round(1000 * stc.times) tmin_idx, tmax_idx = np.searchsorted(times, 0), np.searchsorted(times, 250) data_t = stc.transform_data(np.abs, tmin_idx=tmin_idx, tmax_idx=tmax_idx) stc.transform(np.abs, tmin=0, tmax=250, copy=False) assert_equal(stc.tmin, 0.) assert_equal(stc.times[-1], 0.2) assert_array_equal(stc.data, data_t) @requires_sklearn def test_spatio_temporal_tris_adjacency(): """Test spatio-temporal adjacency from triangles.""" tris = np.array([[0, 1, 2], [3, 4, 5]]) adjacency = spatio_temporal_tris_adjacency(tris, 2) x = [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] components = stats.cluster_level._get_components(np.array(x), adjacency) # _get_components works differently now... old_fmt = [0, 0, -2, -2, -2, -2, 0, -2, -2, -2, -2, 1] new_fmt = np.array(old_fmt) new_fmt = [np.nonzero(new_fmt == v)[0] for v in np.unique(new_fmt[new_fmt >= 0])] assert len(new_fmt) == len(components) for c, n in zip(components, new_fmt): assert_array_equal(c, n) @testing.requires_testing_data def test_spatio_temporal_src_adjacency(): """Test spatio-temporal adjacency from source spaces.""" tris = np.array([[0, 1, 2], [3, 4, 5]]) src = [dict(), dict()] adjacency = spatio_temporal_tris_adjacency(tris, 2).todense() assert_allclose(np.diag(adjacency), 1.) src[0]['use_tris'] = np.array([[0, 1, 2]]) src[1]['use_tris'] = np.array([[0, 1, 2]]) src[0]['vertno'] = np.array([0, 1, 2]) src[1]['vertno'] = np.array([0, 1, 2]) src[0]['type'] = 'surf' src[1]['type'] = 'surf' adjacency2 = spatio_temporal_src_adjacency(src, 2) assert_array_equal(adjacency2.todense(), adjacency) # add test for dist adjacency src[0]['dist'] = np.ones((3, 3)) - np.eye(3) src[1]['dist'] = np.ones((3, 3)) - np.eye(3) src[0]['vertno'] = [0, 1, 2] src[1]['vertno'] = [0, 1, 2] src[0]['type'] = 'surf' src[1]['type'] = 'surf' adjacency3 = spatio_temporal_src_adjacency(src, 2, dist=2) assert_array_equal(adjacency3.todense(), adjacency) # add test for source space adjacency with omitted vertices inverse_operator = read_inverse_operator(fname_inv) src_ = inverse_operator['src'] with pytest.warns(RuntimeWarning, match='will have holes'): adjacency = spatio_temporal_src_adjacency(src_, n_times=2) a = adjacency.shape[0] / 2 b = sum([s['nuse'] for s in inverse_operator['src']]) assert (a == b) assert_equal(grade_to_tris(5).shape, [40960, 3]) @requires_pandas def test_to_data_frame(): """Test stc Pandas exporter.""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)] data = rng.randn(n_vert, n_times) stc_surf = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') stc_vol = VolSourceEstimate(data, vertices=vertices[:1], tmin=0, tstep=1, subject='sample') for stc in [stc_surf, stc_vol]: df = stc.to_data_frame() # test data preservation (first 2 dataframe elements are subj & time) assert_array_equal(df.values.T[2:], stc.data) # test long format df_long = stc.to_data_frame(long_format=True) assert(len(df_long) == stc.data.size) expected = ('subject', 'time', 'source', 'value') assert set(expected) == set(df_long.columns) @requires_pandas @pytest.mark.parametrize('index', ('time', ['time', 'subject'], None)) def test_to_data_frame_index(index): """Test index creation in stc Pandas exporter.""" n_vert, n_times = 10, 5 vertices = [np.arange(n_vert, dtype=np.int64), np.empty(0, dtype=np.int64)] data = rng.randn(n_vert, n_times) stc = SourceEstimate(data, vertices=vertices, tmin=0, tstep=1, subject='sample') df = stc.to_data_frame(index=index) # test index setting if not isinstance(index, list): index = [index] assert (df.index.names == index) # test that non-indexed data were present as columns non_index = list(set(['time', 'subject']) - set(index)) if len(non_index): assert all(np.in1d(non_index, df.columns)) @pytest.mark.parametrize('kind', ('surface', 'mixed', 'volume')) @pytest.mark.parametrize('vector', (False, True)) @pytest.mark.parametrize('n_times', (5, 1)) def test_get_peak(kind, vector, n_times): """Test peak getter.""" n_vert = 10 vertices = [np.arange(n_vert)] if kind == 'surface': klass = VectorSourceEstimate vertices += [np.empty(0, int)] elif kind == 'mixed': klass = MixedVectorSourceEstimate vertices += [np.empty(0, int), np.empty(0, int)] else: assert kind == 'volume' klass = VolVectorSourceEstimate data = np.zeros((n_vert, n_times)) data[1, -1] = 1 if vector: data = np.repeat(data[:, np.newaxis], 3, 1) else: klass = klass._scalar_class stc = klass(data, vertices, 0, 1) with pytest.raises(ValueError, match='out of bounds'): stc.get_peak(tmin=-100) with pytest.raises(ValueError, match='out of bounds'): stc.get_peak(tmax=90) with pytest.raises(ValueError, match='must be <=' if n_times > 1 else 'out of'): stc.get_peak(tmin=0.002, tmax=0.001) vert_idx, time_idx = stc.get_peak() vertno = np.concatenate(stc.vertices) assert vert_idx in vertno assert time_idx in stc.times data_idx, time_idx = stc.get_peak(vert_as_index=True, time_as_index=True) if vector: use_data = stc.magnitude().data else: use_data = stc.data assert data_idx == 1 assert time_idx == n_times - 1 assert data_idx == np.argmax(np.abs(use_data[:, time_idx])) assert time_idx == np.argmax(np.abs(use_data[data_idx, :])) if kind == 'surface': data_idx_2, time_idx_2 = stc.get_peak( vert_as_index=True, time_as_index=True, hemi='lh') assert data_idx_2 == data_idx assert time_idx_2 == time_idx with pytest.raises(RuntimeError, match='no vertices'): stc.get_peak(hemi='rh') @requires_version('h5io') @testing.requires_testing_data def test_mixed_stc(tmp_path): """Test source estimate from mixed source space.""" N = 90 # number of sources T = 2 # number of time points S = 3 # number of source spaces data = rng.randn(N, T) vertno = S * [np.arange(N // S)] # make sure error is raised if vertices are not a list of length >= 2 pytest.raises(ValueError, MixedSourceEstimate, data=data, vertices=[np.arange(N)]) stc = MixedSourceEstimate(data, vertno, 0, 1) # make sure error is raised for plotting surface with volume source fname = tmp_path / 'mixed-stc.h5' stc.save(fname) stc_out = read_source_estimate(fname) assert_array_equal(stc_out.vertices, vertno) assert_array_equal(stc_out.data, data) assert stc_out.tmin == 0 assert stc_out.tstep == 1 assert isinstance(stc_out, MixedSourceEstimate) @requires_version('h5io') @pytest.mark.parametrize('klass, kind', [ (VectorSourceEstimate, 'surf'), (VolVectorSourceEstimate, 'vol'), (VolVectorSourceEstimate, 'discrete'), (MixedVectorSourceEstimate, 'mixed'), ]) @pytest.mark.parametrize('dtype', [ np.float32, np.float64, np.complex64, np.complex128]) def test_vec_stc_basic(tmp_path, klass, kind, dtype): """Test (vol)vector source estimate.""" nn = np.array([ [1, 0, 0], [0, 1, 0], [np.sqrt(1. / 2.), 0, np.sqrt(1. / 2.)], [np.sqrt(1 / 3.)] * 3 ], np.float32) data = np.array([ [1, 0, 0], [0, 2, 0], [-3, 0, 0], [1, 1, 1], ], dtype)[:, :, np.newaxis] amplitudes = np.array([1, 2, 3, np.sqrt(3)], dtype) magnitudes = amplitudes.copy() normals = np.array([1, 2, -3. / np.sqrt(2), np.sqrt(3)], dtype) if dtype in (np.complex64, np.complex128): data *= 1j amplitudes *= 1j normals *= 1j directions = np.array( [[1, 0, 0], [0, 1, 0], [-1, 0, 0], [1. / np.sqrt(3)] * 3]) vol_kind = kind if kind in ('discrete', 'vol') else 'vol' vol_src = SourceSpaces([dict(nn=nn, type=vol_kind)]) assert vol_src.kind == dict(vol='volume').get(vol_kind, vol_kind) vol_verts = [np.arange(4)] surf_src = SourceSpaces([dict(nn=nn[:2], type='surf'), dict(nn=nn[2:], type='surf')]) assert surf_src.kind == 'surface' surf_verts = [np.array([0, 1]), np.array([0, 1])] if klass is VolVectorSourceEstimate: src = vol_src verts = vol_verts elif klass is VectorSourceEstimate: src = surf_src verts = surf_verts if klass is MixedVectorSourceEstimate: src = surf_src + vol_src verts = surf_verts + vol_verts assert src.kind == 'mixed' data = np.tile(data, (2, 1, 1)) amplitudes = np.tile(amplitudes, 2) magnitudes = np.tile(magnitudes, 2) normals = np.tile(normals, 2) directions = np.tile(directions, (2, 1)) stc = klass(data, verts, 0, 1, 'foo') amplitudes = amplitudes[:, np.newaxis] magnitudes = magnitudes[:, np.newaxis] # Magnitude of the vectors assert_array_equal(stc.magnitude().data, magnitudes) # Vector components projected onto the vertex normals if kind in ('vol', 'mixed'): with pytest.raises(RuntimeError, match='surface or discrete'): stc.project('normal', src)[0] else: normal = stc.project('normal', src)[0] assert_allclose(normal.data[:, 0], normals) # Maximal-variance component, either to keep amps pos or to align to src-nn projected, got_directions = stc.project('pca') assert_allclose(got_directions, directions) assert_allclose(projected.data, amplitudes) projected, got_directions = stc.project('pca', src) flips = np.array([[1], [1], [-1.], [1]]) if klass is MixedVectorSourceEstimate: flips = np.tile(flips, (2, 1)) assert_allclose(got_directions, directions * flips) assert_allclose(projected.data, amplitudes * flips) out_name = tmp_path / 'temp.h5' stc.save(out_name) stc_read = read_source_estimate(out_name) assert_allclose(stc.data, stc_read.data) assert len(stc.vertices) == len(stc_read.vertices) for v1, v2 in zip(stc.vertices, stc_read.vertices): assert_array_equal(v1, v2) stc = klass(data[:, :, 0], verts, 0, 1) # upbroadcast assert stc.data.shape == (len(data), 3, 1) # Bad data with pytest.raises(ValueError, match='must have shape.*3'): klass(data[:, :2], verts, 0, 1) data = data[:, :, np.newaxis] with pytest.raises(ValueError, match='3 dimensions for .*VectorSource'): klass(data, verts, 0, 1) @pytest.mark.parametrize('real', (True, False)) def test_source_estime_project(real): """Test projecting a source estimate onto direction of max power.""" n_src, n_times = 4, 100 rng = np.random.RandomState(0) data = rng.randn(n_src, 3, n_times) if not real: data = data + 1j * rng.randn(n_src, 3, n_times) assert data.dtype == np.complex128 else: assert data.dtype == np.float64 # Make sure that the normal we get maximizes the power # (i.e., minimizes the negative power) want_nn = np.empty((n_src, 3)) for ii in range(n_src): x0 = np.ones(3) def objective(x): x = x / np.linalg.norm(x) return -np.linalg.norm(np.dot(x, data[ii])) want_nn[ii] = fmin_cobyla(objective, x0, (), rhobeg=0.1, rhoend=1e-6) want_nn /= np.linalg.norm(want_nn, axis=1, keepdims=True) stc = VolVectorSourceEstimate(data, [np.arange(n_src)], 0, 1) stc_max, directions = stc.project('pca') flips = np.sign(np.sum(directions * want_nn, axis=1, keepdims=True)) directions *= flips assert_allclose(directions, want_nn, atol=2e-6) @testing.requires_testing_data def test_source_estime_project_label(): """Test projecting a source estimate onto direction of max power.""" fwd = read_forward_solution(fname_fwd) fwd = pick_types_forward(fwd, meg=True, eeg=False) evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0] noise_cov = read_cov(fname_cov) free = make_inverse_operator( evoked.info, fwd, noise_cov, loose=1.) stc_free = apply_inverse(evoked, free, pick_ori='vector') stc_pca = stc_free.project('pca', fwd['src'])[0] labels_lh = read_labels_from_annot('sample', 'aparc', 'lh', subjects_dir=subjects_dir) new_label = labels_lh[0] + labels_lh[1] stc_in_label = stc_free.in_label(new_label) stc_pca_in_label = stc_pca.in_label(new_label) stc_in_label_pca = stc_in_label.project('pca', fwd['src'])[0] assert_array_equal(stc_pca_in_label.data, stc_in_label_pca.data) @pytest.fixture(scope='module', params=[testing._pytest_param()]) def invs(): """Inverses of various amounts of loose.""" fwd = read_forward_solution(fname_fwd) fwd = pick_types_forward(fwd, meg=True, eeg=False) fwd_surf = convert_forward_solution(fwd, surf_ori=True) evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0] noise_cov = read_cov(fname_cov) free = make_inverse_operator( evoked.info, fwd, noise_cov, loose=1.) free_surf = make_inverse_operator( evoked.info, fwd_surf, noise_cov, loose=1.) freeish = make_inverse_operator( evoked.info, fwd, noise_cov, loose=0.9999) fixed = make_inverse_operator( evoked.info, fwd, noise_cov, loose=0.) fixedish = make_inverse_operator( evoked.info, fwd, noise_cov, loose=0.0001) assert_allclose(free['source_nn'], np.kron(np.ones(fwd['nsource']), np.eye(3)).T, atol=1e-7) # This is the one exception: assert not np.allclose(free['source_nn'], free_surf['source_nn']) assert_allclose(free['source_nn'], np.tile(np.eye(3), (free['nsource'], 1)), atol=1e-7) # All others are similar: for other in (freeish, fixedish): assert_allclose(free_surf['source_nn'], other['source_nn'], atol=1e-7) assert_allclose( free_surf['source_nn'][2::3], fixed['source_nn'], atol=1e-7) expected_nn = np.concatenate([_get_src_nn(s) for s in fwd['src']]) assert_allclose(fixed['source_nn'], expected_nn, atol=1e-7) return evoked, free, free_surf, freeish, fixed, fixedish bad_normal = pytest.param( 'normal', marks=pytest.mark.xfail(raises=AssertionError)) @pytest.mark.parametrize('pick_ori', [None, 'normal', 'vector']) def test_vec_stc_inv_free(invs, pick_ori): """Test vector STC behavior with two free-orientation inverses.""" evoked, free, free_surf, _, _, _ = invs stc_free = apply_inverse(evoked, free, pick_ori=pick_ori) stc_free_surf = apply_inverse(evoked, free_surf, pick_ori=pick_ori) assert_allclose(stc_free.data, stc_free_surf.data, atol=1e-5) @pytest.mark.parametrize('pick_ori', [None, 'normal', 'vector']) def test_vec_stc_inv_free_surf(invs, pick_ori): """Test vector STC behavior with free and free-ish orientation invs.""" evoked, _, free_surf, freeish, _, _ = invs stc_free = apply_inverse(evoked, free_surf, pick_ori=pick_ori) stc_freeish = apply_inverse(evoked, freeish, pick_ori=pick_ori) assert_allclose(stc_free.data, stc_freeish.data, atol=1e-3) @pytest.mark.parametrize('pick_ori', (None, 'normal', 'vector')) def test_vec_stc_inv_fixed(invs, pick_ori): """Test vector STC behavior with fixed-orientation inverses.""" evoked, _, _, _, fixed, fixedish = invs stc_fixed = apply_inverse(evoked, fixed) stc_fixed_vector = apply_inverse(evoked, fixed, pick_ori='vector') assert_allclose(stc_fixed.data, stc_fixed_vector.project('normal', fixed['src'])[0].data) stc_fixedish = apply_inverse(evoked, fixedish, pick_ori=pick_ori) if pick_ori == 'vector': assert_allclose(stc_fixed_vector.data, stc_fixedish.data, atol=1e-2) # two ways here: with magnitude... assert_allclose( abs(stc_fixed).data, stc_fixedish.magnitude().data, atol=1e-2) # ... and when picking the normal (signed) stc_fixedish = stc_fixedish.project('normal', fixedish['src'])[0] elif pick_ori is None: stc_fixed = abs(stc_fixed) else: assert pick_ori == 'normal' # no need to modify assert_allclose(stc_fixed.data, stc_fixedish.data, atol=1e-2) @testing.requires_testing_data def test_epochs_vector_inverse(): """Test vector inverse consistency between evoked and epochs.""" raw = read_raw_fif(fname_raw) events = find_events(raw, stim_channel='STI 014')[:2] reject = dict(grad=2000e-13, mag=4e-12, eog=150e-6) epochs = Epochs(raw, events, None, 0, 0.01, baseline=None, reject=reject, preload=True) assert_equal(len(epochs), 2) evoked = epochs.average(picks=range(len(epochs.ch_names))) inv = read_inverse_operator(fname_inv) method = "MNE" snr = 3. lambda2 = 1. / snr ** 2 stcs_epo = apply_inverse_epochs(epochs, inv, lambda2, method=method, pick_ori='vector', return_generator=False) stc_epo = np.mean(stcs_epo) stc_evo = apply_inverse(evoked, inv, lambda2, method=method, pick_ori='vector') assert_allclose(stc_epo.data, stc_evo.data, rtol=1e-9, atol=0) @requires_sklearn @testing.requires_testing_data def test_vol_adjacency(): """Test volume adjacency.""" vol = read_source_spaces(fname_vsrc) pytest.raises(ValueError, spatial_src_adjacency, vol, dist=1.) adjacency = spatial_src_adjacency(vol) n_vertices = vol[0]['inuse'].sum() assert_equal(adjacency.shape, (n_vertices, n_vertices)) assert (np.all(adjacency.data == 1)) assert (isinstance(adjacency, sparse.coo_matrix)) adjacency2 = spatio_temporal_src_adjacency(vol, n_times=2) assert_equal(adjacency2.shape, (2 * n_vertices, 2 * n_vertices)) assert (np.all(adjacency2.data == 1)) @testing.requires_testing_data def test_spatial_src_adjacency(): """Test spatial adjacency functionality.""" # oct src = read_source_spaces(fname_src) assert src[0]['dist'] is not None # distance info with pytest.warns(RuntimeWarning, match='will have holes'): con = spatial_src_adjacency(src).toarray() con_dist = spatial_src_adjacency(src, dist=0.01).toarray() assert (con == con_dist).mean() > 0.75 # ico src = read_source_spaces(fname_src_fs) con = spatial_src_adjacency(src).tocsr() con_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr() assert con.shape == con_tris.shape assert_array_equal(con.data, con_tris.data) assert_array_equal(con.indptr, con_tris.indptr) assert_array_equal(con.indices, con_tris.indices) # one hemi con_lh = spatial_src_adjacency(src[:1]).tocsr() con_lh_tris = spatial_tris_adjacency(grade_to_tris(5)).tocsr() con_lh_tris = con_lh_tris[:10242, :10242].tocsr() assert_array_equal(con_lh.data, con_lh_tris.data) assert_array_equal(con_lh.indptr, con_lh_tris.indptr) assert_array_equal(con_lh.indices, con_lh_tris.indices) @requires_sklearn @requires_nibabel() @testing.requires_testing_data def test_vol_mask(): """Test extraction of volume mask.""" src = read_source_spaces(fname_vsrc) mask = _get_vol_mask(src) # Let's use an alternative way that should be equivalent vertices = [src[0]['vertno']] n_vertices = len(vertices[0]) data = (1 + np.arange(n_vertices))[:, np.newaxis] stc_tmp = VolSourceEstimate(data, vertices, tmin=0., tstep=1.) img = stc_tmp.as_volume(src, mri_resolution=False) img_data = _get_img_fdata(img)[:, :, :, 0].T mask_nib = (img_data != 0) assert_array_equal(img_data[mask_nib], data[:, 0]) assert_array_equal(np.where(mask_nib.ravel())[0], src[0]['vertno']) assert_array_equal(mask, mask_nib) assert_array_equal(img_data.shape, mask.shape) @testing.requires_testing_data def test_stc_near_sensors(tmp_path): """Test stc_near_sensors.""" info = read_info(fname_evoked) # pick the left EEG sensors picks = pick_types(info, meg=False, eeg=True, exclude=()) picks = [pick for pick in picks if info['chs'][pick]['loc'][0] < 0] pick_info(info, picks, copy=False) with info._unlock(): info['projs'] = [] info['bads'] = [] assert info['nchan'] == 33 evoked = EvokedArray(np.eye(info['nchan']), info) trans = read_trans(fname_fwd) assert trans['to'] == FIFF.FIFFV_COORD_HEAD this_dir = str(tmp_path) # testing does not have pial, so fake it os.makedirs(op.join(this_dir, 'sample', 'surf')) for hemi in ('lh', 'rh'): copyfile(op.join(subjects_dir, 'sample', 'surf', f'{hemi}.white'), op.join(this_dir, 'sample', 'surf', f'{hemi}.pial')) # here we use a distance is smaller than the inter-sensor distance kwargs = dict(subject='sample', trans=trans, subjects_dir=this_dir, verbose=True, distance=0.005) with pytest.raises(ValueError, match='No appropriate channels'): stc_near_sensors(evoked, **kwargs) evoked.set_channel_types({ch_name: 'ecog' for ch_name in evoked.ch_names}) with catch_logging() as log: stc = stc_near_sensors(evoked, **kwargs) log = log.getvalue() assert 'Minimum projected intra-sensor distance: 7.' in log # 7.4 # this should be left-hemisphere dominant assert 5000 > len(stc.vertices[0]) > 4000 assert 200 > len(stc.vertices[1]) > 100 # and at least one vertex should have the channel values dists = cdist(stc.data, evoked.data) assert np.isclose(dists, 0., atol=1e-6).any(0).all() src = read_source_spaces(fname_src) # uses "white" but should be okay for s in src: transform_surface_to(s, 'head', trans, copy=False) assert src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD stc_src = stc_near_sensors(evoked, src=src, **kwargs) assert len(stc_src.data) == 7928 with pytest.warns(RuntimeWarning, match='not included'): # some removed stc_src_full = compute_source_morph( stc_src, 'sample', 'sample', smooth=5, spacing=None, subjects_dir=subjects_dir).apply(stc_src) lh_idx = np.searchsorted(stc_src_full.vertices[0], stc.vertices[0]) rh_idx = np.searchsorted(stc_src_full.vertices[1], stc.vertices[1]) rh_idx += len(stc_src_full.vertices[0]) sub_data = stc_src_full.data[np.concatenate([lh_idx, rh_idx])] assert sub_data.shape == stc.data.shape corr = np.corrcoef(stc.data.ravel(), sub_data.ravel())[0, 1] assert 0.6 < corr < 0.7 # now single-weighting mode stc_w = stc_near_sensors(evoked, mode='single', **kwargs) assert_array_less(stc_w.data, stc.data + 1e-3) # some tol assert len(stc_w.data) == len(stc.data) # at least one for each sensor should have projected right on it dists = cdist(stc_w.data, evoked.data) assert np.isclose(dists, 0., atol=1e-6).any(0).all() # finally, nearest mode: all should match stc_n = stc_near_sensors(evoked, mode='nearest', **kwargs) assert len(stc_n.data) == len(stc.data) # at least one for each sensor should have projected right on it dists = cdist(stc_n.data, evoked.data) assert np.isclose(dists, 0., atol=1e-6).any(1).all() # all vert eq some ch # these are EEG electrodes, so the distance 0.01 is too small for the # scalp+skull. Even at a distance of 33 mm EEG 060 is too far: with pytest.warns(RuntimeWarning, match='Channel missing in STC: EEG 060'): stc = stc_near_sensors(evoked, trans, 'sample', subjects_dir=this_dir, project=False, distance=0.033) assert stc.data.any(0).sum() == len(evoked.ch_names) - 1 # and now with volumetric projection src = read_source_spaces(fname_vsrc) with catch_logging() as log: stc_vol = stc_near_sensors( evoked, trans, 'sample', src=src, surface=None, subjects_dir=subjects_dir, distance=0.033, verbose=True) assert isinstance(stc_vol, VolSourceEstimate) log = log.getvalue() assert '4157 volume vertices' in log @requires_version('pymatreader') @testing.requires_testing_data def test_stc_near_sensors_picks(): """Test using picks with stc_near_sensors.""" info = mne.io.read_raw_nirx(fname_nirx).info evoked = mne.EvokedArray(np.ones((len(info['ch_names']), 1)), info) src = mne.read_source_spaces(fname_src_fs) kwargs = dict( evoked=evoked, subject='fsaverage', trans='fsaverage', subjects_dir=subjects_dir, src=src, surface=None, project=True) with pytest.raises(ValueError, match='No appropriate channels'): stc_near_sensors(**kwargs) picks = np.arange(len(info['ch_names'])) data = stc_near_sensors(picks=picks, **kwargs).data assert len(data) == 20484 assert (data >= 0).all() data = data[data > 0] n_pts = len(data) assert 500 < n_pts < 600 lo, hi = np.percentile(data, (5, 95)) assert 0.01 < lo < 0.1 assert 1.3 < hi < 1.7 # > 1 data = stc_near_sensors(picks=picks, mode='weighted', **kwargs).data assert (data >= 0).all() data = data[data > 0] assert len(data) == n_pts assert_array_equal(data, 1.) # values preserved def _make_morph_map_hemi_same(subject_from, subject_to, subjects_dir, reg_from, reg_to): return _make_morph_map_hemi(subject_from, subject_from, subjects_dir, reg_from, reg_from) @requires_nibabel() @testing.requires_testing_data @pytest.mark.parametrize('kind', ( pytest.param('volume', marks=[requires_version('dipy'), pytest.mark.slowtest]), 'surface', )) @pytest.mark.parametrize('scale', ((1.0, 0.8, 1.2), 1., 0.9)) def test_scale_morph_labels(kind, scale, monkeypatch, tmp_path): """Test label extraction, morphing, and MRI scaling relationships.""" tempdir = str(tmp_path) subject_from = 'sample' subject_to = 'small' testing_dir = op.join(subjects_dir, subject_from) from_dir = op.join(tempdir, subject_from) for root in ('mri', 'surf', 'label', 'bem'): os.makedirs(op.join(from_dir, root), exist_ok=True) for hemi in ('lh', 'rh'): for root, fname in (('surf', 'sphere'), ('surf', 'white'), ('surf', 'sphere.reg'), ('label', 'aparc.annot')): use_fname = op.join(root, f'{hemi}.{fname}') copyfile(op.join(testing_dir, use_fname), op.join(from_dir, use_fname)) for root, fname in (('mri', 'aseg.mgz'), ('mri', 'brain.mgz')): use_fname = op.join(root, fname) copyfile(op.join(testing_dir, use_fname), op.join(from_dir, use_fname)) del testing_dir if kind == 'surface': src_from = read_source_spaces(fname_src_3) assert src_from[0]['dist'] is None assert src_from[0]['nearest'] is not None # avoid patch calc src_from[0]['nearest'] = src_from[1]['nearest'] = None assert len(src_from) == 2 assert src_from[0]['nuse'] == src_from[1]['nuse'] == 258 klass = SourceEstimate labels_from = read_labels_from_annot( subject_from, subjects_dir=tempdir) n_labels = len(labels_from) write_source_spaces(op.join(tempdir, subject_from, 'bem', f'{subject_from}-oct-4-src.fif'), src_from) else: assert kind == 'volume' pytest.importorskip('dipy') src_from = read_source_spaces(fname_src_vol) src_from[0]['subject_his_id'] = subject_from labels_from = op.join( tempdir, subject_from, 'mri', 'aseg.mgz') n_labels = 46 assert op.isfile(labels_from) klass = VolSourceEstimate assert len(src_from) == 1 assert src_from[0]['nuse'] == 4157 write_source_spaces( op.join(from_dir, 'bem', 'sample-vol20-src.fif'), src_from) scale_mri(subject_from, subject_to, scale, subjects_dir=tempdir, annot=True, skip_fiducials=True, verbose=True, overwrite=True) if kind == 'surface': src_to = read_source_spaces( op.join(tempdir, subject_to, 'bem', f'{subject_to}-oct-4-src.fif')) labels_to = read_labels_from_annot( subject_to, subjects_dir=tempdir) # Save time since we know these subjects are identical monkeypatch.setattr(mne.morph_map, '_make_morph_map_hemi', _make_morph_map_hemi_same) else: src_to = read_source_spaces( op.join(tempdir, subject_to, 'bem', f'{subject_to}-vol20-src.fif')) labels_to = op.join( tempdir, subject_to, 'mri', 'aseg.mgz') # 1. Label->STC->Label for the given subject should be identity # (for surfaces at least; for volumes it's not as clean as this # due to interpolation) n_times = 50 rng = np.random.RandomState(0) label_tc = rng.randn(n_labels, n_times) # check that a random permutation of our labels yields a terrible # correlation corr = np.corrcoef(label_tc.ravel(), rng.permutation(label_tc).ravel())[0, 1] assert -0.06 < corr < 0.06 # project label activations to full source space with pytest.raises(ValueError, match='subject'): labels_to_stc(labels_from, label_tc, src=src_from, subject='foo') stc = labels_to_stc(labels_from, label_tc, src=src_from) assert stc.subject == 'sample' assert isinstance(stc, klass) label_tc_from = extract_label_time_course( stc, labels_from, src_from, mode='mean') if kind == 'surface': assert_allclose(label_tc, label_tc_from, rtol=1e-12, atol=1e-12) else: corr = np.corrcoef(label_tc.ravel(), label_tc_from.ravel())[0, 1] assert 0.93 < corr < 0.95 # # 2. Changing STC subject to the surrogate and then extracting # stc.subject = subject_to label_tc_to = extract_label_time_course( stc, labels_to, src_to, mode='mean') assert_allclose(label_tc_from, label_tc_to, rtol=1e-12, atol=1e-12) stc.subject = subject_from # # 3. Morphing STC to new subject then extracting # if isinstance(scale, tuple) and kind == 'volume': ctx = nullcontext() test_morph = True elif kind == 'surface': ctx = pytest.warns(RuntimeWarning, match='not included') test_morph = True else: ctx = nullcontext() test_morph = True with ctx: # vertices not included morph = compute_source_morph( src_from, subject_to=subject_to, src_to=src_to, subjects_dir=tempdir, niter_sdr=(), smooth=1, zooms=14., verbose=True) # speed up with higher zooms if kind == 'volume': got_affine = morph.pre_affine.affine want_affine = np.eye(4) want_affine.ravel()[::5][:3] = 1. / np.array(scale, float) # just a scaling (to within 1% if zooms=None, 20% with zooms=10) assert_allclose(want_affine[:, :3], got_affine[:, :3], atol=0.4) assert got_affine[3, 3] == 1. # little translation (to within `limit` mm) move = np.linalg.norm(got_affine[:3, 3]) limit = 2. if scale == 1. else 12 assert move < limit, scale if test_morph: stc_to = morph.apply(stc) label_tc_to_morph = extract_label_time_course( stc_to, labels_to, src_to, mode='mean') if kind == 'volume': corr = np.corrcoef( label_tc.ravel(), label_tc_to_morph.ravel())[0, 1] if isinstance(scale, tuple): # some other fixed constant # min_, max_ = 0.84, 0.855 # zooms='auto' values min_, max_ = 0.57, 0.67 elif scale == 1: # min_, max_ = 0.85, 0.875 # zooms='auto' values min_, max_ = 0.72, 0.76 else: # min_, max_ = 0.84, 0.855 # zooms='auto' values min_, max_ = 0.46, 0.63 assert min_ < corr <= max_, scale else: assert_allclose( label_tc, label_tc_to_morph, atol=1e-12, rtol=1e-12) # # 4. The same round trip from (1) but in the warped space # stc = labels_to_stc(labels_to, label_tc, src=src_to) assert isinstance(stc, klass) label_tc_to = extract_label_time_course( stc, labels_to, src_to, mode='mean') if kind == 'surface': assert_allclose(label_tc, label_tc_to, rtol=1e-12, atol=1e-12) else: corr = np.corrcoef(label_tc.ravel(), label_tc_to.ravel())[0, 1] assert 0.93 < corr < 0.96, scale @testing.requires_testing_data @pytest.mark.parametrize('kind', [ 'surface', pytest.param('volume', marks=[pytest.mark.slowtest, requires_version('nibabel')]), ]) def test_label_extraction_subject(kind): """Test that label extraction subject is treated properly.""" if kind == 'surface': inv = read_inverse_operator(fname_inv) labels = read_labels_from_annot( 'sample', subjects_dir=subjects_dir) labels_fs = read_labels_from_annot( 'fsaverage', subjects_dir=subjects_dir) labels_fs = [label for label in labels_fs if not label.name.startswith('unknown')] assert all(label.subject == 'sample' for label in labels) assert all(label.subject == 'fsaverage' for label in labels_fs) assert len(labels) == len(labels_fs) == 68 n_labels = 68 else: assert kind == 'volume' inv = read_inverse_operator(fname_inv_vol) inv['src'][0]['subject_his_id'] = 'sample' # modernize labels = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz') labels_fs = op.join(subjects_dir, 'fsaverage', 'mri', 'aseg.mgz') n_labels = 46 src = inv['src'] assert src.kind == kind assert src._subject == 'sample' ave = read_evokeds(fname_evoked)[0].apply_baseline((None, 0)).crop(0, 0.01) assert len(ave.times) == 4 stc = apply_inverse(ave, inv) assert stc.subject == 'sample' ltc = extract_label_time_course(stc, labels, src) stc.subject = 'fsaverage' with pytest.raises(ValueError, match=r'source spac.*not match.* stc\.sub'): extract_label_time_course(stc, labels, src) stc.subject = 'sample' assert ltc.shape == (n_labels, 4) if kind == 'volume': with pytest.raises(RuntimeError, match='atlas.*not match.*source spa'): extract_label_time_course(stc, labels_fs, src) else: with pytest.raises(ValueError, match=r'label\.sub.*not match.* stc\.'): extract_label_time_course(stc, labels_fs, src) stc.subject = None with pytest.raises(ValueError, match=r'label\.sub.*not match.* sourc'): extract_label_time_course(stc, labels_fs, src)
bsd-3-clause
pravsripad/mne-python
examples/inverse/evoked_ers_source_power.py
11
5660
# -*- coding: utf-8 -*- """ .. _ex-source-loc-methods: ===================================================================== Compute evoked ERS source power using DICS, LCMV beamformer, and dSPM ===================================================================== Here we examine 3 ways of localizing event-related synchronization (ERS) of beta band activity in this dataset: :ref:`somato-dataset` using :term:`DICS`, :term:`LCMV beamformer`, and :term:`dSPM` applied to active and baseline covariance matrices. """ # Authors: Luke Bloy <luke.bloy@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD-3-Clause # %% import numpy as np import mne from mne.cov import compute_covariance from mne.datasets import somato from mne.time_frequency import csd_morlet from mne.beamformer import (make_dics, apply_dics_csd, make_lcmv, apply_lcmv_cov) from mne.minimum_norm import (make_inverse_operator, apply_inverse_cov) print(__doc__) # %% # Reading the raw data and creating epochs: data_path = somato.data_path() subject = '01' task = 'somato' raw_fname = (data_path / 'sub-{}'.format(subject) / 'meg' / 'sub-{}_task-{}_meg.fif'.format(subject, task)) # crop to 5 minutes to save memory raw = mne.io.read_raw_fif(raw_fname).crop(0, 300) # We are interested in the beta band (12-30 Hz) raw.load_data().filter(12, 30) # The DICS beamformer currently only supports a single sensor type. # We'll use the gradiometers in this example. picks = mne.pick_types(raw.info, meg='grad', exclude='bads') # Read epochs events = mne.find_events(raw) epochs = mne.Epochs(raw, events, event_id=1, tmin=-1.5, tmax=2, picks=picks, preload=True, decim=3) # Read forward operator and point to freesurfer subject directory fname_fwd = (data_path / 'derivatives' / 'sub-{}'.format(subject) / 'sub-{}_task-{}-fwd.fif'.format(subject, task)) subjects_dir = data_path / 'derivatives' / 'freesurfer' / 'subjects' fwd = mne.read_forward_solution(fname_fwd) # %% # Compute covariances # ------------------- # ERS activity starts at 0.5 seconds after stimulus onset. Because these # data have been processed by MaxFilter directly (rather than MNE-Python's # version), we have to be careful to compute the rank with a more conservative # threshold in order to get the correct data rank (64). Once this is used in # combination with an advanced covariance estimator like "shrunk", the rank # will be correctly preserved. rank = mne.compute_rank(epochs, tol=1e-6, tol_kind='relative') active_win = (0.5, 1.5) baseline_win = (-1, 0) baseline_cov = compute_covariance(epochs, tmin=baseline_win[0], tmax=baseline_win[1], method='shrunk', rank=rank, verbose=True) active_cov = compute_covariance(epochs, tmin=active_win[0], tmax=active_win[1], method='shrunk', rank=rank, verbose=True) # Weighted averaging is already in the addition of covariance objects. common_cov = baseline_cov + active_cov mne.viz.plot_cov(baseline_cov, epochs.info) # %% # Compute some source estimates # ----------------------------- # Here we will use DICS, LCMV beamformer, and dSPM. # # See :ref:`ex-inverse-source-power` for more information about DICS. def _gen_dics(active_win, baseline_win, epochs): freqs = np.logspace(np.log10(12), np.log10(30), 9) csd = csd_morlet(epochs, freqs, tmin=-1, tmax=1.5, decim=20) csd_baseline = csd_morlet(epochs, freqs, tmin=baseline_win[0], tmax=baseline_win[1], decim=20) csd_ers = csd_morlet(epochs, freqs, tmin=active_win[0], tmax=active_win[1], decim=20) filters = make_dics(epochs.info, fwd, csd.mean(), pick_ori='max-power', reduce_rank=True, real_filter=True, rank=rank) stc_base, freqs = apply_dics_csd(csd_baseline.mean(), filters) stc_act, freqs = apply_dics_csd(csd_ers.mean(), filters) stc_act /= stc_base return stc_act # generate lcmv source estimate def _gen_lcmv(active_cov, baseline_cov, common_cov): filters = make_lcmv(epochs.info, fwd, common_cov, reg=0.05, noise_cov=None, pick_ori='max-power') stc_base = apply_lcmv_cov(baseline_cov, filters) stc_act = apply_lcmv_cov(active_cov, filters) stc_act /= stc_base return stc_act # generate mne/dSPM source estimate def _gen_mne(active_cov, baseline_cov, common_cov, fwd, info, method='dSPM'): inverse_operator = make_inverse_operator(info, fwd, common_cov) stc_act = apply_inverse_cov(active_cov, info, inverse_operator, method=method, verbose=True) stc_base = apply_inverse_cov(baseline_cov, info, inverse_operator, method=method, verbose=True) stc_act /= stc_base return stc_act # Compute source estimates stc_dics = _gen_dics(active_win, baseline_win, epochs) stc_lcmv = _gen_lcmv(active_cov, baseline_cov, common_cov) stc_dspm = _gen_mne(active_cov, baseline_cov, common_cov, fwd, epochs.info) # %% # Plot source estimates # --------------------- # DICS: brain_dics = stc_dics.plot( hemi='rh', subjects_dir=subjects_dir, subject=subject, time_label='DICS source power in the 12-30 Hz frequency band') # %% # LCMV: brain_lcmv = stc_lcmv.plot( hemi='rh', subjects_dir=subjects_dir, subject=subject, time_label='LCMV source power in the 12-30 Hz frequency band') # %% # dSPM: brain_dspm = stc_dspm.plot( hemi='rh', subjects_dir=subjects_dir, subject=subject, time_label='dSPM source power in the 12-30 Hz frequency band')
bsd-3-clause
ekansa/open-context-py
opencontext_py/apps/imports/kobotoolbox/etl.py
1
14934
import csv import uuid as GenUUID import os, sys, shutil import codecs import numpy as np import pandas as pd from django.db import models from django.db.models import Q from django.conf import settings from opencontext_py.apps.ocitems.manifest.models import Manifest from opencontext_py.apps.ocitems.assertions.models import Assertion from opencontext_py.apps.ocitems.subjects.models import Subject from opencontext_py.apps.imports.fields.models import ImportField from opencontext_py.apps.imports.fieldannotations.models import ImportFieldAnnotation from opencontext_py.apps.imports.records.models import ImportCell from opencontext_py.apps.imports.sources.models import ImportSource from opencontext_py.apps.imports.kobotoolbox.utilities import ( UUID_SOURCE_KOBOTOOLBOX, UUID_SOURCE_OC_KOBO_ETL, UUID_SOURCE_OC_LOOKUP, LINK_RELATION_TYPE_COL, list_excel_files, read_excel_to_dataframes, make_directory_files_df, drop_empty_cols, clean_up_multivalue_cols, reorder_first_columns, lookup_manifest_uuid, ) from opencontext_py.apps.imports.kobotoolbox.attributes import ( ATTRIBUTE_HIERARCHY_DELIM, GRID_GROUPBY_COLS, GRID_PROBLEM_COL, X_Y_GRID_COLS, create_grid_validation_columns, create_global_lat_lon_columns, process_hiearchy_col_values, ) from opencontext_py.apps.imports.kobotoolbox.catalog import ( CATALOG_ATTRIBUTES_SHEET, make_catalog_links_df, prepare_catalog ) from opencontext_py.apps.imports.kobotoolbox.contexts import ( context_sources_to_dfs, preload_contexts_to_df, prepare_all_contexts ) from opencontext_py.apps.imports.kobotoolbox.media import ( prepare_media, prepare_media_links_df ) from opencontext_py.apps.imports.kobotoolbox.preprocess import ( FILENAME_ATTRIBUTES_LOCUS, FILENAME_ATTRIBUTES_BULK_FINDS, FILENAME_ATTRIBUTES_SMALL_FINDS, FILENAME_ATTRIBUTES_TRENCH_BOOKS, make_locus_stratigraphy_df, prep_field_tables, make_final_trench_book_relations_df ) from opencontext_py.apps.imports.kobotoolbox.dbupdate import ( update_contexts_subjects, load_attribute_df_into_importer, load_attribute_data_into_oc, load_link_relations_df_into_oc, ) """ from opencontext_py.apps.imports.kobotoolbox.etl import ( make_kobo_to_open_context_etl_files, update_open_context_db, update_link_rel_open_context_db ) make_kobo_to_open_context_etl_files() update_open_context_db() update_link_rel_open_context_db() source_ids = { 'kobo-pc-2018-all-contexts-subjects.csv', 'kobo-pc-2018-all-media', 'kobo-pc-2018-bulk-finds', 'kobo-pc-2018-catalog', 'kobo-pc-2018-links-catalog', 'kobo-pc-2018-links-locus-strat', 'kobo-pc-2018-links-media', 'kobo-pc-2018-links-trench-book', 'kobo-pc-2018-locus', 'kobo-pc-2018-small-finds', 'kobo-pc-2018-trench-book' } source_ids = { 'kobo-pc-2019-all-contexts-subjects.csv', 'kobo-pc-2019-all-media', 'kobo-pc-2019-bulk-finds', 'kobo-pc-2019-catalog', 'kobo-pc-2019-links-catalog', 'kobo-pc-2019-links-locus-strat', 'kobo-pc-2019-links-media', 'kobo-pc-2019-links-trench-book', 'kobo-pc-2019-locus', 'kobo-pc-2019-small-finds', 'kobo-pc-2019-trench-book', } """ ETL_YEAR = 2019 ETL_LABEL = 'PC-{}'.format(ETL_YEAR) PROJECT_UUID = 'DF043419-F23B-41DA-7E4D-EE52AF22F92F' SOURCE_PATH = settings.STATIC_IMPORTS_ROOT + 'pc-{}/'.format(ETL_YEAR) DESTINATION_PATH = settings.STATIC_IMPORTS_ROOT + 'pc-{}/{}-oc-etl/'.format(ETL_YEAR, ETL_YEAR) SOURCE_ID_PREFIX = 'kobo-pc-{}-'.format(ETL_YEAR) MEDIA_BASE_URL = 'https://artiraq.org/static/opencontext/poggio-civitate/{}-media/'.format(ETL_YEAR) MEDIA_FILES_PATH = settings.STATIC_IMPORTS_ROOT + 'pc-{}/attachments'.format(ETL_YEAR) OC_TRANSFORMED_FILES_PATH = settings.STATIC_IMPORTS_ROOT + 'pc-{}/{}-media'.format(ETL_YEAR, ETL_YEAR) FILENAME_ALL_CONTEXTS = 'all-contexts-subjects.csv' FILENAME_ALL_MEDIA = 'all-media-files.csv' FILENAME_LOADED_CONTEXTS = 'loaded--contexts-subjects.csv' FILENAME_ATTRIBUTES_CATALOG = 'attributes--catalog.csv' FILENAME_LINKS_MEDIA = 'links--media.csv' FILENAME_LINKS_TRENCHBOOKS = 'links--trench-books.csv' FILENAME_LINKS_STRATIGRAPHY = 'links--locus-stratigraphy.csv' FILENAME_LINKS_CATALOG = 'links--catalog.csv' GRID_PROBLEM_EXP_COLS = [ 'label', 'class_uri', '_uuid', GRID_PROBLEM_COL, ] + GRID_GROUPBY_COLS ATTRIBUTE_SOURCES = [ # (source_id, source_type, source_label, filename) (SOURCE_ID_PREFIX + 'catalog', 'catalog', '{} Catalog'.format(ETL_LABEL), FILENAME_ATTRIBUTES_CATALOG,), (SOURCE_ID_PREFIX + 'locus', 'locus', '{} Locus'.format(ETL_LABEL), FILENAME_ATTRIBUTES_LOCUS,), (SOURCE_ID_PREFIX + 'bulk-finds', 'bulk-finds', '{} Bulk Finds'.format(ETL_LABEL), FILENAME_ATTRIBUTES_BULK_FINDS,), (SOURCE_ID_PREFIX + 'small-finds', 'small-finds', '{} Small Finds'.format(ETL_LABEL), FILENAME_ATTRIBUTES_SMALL_FINDS,), (SOURCE_ID_PREFIX + 'trench-book', 'trench-book', '{} Trench Book'.format(ETL_LABEL), FILENAME_ATTRIBUTES_TRENCH_BOOKS,), (SOURCE_ID_PREFIX + 'all-media', 'all-media', '{} All Media'.format(ETL_LABEL), FILENAME_ALL_MEDIA,), ] LINK_RELATIONS_SOURCES = [ (SOURCE_ID_PREFIX + 'links-media', FILENAME_LINKS_MEDIA,), (SOURCE_ID_PREFIX + 'links-trench-book', FILENAME_LINKS_TRENCHBOOKS,), (SOURCE_ID_PREFIX + 'links-locus-strat', FILENAME_LINKS_STRATIGRAPHY,), (SOURCE_ID_PREFIX + 'links-catalog', FILENAME_LINKS_CATALOG,), ] def write_grid_problem_csv(df, destination_path, filename): """Export the grid problem dataframe if needed """ if not GRID_PROBLEM_COL in df.columns: # No grid problems in this DF return None bad_indx = (df[GRID_PROBLEM_COL].notnull()) if df[bad_indx].empty: # No problem grid coordinates found return None df_report = df[bad_indx].copy() all_tuple_cols = [(c[0] + ' ' + c[1]) for c in df_report.columns if isinstance(c, tuple)] x_tuple_cols = [c for c in all_tuple_cols if 'Grid X' in c] y_tuple_cols = [c for c in all_tuple_cols if 'Grid Y' in c] tuple_renames = { c:(c[0] + ' ' + c[1]) for c in df_report.columns if isinstance(c, tuple) } x_cols = [x for x, _ in X_Y_GRID_COLS if x in df_report.columns] y_cols = [y for _, y in X_Y_GRID_COLS if y in df_report.columns] df_report.rename(columns=tuple_renames, inplace=True) df_report = df_report[(GRID_PROBLEM_EXP_COLS + x_cols + y_cols + x_tuple_cols + y_tuple_cols)] df_report.sort_values(by=GRID_GROUPBY_COLS, inplace=True) report_path = destination_path + 'bad-grid--' + filename df_report.to_csv( report_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) def add_context_subjects_label_class_uri(df, all_contexts_df): """Adds label and class_uri to df from all_contexts_df based on uuid join""" join_df = all_contexts_df[['label', 'class_uri', 'uuid_source', 'context_uuid']].copy() join_df.rename(columns={'context_uuid': '_uuid'}, inplace=True) df_output = pd.merge( df, join_df, how='left', on=['_uuid'] ) df_output = reorder_first_columns( df_output, ['label', 'class_uri', 'uuid_source'] ) return df_output def make_kobo_to_open_context_etl_files( project_uuid=PROJECT_UUID, year=ETL_YEAR, source_path=SOURCE_PATH, destination_path=DESTINATION_PATH, base_url=MEDIA_BASE_URL, files_path=MEDIA_FILES_PATH, oc_media_root_dir=OC_TRANSFORMED_FILES_PATH, ): """Prepares files for Open Context ingest.""" source_dfs = context_sources_to_dfs(source_path) all_contexts_df = prepare_all_contexts( project_uuid, year, source_dfs ) all_contexts_path = destination_path + FILENAME_ALL_CONTEXTS all_contexts_df.to_csv( all_contexts_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) # Now prepare a consolidated, all media dataframe for all the media # files referenced in all of the source datasets. df_media_all = prepare_media( source_path, files_path, oc_media_root_dir, project_uuid, base_url ) all_media_csv_path = destination_path + FILENAME_ALL_MEDIA df_media_all.to_csv(all_media_csv_path, index=False, quoting=csv.QUOTE_NONNUMERIC) # Now prepare a media links dataframe. df_media_link = prepare_media_links_df( source_path, project_uuid, all_contexts_df ) if df_media_link is not None: links_media_path = destination_path + FILENAME_LINKS_MEDIA df_media_link.to_csv( links_media_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) field_config_dfs = prep_field_tables(source_path, project_uuid, year) for act_sheet, act_dict_dfs in field_config_dfs.items(): file_path = destination_path + act_dict_dfs['file'] df = act_dict_dfs['dfs'][act_sheet] df = add_context_subjects_label_class_uri( df, all_contexts_df ) # Add global coordinates if applicable. df = create_grid_validation_columns(df) write_grid_problem_csv(df, destination_path, act_dict_dfs['file']) df = create_global_lat_lon_columns(df) df.to_csv(file_path, index=False, quoting=csv.QUOTE_NONNUMERIC) # Now do the stratigraphy. locus_dfs = field_config_dfs['Locus Summary Entry']['dfs'] df_strat = make_locus_stratigraphy_df(locus_dfs) strat_path = destination_path + FILENAME_LINKS_STRATIGRAPHY df_strat.to_csv(strat_path, index=False, quoting=csv.QUOTE_NONNUMERIC) # Prepare Trench Book relations tb_dfs = field_config_dfs['Trench Book Entry']['dfs'] tb_all_rels_df = make_final_trench_book_relations_df(field_config_dfs, all_contexts_df) tb_all_rels_path = destination_path + FILENAME_LINKS_TRENCHBOOKS tb_all_rels_df.to_csv(tb_all_rels_path, index=False, quoting=csv.QUOTE_NONNUMERIC) # Prepare the catalog catalog_dfs = prepare_catalog(project_uuid, source_path) catalog_dfs[CATALOG_ATTRIBUTES_SHEET] = add_context_subjects_label_class_uri( catalog_dfs[CATALOG_ATTRIBUTES_SHEET], all_contexts_df ) catalog_dfs[CATALOG_ATTRIBUTES_SHEET] = process_hiearchy_col_values( catalog_dfs[CATALOG_ATTRIBUTES_SHEET] ) # Clean up redundent data from the hierarchies catalog_dfs[CATALOG_ATTRIBUTES_SHEET] = clean_up_multivalue_cols( catalog_dfs[CATALOG_ATTRIBUTES_SHEET], delim=ATTRIBUTE_HIERARCHY_DELIM ) # Add global coordinates to the catalog data. catalog_dfs[CATALOG_ATTRIBUTES_SHEET] = create_grid_validation_columns( catalog_dfs[CATALOG_ATTRIBUTES_SHEET] ) write_grid_problem_csv( catalog_dfs[CATALOG_ATTRIBUTES_SHEET], destination_path, FILENAME_ATTRIBUTES_CATALOG ) catalog_dfs[CATALOG_ATTRIBUTES_SHEET] = create_global_lat_lon_columns( catalog_dfs[CATALOG_ATTRIBUTES_SHEET] ) attribs_catalog_path = destination_path + FILENAME_ATTRIBUTES_CATALOG catalog_dfs[CATALOG_ATTRIBUTES_SHEET].to_csv( attribs_catalog_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) catalog_links_df = make_catalog_links_df( project_uuid, catalog_dfs, tb_dfs['Trench Book Entry'], all_contexts_df ) links_catalog_path = destination_path + FILENAME_LINKS_CATALOG catalog_links_df.to_csv( links_catalog_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) def update_subjects_context_open_context_db( project_uuid=PROJECT_UUID, source_prefix=SOURCE_ID_PREFIX, load_files=DESTINATION_PATH, all_contexts_file=FILENAME_ALL_CONTEXTS, loaded_contexts_file=FILENAME_LOADED_CONTEXTS, ): """Loads subjects, contexts items and containment relations""" all_contexts_df = pd.read_csv((load_files + all_contexts_file)) new_contexts_df = update_contexts_subjects( project_uuid, (source_prefix + all_contexts_file), all_contexts_df ) loaded_contexts_path = (load_files + loaded_contexts_file) new_contexts_df.to_csv( loaded_contexts_path, index=False, quoting=csv.QUOTE_NONNUMERIC ) def update_attributes_open_context_db( project_uuid=PROJECT_UUID, source_prefix=SOURCE_ID_PREFIX, load_files=DESTINATION_PATH, attribute_sources=ATTRIBUTE_SOURCES, ): # Load attribute data into the importer for source_id, source_type, source_label, filename in attribute_sources: df = pd.read_csv((load_files + filename)) load_attribute_df_into_importer( project_uuid, source_id, source_type, source_label, df ) # Now actually import the data into Open Context for source_id, _, _, _ in attribute_sources: load_attribute_data_into_oc(project_uuid, source_id) def update_link_rel_open_context_db( project_uuid=PROJECT_UUID, source_prefix=SOURCE_ID_PREFIX, load_files=DESTINATION_PATH, link_sources=LINK_RELATIONS_SOURCES, loaded_link_file_prefix='loaded--', ): """Loads linking relationships into the database""" for source_id, filename in link_sources: df = pd.read_csv((load_files + filename)) df = load_link_relations_df_into_oc( project_uuid, source_id, df ) df.to_csv( (load_files + loaded_link_file_prefix + filename), index=False, quoting=csv.QUOTE_NONNUMERIC ) def update_open_context_db( project_uuid=PROJECT_UUID, source_prefix=SOURCE_ID_PREFIX, load_files=DESTINATION_PATH, all_contexts_file=FILENAME_ALL_CONTEXTS, loaded_contexts_file=FILENAME_LOADED_CONTEXTS, attribute_sources=ATTRIBUTE_SOURCES, link_sources=LINK_RELATIONS_SOURCES ): """"Updates the Open Context database with ETL load files""" # First add subjects / contexts and their containment relations update_subjects_context_open_context_db( project_uuid=project_uuid, source_prefix=source_prefix, load_files=load_files, all_contexts_file=all_contexts_file, loaded_contexts_file=loaded_contexts_file, ) # Load attribute data into the importer, then import them into # Open Context. update_attributes_open_context_db( project_uuid=project_uuid, source_prefix=source_prefix, load_files=load_files, attribute_sources=attribute_sources ) # Load link relationships into the Open Context database. update_link_rel_open_context_db( project_uuid=project_uuid, source_prefix=source_prefix, load_files=load_files, link_sources=link_sources )
gpl-3.0
pravsripad/mne-python
mne/decoding/base.py
2
18682
"""Base class copy from sklearn.base.""" # Authors: Gael Varoquaux <gael.varoquaux@normalesup.org> # Romain Trachel <trachelr@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Jean-Remi King <jeanremi.king@gmail.com> # # License: BSD-3-Clause import numpy as np import datetime as dt import numbers from ..parallel import parallel_func from ..fixes import BaseEstimator, is_classifier, _get_check_scoring from ..utils import warn, verbose class LinearModel(BaseEstimator): """Compute and store patterns from linear models. The linear model coefficients (filters) are used to extract discriminant neural sources from the measured data. This class computes the corresponding patterns of these linear filters to make them more interpretable :footcite:`HaufeEtAl2014`. Parameters ---------- model : object | None A linear model from scikit-learn with a fit method that updates a ``coef_`` attribute. If None the model will be LogisticRegression. Attributes ---------- filters_ : ndarray, shape ([n_targets], n_features) If fit, the filters used to decompose the data. patterns_ : ndarray, shape ([n_targets], n_features) If fit, the patterns used to restore M/EEG signals. See Also -------- CSP mne.preprocessing.ICA mne.preprocessing.Xdawn Notes ----- .. versionadded:: 0.10 References ---------- .. footbibliography:: """ def __init__(self, model=None): # noqa: D102 if model is None: from sklearn.linear_model import LogisticRegression model = LogisticRegression(solver='liblinear') self.model = model self._estimator_type = getattr(model, "_estimator_type", None) def fit(self, X, y, **fit_params): """Estimate the coefficients of the linear model. Save the coefficients in the attribute ``filters_`` and computes the attribute ``patterns_``. Parameters ---------- X : array, shape (n_samples, n_features) The training input samples to estimate the linear coefficients. y : array, shape (n_samples, [n_targets]) The target values. **fit_params : dict of string -> object Parameters to pass to the fit method of the estimator. Returns ------- self : instance of LinearModel Returns the modified instance. """ X, y = np.asarray(X), np.asarray(y) if X.ndim != 2: raise ValueError('LinearModel only accepts 2-dimensional X, got ' '%s instead.' % (X.shape,)) if y.ndim > 2: raise ValueError('LinearModel only accepts up to 2-dimensional y, ' 'got %s instead.' % (y.shape,)) # fit the Model self.model.fit(X, y, **fit_params) # Computes patterns using Haufe's trick: A = Cov_X . W . Precision_Y inv_Y = 1. X = X - X.mean(0, keepdims=True) if y.ndim == 2 and y.shape[1] != 1: y = y - y.mean(0, keepdims=True) inv_Y = np.linalg.pinv(np.cov(y.T)) self.patterns_ = np.cov(X.T).dot(self.filters_.T.dot(inv_Y)).T return self @property def filters_(self): if hasattr(self.model, 'coef_'): # Standard Linear Model filters = self.model.coef_ elif hasattr(self.model.best_estimator_, 'coef_'): # Linear Model with GridSearchCV filters = self.model.best_estimator_.coef_ else: raise ValueError('model does not have a `coef_` attribute.') if filters.ndim == 2 and filters.shape[0] == 1: filters = filters[0] return filters def transform(self, X): """Transform the data using the linear model. Parameters ---------- X : array, shape (n_samples, n_features) The data to transform. Returns ------- y_pred : array, shape (n_samples,) The predicted targets. """ return self.model.transform(X) def fit_transform(self, X, y): """Fit the data and transform it using the linear model. Parameters ---------- X : array, shape (n_samples, n_features) The training input samples to estimate the linear coefficients. y : array, shape (n_samples,) The target values. Returns ------- y_pred : array, shape (n_samples,) The predicted targets. """ return self.fit(X, y).transform(X) def predict(self, X): """Compute predictions of y from X. Parameters ---------- X : array, shape (n_samples, n_features) The data used to compute the predictions. Returns ------- y_pred : array, shape (n_samples,) The predictions. """ return self.model.predict(X) def predict_proba(self, X): """Compute probabilistic predictions of y from X. Parameters ---------- X : array, shape (n_samples, n_features) The data used to compute the predictions. Returns ------- y_pred : array, shape (n_samples, n_classes) The probabilities. """ return self.model.predict_proba(X) def decision_function(self, X): """Compute distance from the decision function of y from X. Parameters ---------- X : array, shape (n_samples, n_features) The data used to compute the predictions. Returns ------- y_pred : array, shape (n_samples, n_classes) The distances. """ return self.model.decision_function(X) def score(self, X, y): """Score the linear model computed on the given test data. Parameters ---------- X : array, shape (n_samples, n_features) The data to transform. y : array, shape (n_samples,) The target values. Returns ------- score : float Score of the linear model. """ return self.model.score(X, y) def _set_cv(cv, estimator=None, X=None, y=None): """Set the default CV depending on whether clf is classifier/regressor.""" # Detect whether classification or regression if estimator in ['classifier', 'regressor']: est_is_classifier = estimator == 'classifier' else: est_is_classifier = is_classifier(estimator) # Setup CV from sklearn import model_selection as models from sklearn.model_selection import (check_cv, StratifiedKFold, KFold) if isinstance(cv, (int, np.int64)): XFold = StratifiedKFold if est_is_classifier else KFold cv = XFold(n_splits=cv) elif isinstance(cv, str): if not hasattr(models, cv): raise ValueError('Unknown cross-validation') cv = getattr(models, cv) cv = cv() cv = check_cv(cv=cv, y=y, classifier=est_is_classifier) # Extract train and test set to retrieve them at predict time cv_splits = [(train, test) for train, test in cv.split(X=np.zeros_like(y), y=y)] if not np.all([len(train) for train, _ in cv_splits]): raise ValueError('Some folds do not have any train epochs.') return cv, cv_splits def _check_estimator(estimator, get_params=True): """Check whether an object has the methods required by sklearn.""" valid_methods = ('predict', 'transform', 'predict_proba', 'decision_function') if ( (not hasattr(estimator, 'fit')) or (not any(hasattr(estimator, method) for method in valid_methods)) ): raise ValueError('estimator must be a scikit-learn transformer or ' 'an estimator with the fit and a predict-like (e.g. ' 'predict_proba) or a transform method.') if get_params and not hasattr(estimator, 'get_params'): raise ValueError('estimator must be a scikit-learn transformer or an ' 'estimator with the get_params method that allows ' 'cloning.') def _get_inverse_funcs(estimator, terminal=True): """Retrieve the inverse functions of an pipeline or an estimator.""" inverse_func = [False] if hasattr(estimator, 'steps'): # if pipeline, retrieve all steps by nesting inverse_func = list() for _, est in estimator.steps: inverse_func.extend(_get_inverse_funcs(est, terminal=False)) elif hasattr(estimator, 'inverse_transform'): # if not pipeline attempt to retrieve inverse function inverse_func = [estimator.inverse_transform] # If terminal node, check that that the last estimator is a classifier, # and remove it from the transformers. if terminal: last_is_estimator = inverse_func[-1] is False all_invertible = not(False in inverse_func[:-1]) if last_is_estimator and all_invertible: # keep all inverse transformation and remove last estimation inverse_func = inverse_func[:-1] else: inverse_func = list() return inverse_func def get_coef(estimator, attr='filters_', inverse_transform=False): """Retrieve the coefficients of an estimator ending with a Linear Model. This is typically useful to retrieve "spatial filters" or "spatial patterns" of decoding models :footcite:`HaufeEtAl2014`. Parameters ---------- estimator : object | None An estimator from scikit-learn. attr : str The name of the coefficient attribute to retrieve, typically ``'filters_'`` (default) or ``'patterns_'``. inverse_transform : bool If True, returns the coefficients after inverse transforming them with the transformer steps of the estimator. Returns ------- coef : array The coefficients. References ---------- .. footbibliography:: """ # Get the coefficients of the last estimator in case of nested pipeline est = estimator while hasattr(est, 'steps'): est = est.steps[-1][1] squeeze_first_dim = False # If SlidingEstimator, loop across estimators if hasattr(est, 'estimators_'): coef = list() for this_est in est.estimators_: coef.append(get_coef(this_est, attr, inverse_transform)) coef = np.transpose(coef) coef = coef[np.newaxis] # fake a sample dimension squeeze_first_dim = True elif not hasattr(est, attr): raise ValueError('This estimator does not have a %s attribute:\n%s' % (attr, est)) else: coef = getattr(est, attr) if coef.ndim == 1: coef = coef[np.newaxis] squeeze_first_dim = True # inverse pattern e.g. to get back physical units if inverse_transform: if not hasattr(estimator, 'steps') and not hasattr(est, 'estimators_'): raise ValueError('inverse_transform can only be applied onto ' 'pipeline estimators.') # The inverse_transform parameter will call this method on any # estimator contained in the pipeline, in reverse order. for inverse_func in _get_inverse_funcs(estimator)[::-1]: coef = inverse_func(coef) if squeeze_first_dim: coef = coef[0] return coef @verbose def cross_val_multiscore(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=None, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation. Parameters ---------- estimator : instance of sklearn.base.BaseEstimator The object to use to fit the data. Must implement the 'fit' method. X : array-like, shape (n_samples, n_dimensional_features,) The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, shape (n_samples, n_targets,) The target variable to try to predict in the case of supervised learning. groups : array-like, with shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. scoring : str, callable | None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. Note that when using an estimator which inherently returns multidimensional output - in particular, SlidingEstimator or GeneralizingEstimator - you should set the scorer there, not here. cv : int, cross-validation generator | iterable Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - integer, to specify the number of folds in a ``(Stratified)KFold``, - An object to be used as a cross-validation generator. - An iterable yielding train, test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. %(n_jobs)s %(verbose)s fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or str, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape (n_splits,) | shape (n_splits, n_scores) Array of scores of the estimator for each run of the cross validation. """ # This code is copied from sklearn from sklearn.base import clone from sklearn.utils import indexable from sklearn.model_selection._split import check_cv check_scoring = _get_check_scoring() X, y, groups = indexable(X, y, groups) cv = check_cv(cv, y, classifier=is_classifier(estimator)) cv_iter = list(cv.split(X, y, groups)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. # Note: this parallelization is implemented using MNE Parallel parallel, p_func, n_jobs = parallel_func(_fit_and_score, n_jobs, pre_dispatch=pre_dispatch) scores = parallel( p_func( estimator=clone(estimator), X=X, y=y, scorer=scorer, train=train, test=test, parameters=None, fit_params=fit_params ) for train, test in cv_iter ) return np.array(scores)[:, 0, ...] # flatten over joblib output. def _fit_and_score(estimator, X, y, scorer, train, test, parameters, fit_params, return_train_score=False, return_parameters=False, return_n_test_samples=False, return_times=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split.""" # This code is adapted from sklearn from ..fixes import _check_fit_params from sklearn.utils.metaestimators import _safe_split from sklearn.utils.validation import _num_samples # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = _check_fit_params(X, fit_params, train) if parameters is not None: estimator.set_params(**parameters) start_time = dt.datetime.now() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: # Note fit time as time until error fit_duration = dt.datetime.now() - start_time score_duration = dt.timedelta(0) if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e)) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)") else: fit_duration = dt.datetime.now() - start_time test_score = _score(estimator, X_test, y_test, scorer) score_duration = dt.datetime.now() - start_time - fit_duration if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) ret = [train_score, test_score] if return_train_score else [test_score] if return_n_test_samples: ret.append(_num_samples(X_test)) if return_times: ret.extend([ fit_duration.total_seconds(), score_duration.total_seconds() ]) if return_parameters: ret.append(parameters) return ret def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set. This code is the same as sklearn.model_selection._validation._score but accepts to output arrays instead of floats. """ if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, 'item'): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass return score
bsd-3-clause
moonbury/notebooks
github/MasteringPandas/2060_11_Code/run_logistic_regression_titanic.py
3
2756
#!/home/femibyte/local/anaconda/bin/python import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import metrics from patsy import dmatrix, dmatrices import re train_df = pd.read_csv('csv/train.csv', header=0) test_df = pd.read_csv('csv/test.csv', header=0) formula1 = 'C(Pclass) + C(Sex) + Fare' formula2 = 'C(Pclass) + C(Sex)' formula3 = 'C(Sex)' formula4 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch' formula5 = 'C(Pclass) + C(Sex) + Age + SibSp + Parch + C(Embarked)' formula_map = {'PClass_Sex_Fare' : formula1, 'PClass_Sex' : formula2, 'Sex' : formula3, 'PClass_Sex_Age_Sibsp_Parch' : formula4, 'PClass_Sex_Age_Sibsp_Parch_Embarked' : formula5 } def main(): train_df_filled=fill_null_vals(train_df,'Fare') train_df_filled=fill_null_vals(train_df_filled,'Age') assert len(train_df_filled)==len(train_df) test_df_filled=fill_null_vals(test_df,'Fare') test_df_filled=fill_null_vals(test_df_filled,'Age') assert len(test_df_filled)==len(test_df) for formula_name, formula in formula_map.iteritems(): print "name=%s formula=%s" % (formula_name,formula) y_train,X_train = dmatrices('Survived ~ ' + formula, train_df_filled,return_type='dataframe') print "Running logistic regression with formula : %s" % formula print "X_train cols=%s " % X_train.columns y_train = np.ravel(y_train) model = LogisticRegression() lr_model = model.fit(X_train, y_train) print "Training score:%s" % lr_model.score(X_train,y_train) X_test=dmatrix(formula,test_df_filled) predicted=lr_model.predict(X_test) print "predicted:%s\n" % predicted[:5] assert len(predicted)==len(test_df) pred_results=pd.Series(predicted,name='Survived') lr_results=pd.concat([test_df['PassengerId'],pred_results],axis=1) lr_results.Survived=lr_results.Survived.astype(int) results_file='csv/logisticregr_%s.csv' % formula_name #results_file = re.sub('[+ ()C]','',results_file) lr_results.to_csv(results_file,index=False) def fill_null_vals(df,col_name): null_passengers=df[df[col_name].isnull()] passenger_id_list=null_passengers['PassengerId'].tolist() df_filled=df.copy() for pass_id in passenger_id_list: idx=df[df['PassengerId']==pass_id].index[0] similar_passengers=df[(df['Sex']==null_passengers['Sex'][idx]) & (df['Pclass']==null_passengers['Pclass'][idx])] mean_val=np.mean(similar_passengers[col_name].dropna()) df_filled.loc[idx,col_name]=mean_val return df_filled if __name__ == '__main__': main()
gpl-3.0
nhuntwalker/astroML
book_figures/chapter7/fig_spec_examples.py
4
2725
""" SDSS spectra Examples --------------------- Figure 7.1 A sample of 15 galaxy spectra selected from the SDSS spectroscopic data set (see Section 1.5.5). These spectra span a range of galaxy types, from star-forming to passive galaxies. Each spectrum has been shifted to its rest frame and covers the wavelength interval 3000-8000 Angstroms. The specific fluxes, :math:`F_\lambda(\lambda)`, on the ordinate axes have an arbitrary scaling. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from sklearn.decomposition import RandomizedPCA from astroML.datasets import sdss_corrected_spectra #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #---------------------------------------------------------------------- # Use pre-computed PCA to reconstruct spectra data = sdss_corrected_spectra.fetch_sdss_corrected_spectra() spectra = sdss_corrected_spectra.reconstruct_spectra(data) lam = sdss_corrected_spectra.compute_wavelengths(data) #------------------------------------------------------------ # select random spectra np.random.seed(5) nrows = 5 ncols = 3 ind = np.random.randint(spectra.shape[0], size=nrows * ncols) spec_sample = spectra[ind] #---------------------------------------------------------------------- # Plot the results fig = plt.figure(figsize=(5, 4)) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, bottom=0.1, top=0.95, hspace=0.05) for i in range(ncols): for j in range(nrows): ax = fig.add_subplot(nrows, ncols, ncols * j + 1 + i) ax.plot(lam, spec_sample[ncols * j + i], '-k', lw=1) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.xaxis.set_major_locator(plt.MultipleLocator(1000)) if j < nrows - 1: ax.xaxis.set_major_formatter(plt.NullFormatter()) else: plt.xlabel(r'wavelength $(\AA)$') ax.set_xlim(3000, 7999) ylim = ax.get_ylim() dy = 0.05 * (ylim[1] - ylim[0]) ax.set_ylim(ylim[0] - dy, ylim[1] + dy) plt.show()
bsd-2-clause
LambentLight/571final-fnc
data_setup/cluster.py
1
9923
import random import math import copy import time # clustering class Unsupervised: def __init__(self, clusters, original_image): self.NUMBER_OF_FEATURES = 44 self.clusters = clusters self.original_image = original_image self.image = original_image.copy() self.image_width = len(original_image) self.image_height = 0 self.classification = [0 for x in range(self.image_width)] # every pixel location will have a classification from 0 to clusters-1 # Generate original cluster centers self.cluster_centers = [[0 for x in range(self.NUMBER_OF_FEATURES)] for y in range(self.clusters)] # clusters x 3 vector with each randomly generated cluster center for center in self.cluster_centers: for feature in range(self.NUMBER_OF_FEATURES): center[feature] = random.uniform(-1, 1) @staticmethod def euclidean(a, b): if len(a) != len(b): print("Euclidean math needs help") exit(1) sum = 0 for i in range(len(a)): diff = a[i] - b[i] sum += math.pow(diff, 2) return math.sqrt(sum) # Assigns every image pixel to the closest center def assign_samples(self, distance): for pixel_j in range(self.image_width): min_distance = float("inf") min_cluster = -1 for cluster, center in enumerate(self.cluster_centers): new_distance = distance(center, self.image[pixel_j]) if new_distance < min_distance: min_distance = new_distance min_cluster = cluster self.classification[pixel_j] = min_cluster def different(self, old_classification, new_classification): for pixel_j in range(self.image_width): if old_classification[pixel_j] != new_classification[pixel_j]: #print("Difference found: ", pixel_j, old_classification[pixel_j], new_classification[pixel_j]) return True return False def reduce_image(self, picture_name): print("Reducing Image") for pixel_j in range(self.image_width): self.image[pixel_j] = self.cluster_centers[self.classification[pixel_j]] def kmeans_cluster(self): # store old classification old_classification = copy.deepcopy(self.classification) # assign samples self.assign_samples(self.euclidean) print("Initial assignment done") timing_sum = 0 # while there are differences iteration = 1 while self.different(old_classification, self.classification): start_time = time.time() print("Iteration: ", iteration) iteration += 1 # store old classification old_classification = copy.deepcopy(self.classification) # calculate new cluster centers self.kmeans_centers() # assign samples self.assign_samples(self.euclidean) timing_sum += time.time() - start_time print(time.time() - start_time) timing_average = timing_sum / (iteration * 1.0) with open('kmeans_performance.txt', 'a') as f: f.write('{} {} {}\n'.format(self.clusters, iteration, timing_average)) def kmeans_centers(self): # vector of RGB clusters initialized to 0 for center in self.cluster_centers: for feature in range(self.NUMBER_OF_FEATURES): center[feature] = 0 # iterate over pixels mean_counts = [0] * self.clusters for pixel_j in range(self.image_width): cluster = self.classification[pixel_j] # add pixel values to that index in vector of RGB clusters mean_counts[cluster] += 1 for feature in range(self.NUMBER_OF_FEATURES): self.cluster_centers[cluster][feature] += self.image[pixel_j][feature] # divide by number of samples in cluster for cluster, center in enumerate(self.cluster_centers): if mean_counts[cluster] == 0: mean_counts[cluster] = 1 for feature in range(self.NUMBER_OF_FEATURES): center[feature] /= mean_counts[cluster] def winner_cluster(self): # store old classification old_classification = copy.deepcopy(self.classification) # assign samples start_time = time.time() self.assign_samples(self.euclidean) print("Initial assignment done") timing_sum = 0 # while there are differences iteration = 1 while self.different(old_classification, self.classification): start_time = time.time() print("Iteration: ", iteration) iteration += 1 # store old classification old_classification = copy.deepcopy(self.classification) # calculate new cluster centers self.winner_centers() # assign samples self.assign_samples(self.euclidean) timing_sum += time.time() - start_time time.time() - start_time timing_average = timing_sum / (iteration * 1.0) with open('winner_performance.txt', 'a') as f: f.write('{} {} {}\n'.format(self.clusters, iteration, timing_average)) def winner_centers(self, learning_rate=0.01): # iterate over pixels for pixel_j in range(self.image_width): cluster = self.classification[pixel_j] # add pixel values to that index in vector of RGB clusters for feature in range(self.NUMBER_OF_FEATURES): self.cluster_centers[cluster][feature] += learning_rate * (self.image[pixel_j][feature] - self.cluster_centers[cluster][feature]) def kohonen_cluster(self): # store old classification old_classification = copy.deepcopy(self.classification) # assign samples self.assign_samples(self.euclidean) print("Initial assignment done") timing_sum = 0 # while there are differences iteration = 1 while self.different(old_classification, self.classification): start_time = time.time() print("Iteration: ", iteration) iteration += 1 # store old classification old_classification = copy.deepcopy(self.classification) # calculate new cluster centers self.kohonen_centers() # assign samples self.assign_samples(self.euclidean) timing_sum += time.time() - start_time time.time() - start_time timing_average = timing_sum / (iteration * 1.0) with open('kohonen_performance.txt', 'a') as f: f.write('{} {} {}\n'.format(self.clusters, iteration, timing_average)) def kohonen_centers(self, learning_rate=0.01): # iterate over pixels for pixel_j in range(self.image_width): winning_cluster = self.classification[pixel_j] for index, cluster in enumerate(self.cluster_centers): for feature in range(self.NUMBER_OF_FEATURES): cluster[feature] += learning_rate * self.closeness(winning_cluster, index) * (self.image[pixel_j][feature] - cluster[feature]) def closeness(self, winning_cluster, other_cluster, variance=1.0): return math.exp((-1.0 * pow(self.topological_distance(winning_cluster, other_cluster), 2.0)) / (2.0 * variance)) def topological_distance(self, winning_cluster, other_cluster): return winning_cluster - other_cluster # K-means ''' kmeans = Unsupervised(4, ) kmeans.kmeans_cluster() kmeans.reduce_image('images/k-means{}.ppm'.format(clusters)) ''' # Winner take all ''' for i in range(0, 9): clusters = pow(2, i) print "Winner, {} clusters".format(clusters) winner = Unsupervised(clusters, copy.deepcopy(original_image)) winner.winner_cluster() winner.reduce_image('images/winner{}.ppm'.format(clusters)) ''' # Kohonen ''' for i in range(0, 9): clusters = pow(2, i) print "Kohonen, {} clusters".format(clusters) kohonen = Unsupervised(clusters, copy.deepcopy(original_image)) kohonen.kohonen_cluster() kohonen.reduce_image('images/kohonen{}.ppm'.format(clusters)) ''' # Mean shift ''' import numpy as np from sklearn.cluster import MeanShift window_sizes = [11, 12, 13, 14] for window_size in window_sizes: print "Mean Shift, window size {}".format(window_size) ms = MeanShift(bandwidth=window_size, bin_seeding=True) copy_image = copy.deepcopy(original_image) X = np.zeros((480*480, 3)) # iterate over pixels for pixel_i in range(480): for pixel_j in range(480): X[pixel_i * 480 + pixel_j][RED] = copy_image[pixel_i][pixel_j][RED] X[pixel_i * 480 + pixel_j][GREEN] = copy_image[pixel_i][pixel_j][GREEN] X[pixel_i * 480 + pixel_j][BLUE] = copy_image[pixel_i][pixel_j][BLUE] print X start_time = time.time() ms.fit(X) labels = ms.labels_ print labels cluster_centers = ms.cluster_centers_ with open('means_performance.txt', 'a') as f: f.write('{} {} {}\n'.format(window_size, time.time() - start_time, len(cluster_centers))) print("number of estimated clusters : {}".format(len(cluster_centers))) print cluster_centers print "Reducing Image" for pixel_i in range(480): for pixel_j in range(480): copy_image[pixel_i][pixel_j][RED] = cluster_centers[labels[pixel_i * 480 + pixel_j]][RED] copy_image[pixel_i][pixel_j][GREEN] = cluster_centers[labels[pixel_i * 480 + pixel_j]][GREEN] copy_image[pixel_i][pixel_j][BLUE] = cluster_centers[labels[pixel_i * 480 + pixel_j]][BLUE] imsave('mean_shift{}.ppm'.format(window_size), copy_image) '''
apache-2.0
aleju/self-driving-truck
train_reinforced/visualization.py
1
14172
from __future__ import print_function, division import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib import actions as actionslib from lib import util from lib.util import to_numpy import imgaug as ia import numpy as np import torch.nn.functional as F try: xrange except NameError: xrange = range def generate_overview_image(current_state, last_state, \ action_up_down_bpe, action_left_right_bpe, \ memory, memory_val, \ ticks, last_train_tick, \ plans, plan_to_rewards_direct, plan_to_reward_indirect, \ plan_to_reward, plans_ranking, current_plan, best_plan_ae_decodings, idr_v, idr_adv, grids, args): h, w = current_state.screenshot_rs.shape[0:2] scr = np.copy(current_state.screenshot_rs) scr = ia.imresize_single_image(scr, (h//2, w//2)) if best_plan_ae_decodings is not None: ae_decodings = (to_numpy(best_plan_ae_decodings) * 255).astype(np.uint8).transpose((0, 2, 3, 1)) ae_decodings = [ia.imresize_single_image(ae_decodings[i, ...], (h//4, w//4)) for i in xrange(ae_decodings.shape[0])] ae_decodings = ia.draw_grid(ae_decodings, cols=5) #ae_decodings = np.vstack([ # np.hstack(ae_decodings[0:5]), # np.hstack(ae_decodings[5:10]) #]) else: ae_decodings = np.zeros((1, 1, 3), dtype=np.uint8) if grids is not None: scr_rs = ia.imresize_single_image(scr, (h//4, w//4)) grids = (to_numpy(grids)[0] * 255).astype(np.uint8) grids = [ia.imresize_single_image(grids[i, ...][:,:,np.newaxis], (h//4, w//4)) for i in xrange(grids.shape[0])] grids = [util.draw_heatmap_overlay(scr_rs, np.squeeze(grid/255).astype(np.float32)) for grid in grids] grids = ia.draw_grid(grids, cols=4) else: grids = np.zeros((1, 1, 3), dtype=np.uint8) plans_text = [] if idr_v is not None and idr_adv is not None: idr_v = to_numpy(idr_v[0]) idr_adv = to_numpy(idr_adv[0]) plans_text.append("V(s): %+07.2f" % (idr_v[0],)) adv_texts = [] curr = [] for i, ma in enumerate(actionslib.ALL_MULTIACTIONS): curr.append("A(%s%s): %+07.2f" % (ma[0] if ma[0] != "~WS" else "_", ma[1] if ma[1] != "~AD" else "_", idr_adv[i])) if (i+1) % 3 == 0 or (i+1) == len(actionslib.ALL_MULTIACTIONS): adv_texts.append(" ".join(curr)) curr = [] plans_text.extend(adv_texts) if current_plan is not None: plans_text.append("") plans_text.append("Current Plan:") actions_ud_text = [] actions_lr_text = [] for multiaction in current_plan: actions_ud_text.append("%s" % (multiaction[0] if multiaction[0] != "~WS" else "_",)) actions_lr_text.append("%s" % (multiaction[1] if multiaction[1] != "~AD" else "_",)) plans_text.extend([" ".join(actions_ud_text), " ".join(actions_lr_text)]) plans_text.append("") plans_text.append("Best Plans:") if plan_to_rewards_direct is not None: for plan_idx in plans_ranking[::-1][0:5]: plan = plans[plan_idx] rewards_direct = plan_to_rewards_direct[plan_idx] reward_indirect = plan_to_reward_indirect[plan_idx] reward = plan_to_reward[plan_idx] actions_ud_text = [] actions_lr_text = [] rewards_text = [] for multiaction in plan: actions_ud_text.append("%s" % (multiaction[0] if multiaction[0] != "~WS" else "_",)) actions_lr_text.append("%s" % (multiaction[1] if multiaction[1] != "~AD" else "_",)) for rewards_t in rewards_direct: rewards_text.append("%+04.1f" % (rewards_t,)) rewards_text.append("| %+07.2f (V(s')=%+07.2f)" % (reward, reward_indirect)) plans_text.extend(["", " ".join(actions_ud_text), " ".join(actions_lr_text), " ".join(rewards_text)]) plans_text = "\n".join(plans_text) stats_texts = [ "u/d bpe: %s" % (action_up_down_bpe.rjust(5)), " l/r bpe: %s" % (action_left_right_bpe.rjust(5)), "u/d ape: %s %s" % (current_state.action_up_down.rjust(5), "[C]" if action_up_down_bpe != current_state.action_up_down else ""), " l/r ape: %s %s" % (current_state.action_left_right.rjust(5), "[C]" if action_left_right_bpe != current_state.action_left_right else ""), "speed: %03d" % (current_state.speed,) if current_state.speed is not None else "speed: None", "is_reverse: yes" if current_state.is_reverse else "is_reverse: no", "is_damage_shown: yes" if current_state.is_damage_shown else "is_damage_shown: no", "is_offence_shown: yes" if current_state.is_offence_shown else "is_offence_shown: no", "steering wheel: %05.2f (%05.2f)" % (current_state.steering_wheel_cnn, current_state.steering_wheel_raw_cnn), "reward for last state: %05.2f" % (last_state.reward,) if last_state is not None else "reward for last state: None", "p_explore: %.2f%s" % (current_state.p_explore if args.p_explore is None else args.p_explore, "" if args.p_explore is None else " (constant)"), "memory size (train/val): %06d / %06d" % (memory.size, memory_val.size), "ticks: %06d" % (ticks,), "last train: %06d" % (last_train_tick,) ] stats_text = "\n".join(stats_texts) all_texts = plans_text + "\n\n\n" + stats_text result = np.zeros((720, 590, 3), dtype=np.uint8) util.draw_image(result, x=0, y=0, other_img=scr, copy=False) util.draw_image(result, x=0, y=scr.shape[0]+10, other_img=ae_decodings, copy=False) util.draw_image(result, x=0, y=scr.shape[0]+10+ae_decodings.shape[0]+10, other_img=grids, copy=False) result = util.draw_text(result, x=0, y=scr.shape[0]+10+ae_decodings.shape[0]+10+grids.shape[0]+10, size=8, text=all_texts, color=[255, 255, 255]) return result def generate_training_debug_image(inputs_supervised, inputs_supervised_prev, \ outputs_dr_preds, outputs_dr_gt, \ outputs_idr_preds, outputs_idr_gt, \ outputs_successor_preds, outputs_successor_gt, \ outputs_ae_preds, outputs_ae_gt, \ outputs_dr_successors_preds, outputs_dr_successors_gt, \ outputs_idr_successors_preds, outputs_idr_successors_gt, multiactions): imgs_in = to_numpy(inputs_supervised)[0] imgs_in = np.clip(imgs_in * 255, 0, 255).astype(np.uint8).transpose((1, 2, 0)) imgs_in_prev = to_numpy(inputs_supervised_prev)[0] imgs_in_prev = np.clip(imgs_in_prev * 255, 0, 255).astype(np.uint8).transpose((1, 2, 0)) h, w = imgs_in.shape[0:2] imgs_in = np.vstack([ np.hstack([downscale(imgs_in[..., 0:3]), downscale(to_rgb(imgs_in_prev[..., 0]))]), #np.hstack([downscale(to_rgb(imgs_in_prev[..., 1])), downscale(to_rgb(imgs_in_prev[..., 2]))]) np.hstack([downscale(to_rgb(imgs_in_prev[..., 1])), np.zeros_like(imgs_in[..., 0:3])]) ]) h_imgs = imgs_in.shape[0] ae_gt = np.clip(to_numpy(outputs_ae_gt)[0] * 255, 0, 255).astype(np.uint8).transpose((1, 2, 0)) ae_preds = np.clip(to_numpy(outputs_ae_preds)[0] * 255, 0, 255).astype(np.uint8).transpose((1, 2, 0)) """ imgs_ae = np.vstack([ downscale(ae_preds[..., 0:3]), downscale(to_rgb(ae_preds[..., 3])), downscale(to_rgb(ae_preds[..., 4])), downscale(to_rgb(ae_preds[..., 5])) ]) """ imgs_ae = np.hstack([downscale(ae_gt), downscale(ae_preds)]) h_ae = imgs_ae.shape[0] outputs_successor_dr_grid = draw_successor_dr_grid( to_numpy(F.softmax(outputs_dr_successors_preds[:, 0, :])), to_numpy(outputs_dr_successors_gt[:, 0]), upscale_factor=(2, 4) ) outputs_dr_preds = to_numpy(F.softmax(outputs_dr_preds))[0] outputs_dr_gt = to_numpy(outputs_dr_gt)[0] grid_preds = output_grid_to_image(outputs_dr_preds[np.newaxis, :], upscale_factor=(2, 4)) grid_gt = output_grid_to_image(outputs_dr_gt[np.newaxis, :], upscale_factor=(2, 4)) imgs_dr = np.hstack([ grid_gt, np.zeros((grid_gt.shape[0], 4, 3), dtype=np.uint8), grid_preds, np.zeros((grid_gt.shape[0], 8, 3), dtype=np.uint8), outputs_successor_dr_grid ]) successor_multiactions_str = " ".join(["%s%s" % (ma[0] if ma[0] != "~WS" else "_", ma[1] if ma[1] != "~AD" else "_") for ma in multiactions[0]]) imgs_dr = np.pad(imgs_dr, ((30, 0), (0, 300), (0, 0)), mode="constant", constant_values=0) imgs_dr = util.draw_text(imgs_dr, x=0, y=0, text="DR curr bins gt:%s, pred:%s | successor preds\nsucc. mas: %s" % (str(np.argmax(outputs_dr_gt)), str(np.argmax(outputs_dr_preds)), successor_multiactions_str), size=9) h_dr = imgs_dr.shape[0] outputs_idr_preds = np.squeeze(to_numpy(outputs_idr_preds)[0]) outputs_idr_gt = np.squeeze(to_numpy(outputs_idr_gt)[0]) idr_text = [ "[IndirectReward A0]", " gt: %.2f" % (outputs_idr_gt[..., 0],), " pr: %.2f" % (outputs_idr_preds[..., 0],), "[IndirectReward A1]", " gt: %.2f" % (outputs_idr_gt[..., 1],), " pr: %.2f" % (outputs_idr_preds[..., 1],), "[IndirectReward A2]", " gt: %.2f" % (outputs_idr_gt[..., 2],), " pr: %.2f" % (outputs_idr_preds[..., 2],) ] idr_text = "\n".join(idr_text) outputs_successor_preds = np.squeeze(to_numpy(outputs_successor_preds)[:, 0, :]) outputs_successor_gt = np.squeeze(to_numpy(outputs_successor_gt)[:, 0, :]) distances = np.average((outputs_successor_preds - outputs_successor_gt) ** 2, axis=1) successors_text = [ "[Successors]", " Distances:", " " + " ".join(["%02.2f" % (d,) for d in distances]), " T=0 gt/pred:", " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_gt[0, 0:25]]), " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_preds[0, 0:25]]), " T=1 gt/pred:", " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_gt[1, 0:25]]), " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_preds[1, 0:25]]), " T=2 gt/pred:", " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_gt[2, 0:25]]), " " + " ".join(["%+02.2f" % (val,) for val in outputs_successor_preds[2, 0:25]]), ] successors_text = "\n".join(successors_text) outputs_dr_successors_preds = np.squeeze(to_numpy(outputs_dr_successors_preds)[:, 0, :]) outputs_dr_successors_gt = np.squeeze(to_numpy(outputs_dr_successors_gt)[:, 0, :]) bins_dr_successors_preds = np.argmax(outputs_dr_successors_preds, axis=1) bins_dr_successors_gt = np.argmax(outputs_dr_successors_gt, axis=1) successors_dr_text = [ "[Direct rewards bins of successors]", " gt: " + " ".join(["%d" % (b,) for b in bins_dr_successors_gt]), " pred: " + " ".join(["%d" % (b,) for b in bins_dr_successors_preds]) ] successors_dr_text = "\n".join(successors_dr_text) outputs_idr_successors_preds = np.squeeze(to_numpy(outputs_idr_successors_preds)[:, 0, :]) outputs_idr_successors_gt = np.squeeze(to_numpy(outputs_idr_successors_gt)[:, 0, :]) successors_idr_text = [ "[Indirect rewards of successors A0]", " gt: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_gt[..., 0]]), " pred: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_preds[..., 0]]), "[Indirect rewards of successors A1]", " gt: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_gt[..., 1]]), " pred: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_preds[..., 1]]), "[Indirect rewards of successors A2]", " gt: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_gt[..., 2]]), " pred: " + " ".join(["%+03.2f" % (v,) for v in outputs_idr_successors_preds[..., 2]]) ] successors_idr_text = "\n".join(successors_idr_text) result = np.zeros((950, 320, 3), dtype=np.uint8) spacing = 4 util.draw_image(result, x=0, y=0, other_img=imgs_in, copy=False) util.draw_image(result, x=0, y=h_imgs+spacing, other_img=imgs_ae, copy=False) util.draw_image(result, x=0, y=h_imgs+spacing+h_ae+spacing, other_img=imgs_dr, copy=False) result = util.draw_text(result, x=0, y=h_imgs+spacing+h_ae+spacing+h_dr+spacing, text=idr_text + "\n" + successors_text + "\n" + successors_dr_text + "\n" + successors_idr_text, size=9) return result def to_rgb(im): return np.tile(im[:,:,np.newaxis], (1, 1, 3)) def downscale(im): return ia.imresize_single_image(im, (90, 160), interpolation="cubic") def output_grid_to_image(output_grid, upscale_factor=(4, 4)): if output_grid is None: grid_vis = np.zeros((Config.MODEL_NB_REWARD_BINS, Config.MODEL_NB_FUTURE_BLOCKS), dtype=np.uint8) else: if output_grid.ndim == 3: output_grid = output_grid[0] grid_vis = (output_grid.transpose((1, 0)) * 255).astype(np.uint8) grid_vis = np.tile(grid_vis[:, :, np.newaxis], (1, 1, 3)) if output_grid is None: grid_vis[::2, ::2, :] = [255, 0, 0] grid_vis = ia.imresize_single_image(grid_vis, (grid_vis.shape[0]*upscale_factor[0], grid_vis.shape[1]*upscale_factor[1]), interpolation="nearest") grid_vis = np.pad(grid_vis, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=128) return grid_vis def draw_successor_dr_grid(outputs_dr_successors_preds, outputs_dr_successors_gt, upscale_factor=(4, 4)): T, S = outputs_dr_successors_preds.shape cols = [] for t in range(T): col = (outputs_dr_successors_preds[t][np.newaxis, :].transpose((1, 0)) * 255).astype(np.uint8) col = np.tile(col[:, :, np.newaxis], (1, 1, 3)) correct_bin_idx = np.argmax(outputs_dr_successors_gt[t]) col[correct_bin_idx, 0, 2] = 255 col = ia.imresize_single_image(col, (col.shape[0]*upscale_factor[0], col.shape[1]*upscale_factor[1]), interpolation="nearest") col = np.pad(col, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=128) cols.append(col) return np.hstack(cols)
mit
xzturn/tensorflow
tensorflow/python/keras/datasets/mnist.py
3
2515
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """MNIST handwritten digits dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.keras.utils.data_utils import get_file from tensorflow.python.util.tf_export import keras_export @keras_export('keras.datasets.mnist.load_data') def load_data(path='mnist.npz'): """Loads the [MNIST dataset](http://yann.lecun.com/exdb/mnist/). This is a dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. More info can be found at the (MNIST homepage)[http://yann.lecun.com/exdb/mnist/]. Arguments: path: path where to cache the dataset locally (relative to ~/.keras/datasets). Returns: Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. **x_train, x_test**: uint8 arrays of grayscale image data with shapes (num_samples, 28, 28). **y_train, y_test**: uint8 arrays of digit labels (integers in range 0-9) with shapes (num_samples,). License: Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative work from original NIST datasets. MNIST dataset is made available under the terms of the [Creative Commons Attribution-Share Alike 3.0 license.]( https://creativecommons.org/licenses/by-sa/3.0/) """ origin_folder = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/' path = get_file( path, origin=origin_folder + 'mnist.npz', file_hash= '731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1') with np.load(path, allow_pickle=True) as f: x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] return (x_train, y_train), (x_test, y_test)
apache-2.0
keras-team/keras-io
examples/generative/adain.py
1
22423
""" Title: Neural Style Transfer with AdaIN Author: [Aritra Roy Gosthipaty](https://twitter.com/arig23498), [Ritwik Raha](https://twitter.com/ritwik_raha) Date created: 2021/11/08 Last modified: 2021/11/08 Description: Neural Style Transfer with Adaptive Instance Normalization. """ """ # Introduction [Neural Style Transfer](https://www.tensorflow.org/tutorials/generative/style_transfer) is the process of transferring the style of one image onto the content of another. This was first introduced in the seminal paper ["A Neural Algorithm of Artistic Style"](https://arxiv.org/abs/1508.06576) by Gatys et al. A major limitation of the technique proposed in this work is in its runtime, as the algorithm uses a slow iterative optimization process. Follow-up papers that introduced [Batch Normalization](https://arxiv.org/abs/1502.03167), [Instance Normalization](https://arxiv.org/abs/1701.02096) and [Conditional Instance Normalization](https://arxiv.org/abs/1610.07629) allowed Style Transfer to be performed in new ways, no longer requiring a slow iterative process. Following these papers, the authors Xun Huang and Serge Belongie propose [Adaptive Instance Normalization](https://arxiv.org/abs/1703.06868) (AdaIN), which allows arbitrary style transfer in real time. In this example we implement Adapative Instance Normalization for Neural Style Transfer. We show in the below figure the output of our AdaIN model trained for only **30 epochs**. ![Style transfer sample gallery](https://i.imgur.com/zDjDuea.png) You can also try out the model with your own images with this [Hugging Face demo](https://huggingface.co/spaces/ariG23498/nst). """ """ # Setup We begin with importing the necessary packages. We also set the seed for reproducibility. The global variables are hyperparameters which we can change as we like. """ import os import glob import imageio import numpy as np from tqdm import tqdm import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import tensorflow_datasets as tfds from tensorflow.keras import layers # Defining the global variables. IMAGE_SIZE = (224, 224) BATCH_SIZE = 64 # Training for single epoch for time constraint. # Please use atleast 30 epochs to see good results. EPOCHS = 1 AUTOTUNE = tf.data.AUTOTUNE """ ## Style transfer sample gallery For Neural Style Transfer we need style images and content images. In this example we will use the [Best Artworks of All Time](https://www.kaggle.com/ikarus777/best-artworks-of-all-time) as our style dataset and [Pascal VOC](https://www.tensorflow.org/datasets/catalog/voc) as our content dataset. This is a deviation from the original paper implementation by the authors, where they use [WIKI-Art](https://paperswithcode.com/dataset/wikiart) as style and [MSCOCO](https://cocodataset.org/#home) as content datasets respectively. We do this to create a minimal yet reproducible example. ## Downloading the dataset from Kaggle The [Best Artworks of All Time](https://www.kaggle.com/ikarus777/best-artworks-of-all-time) dataset is hosted on Kaggle and one can easily download it in Colab by following these steps: - Follow the instructions [here](https://github.com/Kaggle/kaggle-api) in order to obtain your Kaggle API keys in case you don't have them. - Use the following command to upload the Kaggle API keys. ```python from google.colab import files files.upload() ``` - Use the following commands to move the API keys to the proper directory and download the dataset. ```shell $ mkdir ~/.kaggle $ cp kaggle.json ~/.kaggle/ $ chmod 600 ~/.kaggle/kaggle.json $ kaggle datasets download ikarus777/best-artworks-of-all-time $ unzip -qq best-artworks-of-all-time.zip $ rm -rf images $ mv resized artwork $ rm best-artworks-of-all-time.zip artists.csv ``` """ """ ## `tf.data` pipeline In this section, we will build the `tf.data` pipeline for the project. For the style dataset, we decode, convert and resize the images from the folder. For the content images we are already presented with a `tf.data` dataset as we use the `tfds` module. After we have our style and content data pipeline ready, we zip the two together to obtain the data pipeline that our model will consume. """ def decode_and_resize(image_path): """Decodes and resizes an image from the image file path. Args: image_path: The image file path. size: The size of the image to be resized to. Returns: A resized image. """ image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.convert_image_dtype(image, dtype="float32") image = tf.image.resize(image, IMAGE_SIZE) return image def extract_image_from_voc(element): """Extracts image from the PascalVOC dataset. Args: element: A dictionary of data. size: The size of the image to be resized to. Returns: A resized image. """ image = element["image"] image = tf.image.convert_image_dtype(image, dtype="float32") image = tf.image.resize(image, IMAGE_SIZE) return image # Get the image file paths for the style images. style_images = os.listdir("artwork/resized") style_images = [os.path.join("artwork/resized", path) for path in style_images] # split the style images in train, val and test total_style_images = len(style_images) train_style = style_images[: int(0.8 * total_style_images)] val_style = style_images[int(0.8 * total_style_images) : int(0.9 * total_style_images)] test_style = style_images[int(0.9 * total_style_images) :] # Build the style and content tf.data datasets. train_style_ds = ( tf.data.Dataset.from_tensor_slices(train_style) .map(decode_and_resize, num_parallel_calls=AUTOTUNE) .repeat() ) train_content_ds = tfds.load("voc", split="train").map(extract_image_from_voc).repeat() val_style_ds = ( tf.data.Dataset.from_tensor_slices(val_style) .map(decode_and_resize, num_parallel_calls=AUTOTUNE) .repeat() ) val_content_ds = ( tfds.load("voc", split="validation").map(extract_image_from_voc).repeat() ) test_style_ds = ( tf.data.Dataset.from_tensor_slices(test_style) .map(decode_and_resize, num_parallel_calls=AUTOTUNE) .repeat() ) test_content_ds = ( tfds.load("voc", split="test") .map(extract_image_from_voc, num_parallel_calls=AUTOTUNE) .repeat() ) # Zipping the style and content datasets. train_ds = ( tf.data.Dataset.zip((train_style_ds, train_content_ds)) .shuffle(BATCH_SIZE * 2) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) val_ds = ( tf.data.Dataset.zip((val_style_ds, val_content_ds)) .shuffle(BATCH_SIZE * 2) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) test_ds = ( tf.data.Dataset.zip((test_style_ds, test_content_ds)) .shuffle(BATCH_SIZE * 2) .batch(BATCH_SIZE) .prefetch(AUTOTUNE) ) """ ## Visualizing the data It is always better to visualize the data before training. To ensure the correctness of our preprocessing pipeline, we visualize 10 samples from our dataset. """ style, content = next(iter(train_ds)) fig, axes = plt.subplots(nrows=10, ncols=2, figsize=(5, 30)) [ax.axis("off") for ax in np.ravel(axes)] for (axis, style_image, content_image) in zip(axes, style[0:10], content[0:10]): (ax_style, ax_content) = axis ax_style.imshow(style_image) ax_style.set_title("Style Image") ax_content.imshow(content_image) ax_content.set_title("Content Image") """ ## Architecture The style transfer network takes a content image and a style image as inputs and outputs the style transfered image. The authors of AdaIN propose a simple encoder-decoder structure for achieving this. ![AdaIN architecture](https://i.imgur.com/JbIfoyE.png) The content image (`C`) and the style image (`S`) are both fed to the encoder networks. The output from these encoder networks (feature maps) are then fed to the AdaIN layer. The AdaIN layer computes a combined feature map. This feature map is then fed into a randomly initialized decoder network that serves as the generator for the neural style transfered image. ![AdaIn equation](https://i.imgur.com/hqhcBQS.png) The style feature map (`fs`) and the content feature map (`fc`) are fed to the AdaIN layer. This layer produced the combined feature map `t`. The function `g` represents the decoder (generator) network. """ """ ### Encoder The encoder is a part of the pretrained (pretrained on [imagenet](https://www.image-net.org/)) VGG19 model. We slice the model from the `block4-conv1` layer. The output layer is as suggested by the authors in their paper. """ def get_encoder(): vgg19 = keras.applications.VGG19( include_top=False, weights="imagenet", input_shape=(*IMAGE_SIZE, 3), ) vgg19.trainable = False mini_vgg19 = keras.Model(vgg19.input, vgg19.get_layer("block4_conv1").output) inputs = layers.Input([*IMAGE_SIZE, 3]) mini_vgg19_out = mini_vgg19(inputs) return keras.Model(inputs, mini_vgg19_out, name="mini_vgg19") """ ### Adaptive Instance Normalization The AdaIN layer takes in the features of the content and style image. The layer can be defined via the following equation: ![AdaIn formula](https://i.imgur.com/tWq3VKP.png) where `sigma` is the standard deviation and `mu` is the mean for the concerned variable. In the above equation the mean and variance of the content feature map `fc` is aligned with the mean and variance of the style feature maps `fs`. It is important to note that the AdaIN layer proposed by the authors uses no other parameters apart from mean and variance. The layer also does not have any trainable parameters. This is why we use a *Python function* instead of using a *Keras layer*. The function takes style and content feature maps, computes the mean and standard deviation of the images and returns the adaptive instance normalized feature map. """ def get_mean_std(x, epsilon=1e-5): axes = [1, 2] # Compute the mean and standard deviation of a tensor. mean, variance = tf.nn.moments(x, axes=axes, keepdims=True) standard_deviation = tf.sqrt(variance + epsilon) return mean, standard_deviation def ada_in(style, content): """Computes the AdaIn feature map. Args: style: The style feature map. content: The content feature map. Returns: The AdaIN feature map. """ content_mean, content_std = get_mean_std(content) style_mean, style_std = get_mean_std(style) t = style_std * (content - content_mean) / content_std + style_mean return t """ ### Decoder The authors specify that the decoder network must mirror the encoder network. We have symmetrically inverted the encoder to build our decoder. We have used `UpSampling2D` layers to increase the spatial resolution of the feature maps. Note that the authors warn against using any normalization layer in the decoder network, and do indeed go on to show that including batch normalization or instance normalization hurts the performance of the overall network. This is the only portion of the entire architecture that is trainable. """ def get_decoder(): config = {"kernel_size": 3, "strides": 1, "padding": "same", "activation": "relu"} decoder = keras.Sequential( [ layers.InputLayer((None, None, 512)), layers.Conv2D(filters=512, **config), layers.UpSampling2D(), layers.Conv2D(filters=256, **config), layers.Conv2D(filters=256, **config), layers.Conv2D(filters=256, **config), layers.Conv2D(filters=256, **config), layers.UpSampling2D(), layers.Conv2D(filters=128, **config), layers.Conv2D(filters=128, **config), layers.UpSampling2D(), layers.Conv2D(filters=64, **config), layers.Conv2D( filters=3, kernel_size=3, strides=1, padding="same", activation="sigmoid", ), ] ) return decoder """ ### Loss functions Here we build the loss functions for the neural style transfer model. The authors propose to use a pretrained VGG-19 to compute the loss function of the network. It is important to keep in mind that this will be used for training only the decoder netwrok. The total loss (`Lt`) is a weighted combination of content loss (`Lc`) and style loss (`Ls`). The `lambda` term is used to vary the amount of style transfered. ![The total loss](https://i.imgur.com/Q5y1jUM.png) ### Content Loss This is the Euclidean distance between the content image features and the features of the neural style transferred image. ![The content loss](https://i.imgur.com/dZ0uD0N.png) Here the authors propose to use the output from the AdaIn layer `t` as the content target rather than using features of the original image as target. This is done to speed up convergence. ### Style Loss Rather than using the more commonly used [Gram Matrix](https://mathworld.wolfram.com/GramMatrix.html), the authors propose to compute the difference between the statistical features (mean and variance) which makes it conceptually cleaner. This can be easily visualized via the following equation: ![The style loss](https://i.imgur.com/Ctclhn3.png) where `theta` denotes the layers in VGG-19 used to compute the loss. In this case this corresponds to: - `block1_conv1` - `block1_conv2` - `block1_conv3` - `block1_conv4` """ def get_loss_net(): vgg19 = keras.applications.VGG19( include_top=False, weights="imagenet", input_shape=(*IMAGE_SIZE, 3) ) vgg19.trainable = False layer_names = ["block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1"] outputs = [vgg19.get_layer(name).output for name in layer_names] mini_vgg19 = keras.Model(vgg19.input, outputs) inputs = layers.Input([*IMAGE_SIZE, 3]) mini_vgg19_out = mini_vgg19(inputs) return keras.Model(inputs, mini_vgg19_out, name="loss_net") """ ## Neural Style Transfer This is the trainer module. We wrap the encoder and decoder inside of a `tf.keras.Model` subclass. This allows us to customize what happens in the `model.fit()` loop. """ class NeuralStyleTransfer(tf.keras.Model): def __init__(self, encoder, decoder, loss_net, style_weight, **kwargs): super().__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.loss_net = loss_net self.style_weight = style_weight def compile(self, optimizer, loss_fn): super().compile() self.optimizer = optimizer self.loss_fn = loss_fn self.style_loss_tracker = keras.metrics.Mean(name="style_loss") self.content_loss_tracker = keras.metrics.Mean(name="content_loss") self.total_loss_tracker = keras.metrics.Mean(name="total_loss") def train_step(self, inputs): style, content = inputs # Initialize the content and style loss. loss_content = 0.0 loss_style = 0.0 with tf.GradientTape() as tape: # Encode the style and content image. style_encoded = self.encoder(style) content_encoded = self.encoder(content) # Compute the AdaIN target feature maps. t = ada_in(style=style_encoded, content=content_encoded) # Generate the neural style transferred image. reconstructed_image = self.decoder(t) # Compute the losses. reconstructed_vgg_features = self.loss_net(reconstructed_image) style_vgg_features = self.loss_net(style) loss_content = self.loss_fn(t, reconstructed_vgg_features[-1]) for inp, out in zip(style_vgg_features, reconstructed_vgg_features): mean_inp, std_inp = get_mean_std(inp) mean_out, std_out = get_mean_std(out) loss_style += self.loss_fn(mean_inp, mean_out) + self.loss_fn( std_inp, std_out ) loss_style = self.style_weight * loss_style total_loss = loss_content + loss_style # Compute gradients and optimize the decoder. trainable_vars = self.decoder.trainable_variables gradients = tape.gradient(total_loss, trainable_vars) self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update the trackers. self.style_loss_tracker.update_state(loss_style) self.content_loss_tracker.update_state(loss_content) self.total_loss_tracker.update_state(total_loss) return { "style_loss": self.style_loss_tracker.result(), "content_loss": self.content_loss_tracker.result(), "total_loss": self.total_loss_tracker.result(), } def test_step(self, inputs): style, content = inputs # Initialize the content and style loss. loss_content = 0.0 loss_style = 0.0 # Encode the style and content image. style_encoded = self.encoder(style) content_encoded = self.encoder(content) # Compute the AdaIN target feature maps. t = ada_in(style=style_encoded, content=content_encoded) # Generate the neural style transferred image. reconstructed_image = self.decoder(t) # Compute the losses. recons_vgg_features = self.loss_net(reconstructed_image) style_vgg_features = self.loss_net(style) loss_content = self.loss_fn(t, recons_vgg_features[-1]) for inp, out in zip(style_vgg_features, recons_vgg_features): mean_inp, std_inp = get_mean_std(inp) mean_out, std_out = get_mean_std(out) loss_style += self.loss_fn(mean_inp, mean_out) + self.loss_fn( std_inp, std_out ) loss_style = self.style_weight * loss_style total_loss = loss_content + loss_style # Update the trackers. self.style_loss_tracker.update_state(loss_style) self.content_loss_tracker.update_state(loss_content) self.total_loss_tracker.update_state(total_loss) return { "style_loss": self.style_loss_tracker.result(), "content_loss": self.content_loss_tracker.result(), "total_loss": self.total_loss_tracker.result(), } @property def metrics(self): return [ self.style_loss_tracker, self.content_loss_tracker, self.total_loss_tracker, ] """ ## Train Monitor callback This callback is used to visualize the style transfer output of the model at the end of each epoch. The objective of style transfer cannot be quantified properly, and is to be subjectively evaluated by an audience. For this reason, visualization is a key aspect of evaluating the model. """ test_style, test_content = next(iter(test_ds)) class TrainMonitor(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): # Encode the style and content image. test_style_encoded = self.model.encoder(test_style) test_content_encoded = self.model.encoder(test_content) # Compute the AdaIN features. test_t = ada_in(style=test_style_encoded, content=test_content_encoded) test_reconstructed_image = self.model.decoder(test_t) # Plot the Style, Content and the NST image. fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(20, 5)) ax[0].imshow(tf.keras.preprocessing.image.array_to_img(test_style[0])) ax[0].set_title(f"Style: {epoch:03d}") ax[1].imshow(tf.keras.preprocessing.image.array_to_img(test_content[0])) ax[1].set_title(f"Content: {epoch:03d}") ax[2].imshow( tf.keras.preprocessing.image.array_to_img(test_reconstructed_image[0]) ) ax[2].set_title(f"NST: {epoch:03d}") plt.show() plt.close() """ ## Train the model In this section, we define the optimizer, the loss funtion, and the trainer module. We compile the trainer module with the optimizer and the loss function and then train it. *Note*: We train the model for a single epoch for time constranints, but we will need to train is for atleast 30 epochs to see good results. """ optimizer = keras.optimizers.Adam(learning_rate=1e-5) loss_fn = keras.losses.MeanSquaredError() encoder = get_encoder() loss_net = get_loss_net() decoder = get_decoder() model = NeuralStyleTransfer( encoder=encoder, decoder=decoder, loss_net=loss_net, style_weight=4.0 ) model.compile(optimizer=optimizer, loss_fn=loss_fn) history = model.fit( train_ds, epochs=EPOCHS, steps_per_epoch=50, validation_data=val_ds, validation_steps=50, callbacks=[TrainMonitor()], ) """ ## Inference After we train the model, we now need to run inference with it. We will pass arbitrary content and style images from the test dataset and take a look at the output images. *NOTE*: To try out the model on your own images, you can use this [Hugging Face demo](https://huggingface.co/spaces/ariG23498/nst). """ for style, content in test_ds.take(1): style_encoded = model.encoder(style) content_encoded = model.encoder(content) t = ada_in(style=style_encoded, content=content_encoded) reconstructed_image = model.decoder(t) fig, axes = plt.subplots(nrows=10, ncols=3, figsize=(10, 30)) [ax.axis("off") for ax in np.ravel(axes)] for axis, style_image, content_image, reconstructed_image in zip( axes, style[0:10], content[0:10], reconstructed_image[0:10] ): (ax_style, ax_content, ax_reconstructed) = axis ax_style.imshow(style_image) ax_style.set_title("Style Image") ax_content.imshow(content_image) ax_content.set_title("Content Image") ax_reconstructed.imshow(reconstructed_image) ax_reconstructed.set_title("NST Image") """ ## Conclusion Adaptive Instance Normalization allows arbitrary style transfer in real time. It is also important to note that the novel proposition of the authors is to achieve this only by aligning the statistical features (mean and standard deviation) of the style and the content images. *Note*: AdaIN also serves as the base for [Style-GANs](https://arxiv.org/abs/1812.04948). ## Reference - [TF implementation](https://github.com/ftokarev/tf-adain) ## Acknowledgement We thank [Luke Wood](https://lukewood.xyz) for his detailed review. """
apache-2.0
humdings/pynance-legacy
quantopian/quandl.py
1
3498
import datetime import pandas as pd class QuandlFetcher(object): API_URL = 'http://www.quandl.com/api/v1/' def __init__(self, auth_token=None): self.auth_token = auth_token def _append_query_fields(self, url, **kwargs): field_values = ['{0}={1}'.format(key, val) for key, val in kwargs.items() if val] return url + 'request_source=python&request_version=2&' +'&'.join(field_values) def _parse_dates(self, date): if date is None: return date if isinstance(date, datetime.datetime): return date.date().isoformat() if isinstance(date, datetime.date): return date.isoformat() try: date = pd.to_datetime(date) except ValueError: raise ValueError("{} is not recognised a date.".format(date)) return date.date().isoformat() def build_url(self, dataset, **kwargs): """Return dataframe of requested dataset from Quandl. :param dataset: str or list, depending on single dataset usage or multiset usage Dataset codes are available on the Quandl website :param str trim_start, trim_end: Optional datefilers, otherwise entire dataset is returned :param str collapse: Options are daily, weekly, monthly, quarterly, annual :param str transformation: options are diff, rdiff, cumul, and normalize :param int rows: Number of rows which will be returned :param str sort_order: options are asc, desc. Default: `asc` :param str text: specify whether to print output text to stdout, pass 'no' to supress output. :returns: :class:`pandas.DataFrame` or :class:`numpy.ndarray` Note that Pandas expects timeseries data to be sorted ascending for most timeseries functionality to work. Any other `kwargs` passed to `get` are sent as field/value params to Quandl with no interference. """ auth_token = self.auth_token kwargs.setdefault('sort_order', 'asc') trim_start = self._parse_dates(kwargs.pop('trim_start', None)) trim_end = self._parse_dates(kwargs.pop('trim_end', None)) #Check whether dataset is given as a string (for a single dataset) or an array (for a multiset call) #Unicode String if type(dataset) == unicode or type(dataset) == str: url = self.API_URL + 'datasets/{}.csv?'.format(dataset) #Array elif type(dataset) == list: url = self.API_URL + 'multisets.csv?columns=' #Format for multisets call dataset = [d.replace('/', '.') for d in dataset] for i in dataset: url += i + ',' #remove trailing , url = url[:-1] + '&' #If wrong format else: error = "Your dataset must either be specified as a string (containing a Quandl code) or an array (of Quandl codes) for multisets" raise Exception(error) url = self._append_query_fields( url, auth_token=auth_token, trim_start=trim_start, trim_end=trim_end, **kwargs ) return url def _download(url): ''' Used to download data outside of Quantopian. ''' dframe = pd.read_csv(url, index_col=0, parse_dates=True) return dframe
mit
Yingmin-Li/keras
keras/datasets/imdb.py
37
1855
from __future__ import absolute_import import six.moves.cPickle import gzip from .data_utils import get_file import random from six.moves import zip import numpy as np def load_data(path="imdb.pkl", nb_words=None, skip_top=0, maxlen=None, test_split=0.2, seed=113, start_char=1, oov_char=2, index_from=3): path = get_file(path, origin="https://s3.amazonaws.com/text-datasets/imdb.pkl") if path.endswith(".gz"): f = gzip.open(path, 'rb') else: f = open(path, 'rb') X, labels = six.moves.cPickle.load(f) f.close() np.random.seed(seed) np.random.shuffle(X) np.random.seed(seed) np.random.shuffle(labels) if start_char is not None: X = [[start_char] + [w + index_from for w in x] for x in X] elif index_from: X = [[w + index_from for w in x] for x in X] if maxlen: new_X = [] new_labels = [] for x, y in zip(X, labels): if len(x) < maxlen: new_X.append(x) new_labels.append(y) X = new_X labels = new_labels if not nb_words: nb_words = max([max(x) for x in X]) # by convention, use 2 as OOV word # reserve 'index_from' (=3 by default) characters: 0 (padding), 1 (start), 2 (OOV) if oov_char is not None: X = [[oov_char if (w >= nb_words or w < skip_top) else w for w in x] for x in X] else: nX = [] for x in X: nx = [] for w in x: if (w >= nb_words or w < skip_top): nx.append(w) nX.append(nx) X = nX X_train = X[:int(len(X)*(1-test_split))] y_train = labels[:int(len(X)*(1-test_split))] X_test = X[int(len(X)*(1-test_split)):] y_test = labels[int(len(X)*(1-test_split)):] return (X_train, y_train), (X_test, y_test)
mit
herilalaina/scikit-learn
examples/linear_model/plot_ridge_coeffs.py
146
2785
""" ============================================================== Plot Ridge coefficients as a function of the L2 regularization ============================================================== .. currentmodule:: sklearn.linear_model :class:`Ridge` Regression is the estimator used in this example. Each color in the left plot represents one different dimension of the coefficient vector, and this is displayed as a function of the regularization parameter. The right plot shows how exact the solution is. This example illustrates how a well defined solution is found by Ridge regression and how regularization affects the coefficients and their values. The plot on the right shows how the difference of the coefficients from the estimator changes as a function of regularization. In this example the dependent variable Y is set as a function of the input features: y = X*w + c. The coefficient vector w is randomly sampled from a normal distribution, whereas the bias term c is set to a constant. As alpha tends toward zero the coefficients found by Ridge regression stabilize towards the randomly sampled vector w. For big alpha (strong regularisation) the coefficients are smaller (eventually converging at 0) leading to a simpler and biased solution. These dependencies can be observed on the left plot. The right plot shows the mean squared error between the coefficients found by the model and the chosen vector w. Less regularised models retrieve the exact coefficients (error is equal to 0), stronger regularised models increase the error. Please note that in this example the data is non-noisy, hence it is possible to extract the exact coefficients. """ # Author: Kornel Kielczewski -- <kornel.k@plusnet.pl> print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error clf = Ridge() X, y, w = make_regression(n_samples=10, n_features=10, coef=True, random_state=1, bias=3.5) coefs = [] errors = [] alphas = np.logspace(-6, 6, 200) # Train the model with different regularisation strengths for a in alphas: clf.set_params(alpha=a) clf.fit(X, y) coefs.append(clf.coef_) errors.append(mean_squared_error(clf.coef_, w)) # Display results plt.figure(figsize=(20, 6)) plt.subplot(121) ax = plt.gca() ax.plot(alphas, coefs) ax.set_xscale('log') plt.xlabel('alpha') plt.ylabel('weights') plt.title('Ridge coefficients as a function of the regularization') plt.axis('tight') plt.subplot(122) ax = plt.gca() ax.plot(alphas, errors) ax.set_xscale('log') plt.xlabel('alpha') plt.ylabel('error') plt.title('Coefficient error as a function of the regularization') plt.axis('tight') plt.show()
bsd-3-clause
nhuntwalker/astroML
book_figures/appendix/fig_LIGO_bandpower.py
4
2122
""" Plot the band power of the LIGO big dog event --------------------------------------------- """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import division import numpy as np from matplotlib import pyplot as plt from astroML.datasets import fetch_LIGO_bigdog from astroML.fourier import FT_continuous #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) def multiple_power_spectrum(t, x, window_size=10000, step_size=1000): assert x.shape == t.shape assert x.ndim == 1 assert len(x) > window_size N_steps = (len(x) - window_size) // step_size indices = np.arange(window_size) + step_size * np.arange(N_steps)[:, None] X = x[indices].astype(complex) f, H = FT_continuous(t[:window_size], X) i = (f > 0) return f[i], abs(H[:, i]) X = fetch_LIGO_bigdog() t = X['t'] x = X['Hanford'] window_size = 10000 step_size = 500 f, P = multiple_power_spectrum(t, x, window_size=window_size, step_size=step_size) i = (f > 50) & (f < 1500) P = P[:, i] f = f[i] fig = plt.figure(figsize=(5, 3.75)) plt.imshow(np.log10(P).T, origin='lower', aspect='auto', extent=[t[window_size / 2], t[window_size / 2 + step_size * P.shape[0]], f[0], f[-1]]) plt.xlabel('t (s)') plt.ylabel('f (Hz) derived from %.2fs window' % (t[window_size] - t[0])) plt.colorbar().set_label('$|H(f)|$') plt.show()
bsd-2-clause
h2oai/h2o
py/testdir_release/c3/test_c3_exec_copy.py
9
4111
import unittest, sys, time sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_import as h2i, h2o_glm, h2o_common, h2o_exec as h2e import h2o_print DO_GLM = True LOG_MACHINE_STATS = False # fails during exec env push ..second import has to do a key delete (the first) DO_DOUBLE_IMPORT = False print "Assumes you ran ../build_for_clone.py in this directory" print "Using h2o-nodes.json. Also the sandbox dir" class releaseTest(h2o_common.ReleaseCommon, unittest.TestCase): def sub_c3_nongz_fvec_long(self, csvFilenameList): # a kludge h2o.setup_benchmark_log() bucket = 'home-0xdiag-datasets' importFolderPath = 'manyfiles-nflx' print "Using nongz'ed files in", importFolderPath if LOG_MACHINE_STATS: benchmarkLogging = ['cpu', 'disk', 'network'] else: benchmarkLogging = [] pollTimeoutSecs = 120 retryDelaySecs = 10 for trial, (csvFilepattern, csvFilename, totalBytes, timeoutSecs) in enumerate(csvFilenameList): csvPathname = importFolderPath + "/" + csvFilepattern if DO_DOUBLE_IMPORT: (importResult, importPattern) = h2i.import_only(bucket=bucket, path=csvPathname, schema='local') importFullList = importResult['files'] importFailList = importResult['fails'] print "\n Problem if this is not empty: importFailList:", h2o.dump_json(importFailList) # this accumulates performance stats into a benchmark log over multiple runs # good for tracking whether we're getting slower or faster h2o.cloudPerfH2O.change_logfile(csvFilename) h2o.cloudPerfH2O.message("") h2o.cloudPerfH2O.message("Parse " + csvFilename + " Start--------------------------------") start = time.time() parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='local', hex_key="A.hex", timeoutSecs=timeoutSecs, retryDelaySecs=retryDelaySecs, pollTimeoutSecs=pollTimeoutSecs, benchmarkLogging=benchmarkLogging) elapsed = time.time() - start print "Parse #", trial, "completed in", "%6.2f" % elapsed, "seconds.", \ "%d pct. of timeout" % ((elapsed*100)/timeoutSecs) print "Parse result['destination_key']:", parseResult['destination_key'] h2o_cmd.columnInfoFromInspect(parseResult['destination_key'], exceptionOnMissingValues=False) fileMBS = (totalBytes/1e6)/elapsed msg = '{!s} jvms, {!s}GB heap, {:s} {:s} {:6.2f} MB/sec for {:.2f} secs'.format( len(h2o.nodes), h2o.nodes[0].java_heap_GB, csvFilepattern, csvFilename, fileMBS, elapsed) print msg h2o.cloudPerfH2O.message(msg) h2o_cmd.checkKeyDistribution() # are the unparsed keys slowing down exec? h2i.delete_keys_at_all_nodes(pattern="manyfile") execExpr = 'B.hex=A.hex' h2e.exec_expr(execExpr=execExpr, timeoutSecs=180) h2o_cmd.checkKeyDistribution() execExpr = 'C.hex=B.hex' h2e.exec_expr(execExpr=execExpr, timeoutSecs=180) h2o_cmd.checkKeyDistribution() execExpr = 'D.hex=C.hex' h2e.exec_expr(execExpr=execExpr, timeoutSecs=180) h2o_cmd.checkKeyDistribution() #*********************************************************************** # these will be tracked individual by jenkins, which is nice #*********************************************************************** def test_c3_exec_copy(self): avgMichalSize = 237270000 csvFilenameList= [ ("*[1][0-4][0-9].dat", "file_50_A.dat", 50 * avgMichalSize, 1800), ] self.sub_c3_nongz_fvec_long(csvFilenameList) if __name__ == '__main__': h2o.unit_main()
apache-2.0
herilalaina/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
2
11123
import numpy as np from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from scipy import sparse from scipy.sparse import csgraph from scipy.linalg import eigh from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold.spectral_embedding_ import _graph_connected_component from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.utils.testing import assert_true, assert_equal, assert_raises from sklearn.utils.testing import SkipTest # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_sparse_graph_connected_component(): rng = np.random.RandomState(42) n_samples = 300 boundaries = [0, 42, 121, 200, n_samples] p = rng.permutation(n_samples) connections = [] for start, stop in zip(boundaries[:-1], boundaries[1:]): group = p[start:stop] # Connect all elements within the group at least once via an # arbitrary path that spans the group. for i in range(len(group) - 1): connections.append((group[i], group[i + 1])) # Add some more random connections within the group min_idx, max_idx = 0, len(group) - 1 n_random_connections = 1000 source = rng.randint(min_idx, max_idx, size=n_random_connections) target = rng.randint(min_idx, max_idx, size=n_random_connections) connections.extend(zip(group[source], group[target])) # Build a symmetric affinity matrix row_idx, column_idx = tuple(np.array(connections).T) data = rng.uniform(.1, 42, size=len(connections)) affinity = sparse.coo_matrix((data, (row_idx, column_idx))) affinity = 0.5 * (affinity + affinity.T) for start, stop in zip(boundaries[:-1], boundaries[1:]): component_1 = _graph_connected_component(affinity, p[start]) component_size = stop - start assert_equal(component_1.sum(), component_size) # We should retrieve the same component mask by starting by both ends # of the group component_2 = _graph_connected_component(affinity, p[stop - 1]) assert_equal(component_2.sum(), component_size) assert_array_equal(component_1, component_2) def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # Test of internal _graph_connected_component before connection component = _graph_connected_component(affinity, 0) assert_true(component[:n_sample].all()) assert_true(not component[n_sample:].any()) component = _graph_connected_component(affinity, -1) assert_true(not component[:n_sample].any()) assert_true(component[n_sample:].all()) # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver # noqa except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(sparse.csr_matrix(graph)), False) assert_equal(_graph_is_connected(sparse.csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(sparse.csr_matrix(graph)), True) assert_equal(_graph_is_connected(sparse.csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2) def test_spectral_embedding_unnormalized(): # Test that spectral_embedding is also processing unnormalized laplacian # correctly random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) n_components = 8 embedding_1 = spectral_embedding(sims, norm_laplacian=False, n_components=n_components, drop_first=False) # Verify using manual computation with dense eigh laplacian, dd = csgraph.laplacian(sims, normed=False, return_diag=True) _, diffusion_map = eigh(laplacian) embedding_2 = diffusion_map.T[:n_components] * dd embedding_2 = _deterministic_vector_sign_flip(embedding_2).T assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
schets/scikit-learn
sklearn/cross_decomposition/pls_.py
14
28526
""" The :mod:`sklearn.pls` module implements Partial Least Squares (PLS). """ # Author: Edouard Duchesnay <edouard.duchesnay@cea.fr> # License: BSD 3 clause from ..base import BaseEstimator, RegressorMixin, TransformerMixin from ..utils import check_array, check_consistent_length from ..externals import six import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import linalg from ..utils import arpack from ..utils.validation import check_is_fitted __all__ = ['PLSCanonical', 'PLSRegression', 'PLSSVD'] def _nipals_twoblocks_inner_loop(X, Y, mode="A", max_iter=500, tol=1e-06, norm_y_weights=False): """Inner loop of the iterative NIPALS algorithm. Provides an alternative to the svd(X'Y); returns the first left and right singular vectors of X'Y. See PLS for the meaning of the parameters. It is similar to the Power method for determining the eigenvectors and eigenvalues of a X'Y. """ y_score = Y[:, [0]] x_weights_old = 0 ite = 1 X_pinv = Y_pinv = None # Inner loop of the Wold algo. while True: # 1.1 Update u: the X weights if mode == "B": if X_pinv is None: X_pinv = linalg.pinv(X) # compute once pinv(X) x_weights = np.dot(X_pinv, y_score) else: # mode A # Mode A regress each X column on y_score x_weights = np.dot(X.T, y_score) / np.dot(y_score.T, y_score) # 1.2 Normalize u x_weights /= np.sqrt(np.dot(x_weights.T, x_weights)) # 1.3 Update x_score: the X latent scores x_score = np.dot(X, x_weights) # 2.1 Update y_weights if mode == "B": if Y_pinv is None: Y_pinv = linalg.pinv(Y) # compute once pinv(Y) y_weights = np.dot(Y_pinv, x_score) else: # Mode A regress each Y column on x_score y_weights = np.dot(Y.T, x_score) / np.dot(x_score.T, x_score) ## 2.2 Normalize y_weights if norm_y_weights: y_weights /= np.sqrt(np.dot(y_weights.T, y_weights)) # 2.3 Update y_score: the Y latent scores y_score = np.dot(Y, y_weights) / np.dot(y_weights.T, y_weights) ## y_score = np.dot(Y, y_weights) / np.dot(y_score.T, y_score) ## BUG x_weights_diff = x_weights - x_weights_old if np.dot(x_weights_diff.T, x_weights_diff) < tol or Y.shape[1] == 1: break if ite == max_iter: warnings.warn('Maximum number of iterations reached') break x_weights_old = x_weights ite += 1 return x_weights, y_weights, ite def _svd_cross_product(X, Y): C = np.dot(X.T, Y) U, s, Vh = linalg.svd(C, full_matrices=False) u = U[:, [0]] v = Vh.T[:, [0]] return u, v def _center_scale_xy(X, Y, scale=True): """ Center X, Y and scale if the scale parameter==True Returns ------- X, Y, x_mean, y_mean, x_std, y_std """ # center x_mean = X.mean(axis=0) X -= x_mean y_mean = Y.mean(axis=0) Y -= y_mean # scale if scale: x_std = X.std(axis=0, ddof=1) x_std[x_std == 0.0] = 1.0 X /= x_std y_std = Y.std(axis=0, ddof=1) y_std[y_std == 0.0] = 1.0 Y /= y_std else: x_std = np.ones(X.shape[1]) y_std = np.ones(Y.shape[1]) return X, Y, x_mean, y_mean, x_std, y_std class _PLS(six.with_metaclass(ABCMeta), BaseEstimator, TransformerMixin, RegressorMixin): """Partial Least Squares (PLS) This class implements the generic PLS algorithm, constructors' parameters allow to obtain a specific implementation such as: - PLS2 regression, i.e., PLS 2 blocks, mode A, with asymmetric deflation and unnormalized y weights such as defined by [Tenenhaus 1998] p. 132. With univariate response it implements PLS1. - PLS canonical, i.e., PLS 2 blocks, mode A, with symmetric deflation and normalized y weights such as defined by [Tenenhaus 1998] (p. 132) and [Wegelin et al. 2000]. This parametrization implements the original Wold algorithm. We use the terminology defined by [Wegelin et al. 2000]. This implementation uses the PLS Wold 2 blocks algorithm based on two nested loops: (i) The outer loop iterate over components. (ii) The inner loop estimates the weights vectors. This can be done with two algo. (a) the inner loop of the original NIPALS algo. or (b) a SVD on residuals cross-covariance matrices. n_components : int, number of components to keep. (default 2). scale : boolean, scale data? (default True) deflation_mode : str, "canonical" or "regression". See notes. mode : "A" classical PLS and "B" CCA. See notes. norm_y_weights: boolean, normalize Y weights to one? (default False) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, the maximum number of iterations (default 500) of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 The tolerance used in the iterative algorithm. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effects. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm given is "svd". References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In French but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSRegression CCA PLS_SVD """ @abstractmethod def __init__(self, n_components=2, scale=True, deflation_mode="regression", mode="A", algorithm="nipals", norm_y_weights=False, max_iter=500, tol=1e-06, copy=True): self.n_components = n_components self.deflation_mode = deflation_mode self.mode = mode self.norm_y_weights = norm_y_weights self.scale = scale self.algorithm = algorithm self.max_iter = max_iter self.tol = tol self.copy = copy def fit(self, X, Y): """Fit model to data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples in the number of samples and n_features is the number of predictors. Y : array-like of response, shape = [n_samples, n_targets] Target vectors, where n_samples in the number of samples and n_targets is the number of response variables. """ # copy since this will contains the residuals (deflated) matrices check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) n = X.shape[0] p = X.shape[1] q = Y.shape[1] if self.n_components < 1 or self.n_components > p: raise ValueError('Invalid number of components: %d' % self.n_components) if self.algorithm not in ("svd", "nipals"): raise ValueError("Got algorithm %s when only 'svd' " "and 'nipals' are known" % self.algorithm) if self.algorithm == "svd" and self.mode == "B": raise ValueError('Incompatible configuration: mode B is not ' 'implemented with svd algorithm') if self.deflation_mode not in ["canonical", "regression"]: raise ValueError('The deflation mode is unknown') # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_\ = _center_scale_xy(X, Y, self.scale) # Residuals (deflated) matrices Xk = X Yk = Y # Results matrices self.x_scores_ = np.zeros((n, self.n_components)) self.y_scores_ = np.zeros((n, self.n_components)) self.x_weights_ = np.zeros((p, self.n_components)) self.y_weights_ = np.zeros((q, self.n_components)) self.x_loadings_ = np.zeros((p, self.n_components)) self.y_loadings_ = np.zeros((q, self.n_components)) self.n_iter_ = [] # NIPALS algo: outer loop, over components for k in range(self.n_components): if np.all(np.dot(Yk.T, Yk) < np.finfo(np.double).eps): # Yk constant warnings.warn('Y residual constant at iteration %s' % k) break #1) weights estimation (inner loop) # ----------------------------------- if self.algorithm == "nipals": x_weights, y_weights, n_iter_ = \ _nipals_twoblocks_inner_loop( X=Xk, Y=Yk, mode=self.mode, max_iter=self.max_iter, tol=self.tol, norm_y_weights=self.norm_y_weights) self.n_iter_.append(n_iter_) elif self.algorithm == "svd": x_weights, y_weights = _svd_cross_product(X=Xk, Y=Yk) # compute scores x_scores = np.dot(Xk, x_weights) if self.norm_y_weights: y_ss = 1 else: y_ss = np.dot(y_weights.T, y_weights) y_scores = np.dot(Yk, y_weights) / y_ss # test for null variance if np.dot(x_scores.T, x_scores) < np.finfo(np.double).eps: warnings.warn('X scores are null at iteration %s' % k) break #2) Deflation (in place) # ---------------------- # Possible memory footprint reduction may done here: in order to # avoid the allocation of a data chunk for the rank-one # approximations matrix which is then subtracted to Xk, we suggest # to perform a column-wise deflation. # # - regress Xk's on x_score x_loadings = np.dot(Xk.T, x_scores) / np.dot(x_scores.T, x_scores) # - subtract rank-one approximations to obtain remainder matrix Xk -= np.dot(x_scores, x_loadings.T) if self.deflation_mode == "canonical": # - regress Yk's on y_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, y_scores) / np.dot(y_scores.T, y_scores)) Yk -= np.dot(y_scores, y_loadings.T) if self.deflation_mode == "regression": # - regress Yk's on x_score, then subtract rank-one approx. y_loadings = (np.dot(Yk.T, x_scores) / np.dot(x_scores.T, x_scores)) Yk -= np.dot(x_scores, y_loadings.T) # 3) Store weights, scores and loadings # Notation: self.x_scores_[:, k] = x_scores.ravel() # T self.y_scores_[:, k] = y_scores.ravel() # U self.x_weights_[:, k] = x_weights.ravel() # W self.y_weights_[:, k] = y_weights.ravel() # C self.x_loadings_[:, k] = x_loadings.ravel() # P self.y_loadings_[:, k] = y_loadings.ravel() # Q # Such that: X = TP' + Err and Y = UQ' + Err # 4) rotations from input space to transformed space (scores) # T = X W(P'W)^-1 = XW* (W* : p x k matrix) # U = Y C(Q'C)^-1 = YC* (W* : q x k matrix) self.x_rotations_ = np.dot( self.x_weights_, linalg.pinv(np.dot(self.x_loadings_.T, self.x_weights_))) if Y.shape[1] > 1: self.y_rotations_ = np.dot( self.y_weights_, linalg.pinv(np.dot(self.y_loadings_.T, self.y_weights_))) else: self.y_rotations_ = np.ones(1) if True or self.deflation_mode == "regression": # FIXME what's with the if? # Estimate regression coefficient # Regress Y on T # Y = TQ' + Err, # Then express in function of X # Y = X W(P'W)^-1Q' + Err = XB + Err # => B = W*Q' (p x q) self.coef_ = np.dot(self.x_rotations_, self.y_loadings_.T) self.coef_ = (1. / self.x_std_.reshape((p, 1)) * self.coef_ * self.y_std_) return self def transform(self, X, Y=None, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ # Apply rotation x_scores = np.dot(X, self.x_rotations_) if Y is not None: Y = check_array(Y, ensure_2d=False, copy=copy) if Y.ndim == 1: Y = Y.reshape(-1, 1) Y -= self.y_mean_ Y /= self.y_std_ y_scores = np.dot(Y, self.y_rotations_) return x_scores, y_scores return x_scores def predict(self, X, copy=True): """Apply the dimension reduction learned on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Notes ----- This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space. """ check_is_fitted(self, 'x_mean_') X = check_array(X, copy=copy) # Normalize X -= self.x_mean_ X /= self.x_std_ Ypred = np.dot(X, self.coef_) return Ypred + self.y_mean_ def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. copy : boolean, default True Whether to copy X and Y, or perform in-place normalization. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ check_is_fitted(self, 'x_mean_') return self.fit(X, y, **fit_params).transform(X, y) class PLSRegression(_PLS): """PLS regression PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional response. This class inherits from _PLS with mode="A", deflation_mode="regression", norm_y_weights=False and algorithm="nipals". Parameters ---------- n_components : int, (default 2) Number of components to keep. scale : boolean, (default True) whether to scale the data max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real Tolerance used in the iterative algorithm default 1e-06. copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. coef_: array, [p, q] The coefficients of the linear model: ``Y = X coef_ + Err`` n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find weights u, v that optimizes: ``max corr(Xk u, Yk v) * var(Xk u) var(Yk u)``, such that ``|u| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS regression known as PLS2. This mode is prediction oriented. This implementation provides the same results that 3 PLS packages provided in the R language (R-project): - "mixOmics" with function pls(X, Y, mode = "regression") - "plspm " with function plsreg2(X, Y) - "pls" with function oscorespls.fit(X, Y) Examples -------- >>> from sklearn.cross_decomposition import PLSRegression >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> pls2 = PLSRegression(n_components=2) >>> pls2.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSRegression(copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> Y_pred = pls2.predict(X) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="regression", mode="A", norm_y_weights=False, max_iter=max_iter, tol=tol, copy=copy) @property def coefs(self): check_is_fitted(self, 'coef_') DeprecationWarning("``coefs`` attribute has been deprecated and will be " "removed in version 0.17. Use ``coef_`` instead") return self.coef_ class PLSCanonical(_PLS): """ PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204, referred as PLS-C2A in [Wegelin 2000]. This class inherits from PLS with mode="A" and deflation_mode="canonical", norm_y_weights=True and algorithm="nipals", but svd should provide similar results up to numerical errors. Parameters ---------- scale : boolean, scale data? (default True) algorithm : string, "nipals" or "svd" The algorithm used to estimate the weights. It will be called n_components times, i.e. once for each iteration of the outer loop. max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop (used only if algorithm="nipals") tol : non-negative real, default 1e-06 the tolerance used in the iterative algorithm copy : boolean, default True Whether the deflation should be done on a copy. Let the default value to True unless you don't care about side effect n_components : int, number of components to keep. (default 2). Attributes ---------- x_weights_ : array, shape = [p, n_components] X block weights vectors. y_weights_ : array, shape = [q, n_components] Y block weights vectors. x_loadings_ : array, shape = [p, n_components] X block loadings vectors. y_loadings_ : array, shape = [q, n_components] Y block loadings vectors. x_scores_ : array, shape = [n_samples, n_components] X scores. y_scores_ : array, shape = [n_samples, n_components] Y scores. x_rotations_ : array, shape = [p, n_components] X block to latents rotations. y_rotations_ : array, shape = [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Not useful if the algorithm provided is "svd". Notes ----- For each component k, find weights u, v that optimize:: max corr(Xk u, Yk v) * var(Xk u) var(Yk u), such that ``|u| = |v| = 1`` Note that it maximizes both the correlations between the scores and the intra-block variances. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling. This implementation provides the same results that the "plspm" package provided in the R language (R-project), using the function plsca(X, Y). Results are equal or collinear with the function ``pls(..., mode = "canonical")`` of the "mixOmics" package. The difference relies in the fact that mixOmics implementation does not exactly implement the Wold algorithm since it does not normalize y_weights to one. Examples -------- >>> from sklearn.cross_decomposition import PLSCanonical >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> plsca = PLSCanonical(n_components=2) >>> plsca.fit(X, Y) ... # doctest: +NORMALIZE_WHITESPACE PLSCanonical(algorithm='nipals', copy=True, max_iter=500, n_components=2, scale=True, tol=1e-06) >>> X_c, Y_c = plsca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- CCA PLSSVD """ def __init__(self, n_components=2, scale=True, algorithm="nipals", max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="A", norm_y_weights=True, algorithm=algorithm, max_iter=max_iter, tol=tol, copy=copy) class PLSSVD(BaseEstimator, TransformerMixin): """Partial Least Square SVD Simply perform a svd on the crosscovariance matrix: X'Y There are no iterative deflation here. Parameters ---------- n_components : int, default 2 Number of components to keep. scale : boolean, default True Whether to scale X and Y. copy : boolean, default True Whether to copy X and Y, or perform in-place computations. Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. See also -------- PLSCanonical CCA """ def __init__(self, n_components=2, scale=True, copy=True): self.n_components = n_components self.scale = scale self.copy = copy def fit(self, X, Y): # copy since this will contains the centered data check_consistent_length(X, Y) X = check_array(X, dtype=np.float64, copy=self.copy) Y = check_array(Y, dtype=np.float64, copy=self.copy, ensure_2d=False) if Y.ndim == 1: Y = Y.reshape(-1, 1) if self.n_components > max(Y.shape[1], X.shape[1]): raise ValueError("Invalid number of components n_components=%d with " "X of shape %s and Y of shape %s." % (self.n_components, str(X.shape), str(Y.shape))) # Scale (in place) X, Y, self.x_mean_, self.y_mean_, self.x_std_, self.y_std_ =\ _center_scale_xy(X, Y, self.scale) # svd(X'Y) C = np.dot(X.T, Y) # The arpack svds solver only works if the number of extracted # components is smaller than rank(X) - 1. Hence, if we want to extract # all the components (C.shape[1]), we have to use another one. Else, # let's use arpacks to compute only the interesting components. if self.n_components >= np.min(C.shape): U, s, V = linalg.svd(C, full_matrices=False) else: U, s, V = arpack.svds(C, k=self.n_components) V = V.T self.x_scores_ = np.dot(X, U) self.y_scores_ = np.dot(Y, V) self.x_weights_ = U self.y_weights_ = V return self def transform(self, X, Y=None): """Apply the dimension reduction learned on the train data.""" check_is_fitted(self, 'x_mean_') X = check_array(X, dtype=np.float64) Xr = (X - self.x_mean_) / self.x_std_ x_scores = np.dot(Xr, self.x_weights_) if Y is not None: if Y.ndim == 1: Y = Y.reshape(-1, 1) Yr = (Y - self.y_mean_) / self.y_std_ y_scores = np.dot(Yr, self.y_weights_) return x_scores, y_scores return x_scores def fit_transform(self, X, y=None, **fit_params): """Learn and apply the dimension reduction on the train data. Parameters ---------- X : array-like of predictors, shape = [n_samples, p] Training vectors, where n_samples in the number of samples and p is the number of predictors. Y : array-like of response, shape = [n_samples, q], optional Training vectors, where n_samples in the number of samples and q is the number of response variables. Returns ------- x_scores if Y is not given, (x_scores, y_scores) otherwise. """ return self.fit(X, y, **fit_params).transform(X, y)
bsd-3-clause
boland1992/seissuite_iran
build/lib.linux-x86_64-2.7/seissuite/spectrum/heat_pickle.py
8
25534
# -*- coding: utf-8 -*- """ Created on Fri July 6 11:04:03 2015 @author: boland """ import os import datetime import numpy as np import multiprocessing as mp import matplotlib.pyplot as plt import shapefile from scipy import signal from obspy import read from scipy.signal import argrelextrema from info_dataless import locs_from_dataless from scipy import interpolate from matplotlib.colors import LogNorm import pickle import fiona from shapely import geometry from shapely.geometry import asPolygon, Polygon from math import sqrt, radians, cos, sin, asin from info_dataless import locs_from_dataless from descartes.patch import PolygonPatch from matplotlib.colors import LogNorm from scipy.spatial import ConvexHull from scipy.cluster.vq import kmeans from shapely.affinity import scale from matplotlib.path import Path import itertools from scipy.interpolate import griddata import random from sklearn.cluster import DBSCAN #------------------------------------------------------------------------------ # CLASSES #------------------------------------------------------------------------------ class InShape: """ Class defined in order to define a shapefile boundary AND quickly check if a given set of coordinates is contained within it. This class uses the shapely module. """ def __init__(self, input_shape, coords=0.): #initialise boundary shapefile location string input self.boundary = input_shape #initialise coords shape input self.dots = coords #initialise boundary polygon self.polygon = 0. #initialise output coordinates that are contained within the polygon self.output = 0. def shape_poly(self): with fiona.open(self.boundary) as fiona_collection: # In this case, we'll assume the shapefile only has one later shapefile_record = fiona_collection.next() # Use Shapely to create the polygon self.polygon = geometry.asShape( shapefile_record['geometry'] ) return self.polygon def point_check(self, coord): """ Function that takes a single (2,1) shape input, converts the points into a shapely.geometry.Point object and then checks if the coord is contained within the shapefile. """ self.polygon = self.shape_poly() point = geometry.Point(coord[0], coord[1]) if self.polygon.contains(point): return coord def shape_bounds(self): """ Function that returns the bounding box coordinates xmin,xmax,ymin,ymax """ self.polygon = self.shape_poly() return self.polygon.bounds def shape_buffer(self, shape=None, size=1., res=1): """ Function that returns a new polygon of the larger buffered points. Can import polygon into function if desired. Default is self.shape_poly() """ if shape is None: self.polygon = self.shape_poly() return asPolygon(self.polygon.buffer(size, resolution=res)\ .exterior) def extract_poly_coords(self, poly): if poly.type == 'Polygon': exterior_coords = poly.exterior.coords[:] elif poly.type == 'MultiPolygon': exterior_coords = [] for part in poly: epc = np.asarray(self.extract_poly_coords(part)) # Recursive call exterior_coords.append(epc) else: raise ValueError('Unhandled geometry type: ' + repr(poly.type)) return np.vstack(exterior_coords) def external_coords(self, shape=None, buff=None, size=1., res=1): """ Function that returns the external coords of a buffered shapely polygon. Note that shape variable input MUST be a shapely Polygon object. """ if shape is not None and buff is not None: poly = self.shape_buffer(shape=shape, size=size, res=res) elif shape is not None: poly = shape else: poly = self.shape_poly() exterior_coords = self.extract_poly_coords(poly) return exterior_coords class InPoly: """ Class defined in order to define a shapefile boundary AND quickly check if a given set of coordinates is contained within it. The class uses the matplotlib Path class. """ def __init__(self, input_shape, coords=0.): #initialise boundary shapefile location string input self.boundary = input_shape #initialise coords shape input self.dots = coords #initialise boundary polygon self.polygon = 0. #initialise boundary polygon nodes self.nodes = 0. #initialise output coordinates that are contained within the polygon self.output = 0. def poly_nodes(self): """ Function that returns the nodes of a shapefile as a (n,2) array. """ sf = shapefile.Reader(self.boundary) poly = sf.shapes()[0] #find polygon nodes lat lons self.nodes = np.asarray(poly.points) return self.nodes def points_from_path(self, poly): """ Function that returns nodes from matplotlib Path object. """ return poly.vertices def shapefile_poly(self): """ Function that imports a shapefile location path and returns a matplotlib Path object representing this shape. """ self.nodes = self.poly_nodes() #convert to a matplotlib path class! self.polygon = Path(self.nodes) return self.polygon def node_poly(self, nodes): """ Function creates a matplotlib Path object from input nodes. """ #convert to a matplotlib path class! polygon = Path(nodes) return polygon def points_in_shapefile_poly(self): """ Function that takes a single (2,1) coordinate input, and uses the contains() function in class matplotlib Path to check if point is in the polygon. """ self.polygon = self.shapefile_poly() points_in = self.polygon.contains_points(self.dots) self.output = self.dots[points_in == True] return np.asarray(self.output) def points_in(self, points, poly=None, IN=True, indices=False): """ Function that takes a many (2,N) points, and uses the contains() function in class matplotlib Path to check if point is in the polygon. If IN=True then the function will return points inside the matplotlib Path object, else if IN=False then the function will return the points outside the matplotlib Path object. """ if poly is None: poly = self.shapefile_poly() points_test = poly.contains_points(points) if indices: return points_test else: output = points[points_test == IN] return np.asarray(output) def bounds_poly(self, nodes=None): """ Function that returns boundaries of a shapefile polygon. """ if nodes is None: nodes = self.poly_nodes() xmin, xmax = np.min(nodes[:,0]), np.max(nodes[:,0]) ymin, ymax = np.min(nodes[:,1]), np.max(nodes[:,1]) return xmin, xmax, ymin, ymax def poly_from_shape(self, shape=None, size=1., res=1): """ Function that returns a matplotlib Path object from buffered shape points. if shape != None then the shape input MUST be of type shapely polygon. """ SHAPE = InShape(self.boundary) if shape is None: # Generates shape object from shape_file input shape = SHAPE return self.node_poly(shape.external_coords(size=size, res=res)) else: return self.node_poly(SHAPE.external_coords(shape=shape)) def rand_poly(self, poly=None, N=1e4, IN=True): """ Function that takes an input matplotlib Path object (or the default) and generates N random points within the bounding box around it. Then M unknown points are returned that ARE contained within the Path object. This is done for speed. If IN=True then the function will return points inside the matplotlib Path object, else if IN=False then the function will return the points outside the matplotlib Path object. """ if poly is None: #poly = self.shapefile_poly() xmin, xmax, ymin, ymax = self.bounds_poly() else: nodes = self.points_from_path(poly) xmin, xmax, ymin, ymax = self.bounds_poly(nodes=nodes) X = abs(xmax - xmin) * np.random.rand(N,1) + xmin Y = abs(ymax - ymin) * np.random.rand(N,1) + ymin many_points = np.column_stack((X,Y)) many_points = self.points_in(many_points, poly=poly, IN=IN) return many_points def rand_shape(self, shape=None, N=1e4, IN=True): """ Function that takes an input shapely Polygon object (or the default) and generates N random points within the bounding box around it. Then M unknown points are returned that ARE contained within the Polygon object. This is done for speed. If IN=True then the function will return points inside the matplotlib Path object, else if IN=False then the function will return the points outside the matplotlib Path object. """ if shape is None: # Generates shape object from shape_file input INSHAPE = InShape(self.boundary) shape = self.node_poly(INSHAPE.external_coords()) xmin, xmax, ymin, ymax = INSHAPE.shape_bounds() poly = self.node_poly(SHAPE.external_coords(shape=shape)) points = self.rand_poly(poly=poly, N=N, IN=IN) return points class Geodesic: """ Class defined in order to create to process points, distances and other related geodesic calculations and functions """ def __init__(self, period_range=[1, 40], km_point=20., max_dist=2e3): # initialise period_range as [1,40] default for ambient noise self.per_range = period_range self.km = km_point self.max_dist = max_dist def remove_distance(self, period_range, max_dist=None): """ Function that returns a given possible resolvable ambient noise structure distance range, given the maximum period range availabe to the study. The distance returned is in km. Maximum distance default can be reassigned based on the cut-off found by your time-lag plots for your study! """ if max_dist is None: max_dist = self.max_dist if type(period_range) == list: min_dist = min(period_range) * 9 return [min_dist, max_dist] elif type(period_range) == int or float: return [period_range*9, max_dist] def haversine(self, lon1, lat1, lon2, lat2, R=6371): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees). R is radius of spherical earth. Default is 6371km. """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon, dlat = lon2 - lon1, lat2 - lat1 a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) km = R * c return km def fast_geodesic(self, lon1, lat1, lon2, lat2, npts): """ Returns a list of *npts* points along the geodesic between (and including) *coord1* and *coord2*, in an array of shape (*npts*, 2). @rtype: L{ndarray} """ if npts < 2: raise Exception('nb of points must be at least 2') path = wgs84.npts(lon1=lon1, lat1=lat1, lon2=lon2, lat2=lat2, npts=npts-2) return np.array([[lon1,lat1]] + path + [[lon2,lat2]]) def paths_calc(self, path_info, km_points=None, per_lims=None): """ Function that returns an array of coordinates equidistant along a great cricle path between two lat-lon coordinates if these points lay within a certain distance range ... otherwise the points return only a set of zeros the same size as the array. Default is 1.0km distance per point. """ if per_lims is None: # if no new default for period limits is defined, then set the # limit to the default. per_lims = self.per_range if km_points is None: km_points = self.km lon1, lat1, lon2, lat2 = path_info[0], \ path_info[1], path_info[2], path_info[3] # interpoint distance <= 1 km, and nb of points >= 100 dist = self.haversine(lon1, lat1, lon2, lat2) npts = max(int((np.ceil(dist) + 1) / km_points), 100) path = self.fast_geodesic(lon1, lat1, lon2, lat2, npts) dist_range = self.remove_distance(per_lims) if min(dist_range) < dist < max(dist_range): #remove the closest points along this line that fall below the distance #find the index of the first point that is above this distance away! pts_km = npts / float((np.ceil(dist) + 1)) #this gives pts/km #remove all points below this index in the paths list dist_index = pts_km * min(dist_range) path = path[dist_index:] return path else: return np.zeros_like(path) def fast_paths(self, coord_list): """ Function that takes many point coordinate combinations and quickly passes them through the paths_calc function. coord_list MUST be of the shape (4, N) whereby each coordinate combination is in a (4,1) row [lon1,lat1,lon2,lat2]. """ return map(self.paths_calc, coord_list) def combine_paths(self, paths): """ Function that takes many paths (should be array of same length as number of stations). This is automatically generated by parallelising the fast_paths function above. The output array should only contain unique, no repeating paths and should be of the shape (2,N) where N is a large number of coords. """ #create a flattened numpy array of size 2xN from the paths created! paths = list(itertools.chain(*paths)) paths = np.asarray(list(itertools.chain\ (*paths))) #keep all but the repeated coordinates by keeping only unique whole rows! b = np.ascontiguousarray(paths).view(np.dtype\ ((np.void, paths.dtype.itemsize * \ paths.shape[1]))) _, idx = np.unique(b, return_index=True) paths = np.unique(b).view(paths.dtype)\ .reshape(-1, paths.shape[1]) return paths def remove_zeros(self, paths): """ Function that processes the flattened path output from combine_paths and removes the zero paths created by paths_calc. Remove zeroes from paths to ensure all paths that were NOT in the distance threshold are removed from the path density calculation! """ path_lons, path_lats = paths[:,0], paths[:,1] FIND_ZERO1 = np.where(paths[:,0]==0)[0] FIND_ZERO2 = np.where(paths[:,1]==0)[0] if len(FIND_ZERO1) != 0 and len(FIND_ZERO2) != 0: path_lons = np.delete(path_lons, FIND_ZERO1) path_lats = np.delete(path_lats, FIND_ZERO2) return np.column_stack((path_lons, path_lats)) #------------------------------------------------------------------------------ # IMPORT PATHS TO MSEED FILES #------------------------------------------------------------------------------ def spectrum(tr): wave = tr.data #this is how to extract a data array from a mseed file fs = tr.stats.sampling_rate #hour = str(hour).zfill(2) #create correct format for eqstring f, Pxx_spec = signal.welch(wave, fs, 'flattop', nperseg=1024, scaling='spectrum') #plt.semilogy(f, np.sqrt(Pxx_spec)) if len(f) >= 256: column = np.column_stack((f[:255], np.abs(np.sqrt(Pxx_spec)[:255]))) return column else: return 0. # x = np.linspace(0, 10, 1000) # f_interp = interp1d(np.sqrt(Pxx_spec),f, kind='cubic') #x.reverse() #y.reverse() # print f_interp(x) #f,np.sqrt(Pxx_spec),'o', # plt.figure() # plt.plot(x,f_interp(x),'-' ) # plt.show() def paths_sort(path): """ Function defined for customised sorting of the abs_paths list and will be used in conjunction with the sorted() built in python function in order to produce file paths in chronological order. """ base_name = os.path.basename(path) stat_name = base_name.split('.')[0] date = base_name.split('.')[1] try: date = datetime.datetime.strptime(date, '%Y-%m-%d') return date, stat_name except Exception as e: a=4 def paths(folder_path, extension): """ Function that returns a list of desired absolute paths called abs_paths of files that contains a given extension e.g. .txt should be entered as folder_path, txt. This function will run recursively through and find any and all files within this folder with that extension! """ abs_paths = [] for root, dirs, files in os.walk(folder_path): for f in files: fullpath = os.path.join(root, f) if os.path.splitext(fullpath)[1] == '.{}'.format(extension): abs_paths.append(fullpath) abs_paths = sorted(abs_paths, key=paths_sort) return abs_paths GEODESIC = Geodesic() # import background shapefile location shape_path = "/home/boland/Dropbox/University/UniMelb\ /AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" INPOLY = InPoly(shape_path) # generate shape object # Generate InShape class SHAPE = InShape(shape_path) # Create shapely polygon from imported shapefile UNIQUE_SHAPE = SHAPE.shape_poly() # set plotting limits for shapefile boundaries lonmin, latmin, lonmax, latmax = SHAPE.shape_bounds() print lonmin, latmin, lonmax, latmax #lonmin, lonmax, latmin, latmax = SHAPE.plot_lims() dataless_path = 'ALL_AUSTRALIA.870093.dataless' stat_locs = locs_from_dataless(dataless_path) #folder_path = '/storage/ANT/INPUT/DATA/AU-2014' folder_path = '/storage/ANT/INPUT/DATA/AU-2014' extension = 'mseed' paths_list = paths(folder_path, extension) t0_total = datetime.datetime.now() figs_counter = 0 pickle_file0 = '/storage/ANT/spectral_density/station_pds_maxima/\ AUSTRALIA 2014/noiseinfo_comb.pickle' pickle_file0 = '/storage/ANT/spectral_density/station_pds_maxima/AUSTRALIA 2014/first_peak_dict_australia_2014.pickle' pickle_file0 = '/storage/ANT/spectral_density/noise_info0.pickle' comb_noise = '/storage/ANT/spectral_density/station_pds_maxima/total_noise_combination.pickle' f = open(name=comb_noise, mode='rb') noise_info0 = pickle.load(f) f.close() # sort the noise noise_info0 = np.asarray(noise_info0) #noise_info0 = noise_info0[np.argsort(noise_info0[:, 1])] # Combine AU with S info print len(noise_info0) # find outliers def reject_outliers(data, m=0.5): return data[abs(data - np.mean(data)) < m * np.std(data)] outliers = reject_outliers(noise_info0[:,2]) # remove outliers noise_info0 = np.asarray([info for info in noise_info0 \ if info[2] in outliers]) # filter coordinates that are too close together. min_dist = 1. #degrees coords = np.column_stack((noise_info0[:,0], noise_info0[:,1])) # next remove points outside of the given poly if applicable coord_indices = INPOLY.points_in(coords, indices=True) noise_info0 = noise_info0[coord_indices == True] print noise_info0 coords = np.column_stack((noise_info0[:,0], noise_info0[:,1])) coord_combs = np.asarray(list(itertools.combinations(coords,2))) print len(coord_combs) def coord_combinations(coord_combs): lon1, lat1 = coord_combs[0][0], coord_combs[0][1] lon2, lat2 = coord_combs[1][0], coord_combs[1][1] return [coord_combs, GEODESIC.haversine(lon1, lat1, lon2, lat2)] t0 = datetime.datetime.now() pool = mp.Pool() comb_dists = pool.map(coord_combinations, coord_combs) pool.close() pool.join() t1 = datetime.datetime.now() print t1-t0 comb_dists = np.asarray(comb_dists) # sort by distance comb_dists = comb_dists[np.argsort(comb_dists[:, 1])] # find where the distances are less than the min_dist find_min = np.where(comb_dists[:,1]>min_dist)[0] # remove points where the distances are less than the min_dist comb_dists = np.delete(comb_dists, find_min, axis=0) remaining_coords = comb_dists[:,0] # get unique coordinates from remaining coords #paths = list(itertools.chain(*paths)) remaining_coords = np.asarray(list(itertools.chain\ (*remaining_coords))) #keep all but the repeated coordinates by keeping only unique whole rows! b = np.ascontiguousarray(remaining_coords).view(np.dtype\ ((np.void, remaining_coords.dtype.itemsize * \ remaining_coords.shape[1]))) _, idx = np.unique(b, return_index=True) remaining_coords = np.unique(b).view(remaining_coords.dtype)\ .reshape(-1, remaining_coords.shape[1]) #scan for all points that are within a degree radius of one another! db = DBSCAN(eps=min_dist).fit(coords) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # Black removed and is used for noise instead. unique_labels = set(labels) clusters = [] cluster_keep = [] for k in unique_labels: if k != -1: class_member_mask = (labels == k) cluster = coords[class_member_mask & core_samples_mask] #xy = coords[class_member_mask & ~core_samples_mask] # Select only 1 random point from each cluster to keep. Remove all others! clusters.append(cluster) cluster_keep.append(cluster[random.randint(0,len(cluster)-1)]) cluster_keep = np.asarray(cluster_keep) # flatten clusters array clusters = np.asarray(list(itertools.chain(*clusters))) # remove all points in clusters from the overall coords array coords = np.asarray([coord for coord in coords if coord not in clusters]) # place single representative point from cluster back into overall coord list coords = np.append(coords, cluster_keep, axis=0) print len(noise_info0) # remove cluster coordinates from noise_info0 noise_info0 = np.asarray([info for info in noise_info0 \ if info[0] in coords[:,0]]) fig = plt.figure(figsize=(15,10), dpi=1000) plt.title('Average Seismic Noise First Peak Maximum PDS\n Australian Network | 2014') plt.xlabel('Longitude (degrees)') plt.ylabel('Latitude (degrees)') print "number of station points: ", len(noise_info0) patch = PolygonPatch(UNIQUE_SHAPE, facecolor='white',\ edgecolor='k', zorder=1) ax = fig.add_subplot(111) ax.add_patch(patch) x, y = noise_info0[:,0], noise_info0[:,1] points = np.column_stack((x,y)) xmin, xmax = np.min(x), np.max(x) ymin, ymax = np.min(y), np.max(y) values = noise_info0[:,2] #now we create a grid of values, interpolated from our random sample above y = np.linspace(ymin, ymax, 200) x = np.linspace(xmin, xmax, 200) gridx, gridy = np.meshgrid(x, y) heat_field = griddata(points, values, (gridx, gridy), method='cubic',fill_value=0) #heat_field = np.where(heat_field < 0, 1, heat_field) heat_field = np.ma.masked_where(heat_field==0,heat_field) print gridx plt.pcolor(gridx, gridy, heat_field, cmap='rainbow',alpha=0.5, norm=LogNorm(vmin=100, vmax=3e4), zorder=2) plt.scatter(noise_info0[:,0], noise_info0[:,1], c=noise_info0[:,2], norm=LogNorm(vmin=100, vmax=3e4), s=35, cmap='rainbow', zorder=3) #cmin, cmax = np.min(noise_info0[:,2]), np.max(noise_info0[:,2]) #sc = plt.scatter(noise_info0[:,0], noise_info0[:,1], c=noise_info0[:,2], # norm=LogNorm(vmin=100, vmax=3e4), s=50, cmap=cm, zorder=2) col = plt.colorbar() col.ax.set_ylabel('Maximum Power Density Spectrum (V RMS)') ax.set_xlim(lonmin-0.05*abs(lonmax-lonmin), \ lonmax+0.05*abs(lonmax-lonmin)) ax.set_ylim(latmin-0.05*abs(latmax-latmin), \ latmax+0.05*abs(latmax-latmin)) fig.savefig('station_pds_maxima/noise_map_all.svg', format='SVG')
gpl-3.0
jkeung/yellowbrick
tests/test_text/test_base.py
2
1473
# tests.test_text.test_base # Tests for the text visualization base classes # # Author: Benjamin Bengfort <bbengfort@districtdatalabs.com> # Created: Mon Feb 20 06:34:50 2017 -0500 # # Copyright (C) 2016 District Data Labs # For license information, see LICENSE.txt # # ID: test_base.py [] benjamin@bengfort.com $ """ Tests for the text visualization base classes """ ########################################################################## ## Imports ########################################################################## import unittest from yellowbrick.base import * from yellowbrick.text.base import * from sklearn.base import BaseEstimator, TransformerMixin ########################################################################## ## TextVisualizer Base Tests ########################################################################## class TextVisualizerBaseTests(unittest.TestCase): def test_subclass(self): """ Assert the text visualizer is subclassed correctly """ visualizer = TextVisualizer() self.assertIsInstance(visualizer, TransformerMixin) self.assertIsInstance(visualizer, BaseEstimator) self.assertIsInstance(visualizer, Visualizer) # def test_interface(self): # """ # Test the feature visualizer interface # """ # # visualizer = TextVisualizer() # with self.assertRaises(NotImplementedError): # visualizer.poof()
apache-2.0
schets/scikit-learn
examples/plot_kernel_ridge_regression.py
229
6222
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.grid_search import GridSearchCV from sklearn.learning_curve import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors') plt.scatter(X[:100], y[:100], c='k', label='data') plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) sizes = np.logspace(1, 4, 7) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
sangwook236/general-development-and-testing
sw_dev/python/rnd/test/machine_learning/tensorflow2/tensorflow2_saving_and_loading.py
2
6119
#!/usr/bin/env python # -*- coding: UTF-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import os import tensorflow as tf # Define a simple sequential model def create_model(): model = tf.keras.models.Sequential([ tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # REF [site] >> https://www.tensorflow.org/tutorials/keras/save_and_load def keras_example(): (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_labels = train_labels[:1000] test_labels = test_labels[:1000] train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0 test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0 #---------------------------------------- # Save checkpoints during training. # Checkpoint callback usage. # Create a basic model instance. model = create_model() # Display the model's architecture. model.summary() # Create a callback that saves the model's weights. checkpoint_filepath = 'training_1/ckpt' #os.makedirs(checkpoint_filepath + '/variables') # When save_weights_only = False. checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_filepath, save_weights_only=True, verbose=1) callbacks = [checkpoint_callback] # Train the model with the new callback. model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels), callbacks=callbacks) # Pass callback to training. # This may generate warnings related to saving the state of the optimizer. # These warnings (and similar warnings throughout this notebook) # are in place to discourage outdated usage, and can be ignored. #-------------------- # Create a basic model instance. model = create_model() # Evaluate the model. loss, acc = model.evaluate(test_images, test_labels, verbose=2) print('Untrained model, accuracy: {:5.2f}%'.format(100 * acc)) # Loads the weights. model.load_weights(checkpoint_filepath) # Re-evaluate the model. loss, acc = model.evaluate(test_images, test_labels, verbose=2) print('Restored model, accuracy: {:5.2f}%'.format(100 * acc)) #---------------------------------------- # Checkpoint callback options. # Include the epoch in the file name (uses 'str.format'). checkpoint_filepath = 'training_2/ckpt.{epoch:04d}' #checkpoint_filepath = 'training_2/ckpt.{epoch:04d}-{val_loss:.5f}' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_filepath, #monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True, mode='auto', period=5) callbacks = [checkpoint_callback] # Create a new model instance. model = create_model() # Save the weights using the 'checkpoint_filepath' format. model.save_weights(checkpoint_filepath.format(epoch=0)) # Train the model with the new callback. model.fit(train_images, train_labels, epochs=50, callbacks=callbacks, validation_data=(test_images, test_labels), verbose=0) #-------------------- checkpoint_dir_path = os.path.dirname(checkpoint_filepath) latest_checkpoint_filepath = tf.train.latest_checkpoint(checkpoint_dir_path) print('Latest checkpoint filepath = {}.'.format(latest_checkpoint_filepath)) # Create a new model instance. model = create_model() # Load the previously saved weights. model.load_weights(latest_checkpoint_filepath) # Re-evaluate the model. loss, acc = model.evaluate(test_images, test_labels, verbose=2) print('Restored model, accuracy: {:5.2f}%.'.format(100 * acc)) #---------------------------------------- # Manually save weights. # Save the weights. model.save_weights('./checkpoints/my_ckpt') # Create a new model instance. model = create_model() # Restore the weights. model.load_weights('./checkpoints/my_ckpt') # Evaluate the model. loss,acc = model.evaluate(test_images, test_labels, verbose=2) print('Restored model, accuracy: {:5.2f}%'.format(100 * acc)) class MyModel(tf.keras.Model): """A simple linear model.""" def __init__(self): super(MyModel, self).__init__() self.l1 = tf.keras.layers.Dense(5) def call(self, x): return self.l1(x) # REF [site] >> https://www.tensorflow.org/guide/checkpoint def checkpoint_example(): def toy_dataset(): inputs = tf.range(10.)[:, None] labels = inputs * 5. + tf.range(5.)[None, :] return tf.data.Dataset.from_tensor_slices(dict(x=inputs, y=labels)).repeat(10).batch(2) def train_step(model, example, optimizer): """Trains 'model' on 'example' using 'optimizer'.""" with tf.GradientTape() as tape: output = model(example['x']) loss = tf.reduce_mean(tf.abs(output - example['y'])) variables = model.trainable_variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) return loss #-------------------- model = MyModel() optimizer = tf.keras.optimizers.Adam(0.1) # Create the checkpoint objects. ckpt = tf.train.Checkpoint(step=tf.Variable(1), optimizer=optimizer, net=model) manager = tf.train.CheckpointManager(ckpt, './tf_ckpts', max_to_keep=3) # Train and checkpoint the model. ckpt.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print('Restored from {}.'.format(manager.latest_checkpoint)) else: print('Initializing from scratch.') for example in toy_dataset(): loss = train_step(model, example, optimizer) ckpt.step.assign_add(1) if int(ckpt.step) % 10 == 0: save_path = manager.save() print('Saved checkpoint for step {}: {}.'.format(int(ckpt.step), save_path)) print('Loss: {:1.2f}.'.format(loss.numpy())) # REF [site] >> https://www.tensorflow.org/guide/saved_model def saved_model_example(): raise NotImplementedError def main(): keras_example() #checkpoint_example() #saved_model_example() # Not yet implemented. #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-2.0
yejingxin/PyKrige
pykrige/uk3d.py
1
44478
__doc__ = """Code by Benjamin S. Murphy bscott.murphy@gmail.com Dependencies: numpy scipy matplotlib Classes: UniversalKriging3D: Support for 3D Universal Kriging. References: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology, (Cambridge University Press, 1997) 272 p. Copyright (c) 2015 Benjamin S. Murphy """ import numpy as np import scipy.linalg from scipy.spatial.distance import cdist import matplotlib.pyplot as plt import variogram_models import core class UniversalKriging3D: """class UniversalKriging3D Three-dimensional universal kriging Dependencies: numpy scipy matplotlib Inputs: X (array-like): X-coordinates of data points. Y (array-like): Y-coordinates of data points. Z (array-like): Z-coordinates of data points. Val (array-like): Values at data points. variogram_model (string, optional): Specified which variogram model to use; may be one of the following: linear, power, gaussian, spherical, exponential. Default is linear variogram model. To utilize as custom variogram model, specify 'custom'; you must also provide variogram_parameters and variogram_function. variogram_parameters (list, optional): Parameters that define the specified variogram model. If not provided, parameters will be automatically calculated such that the root-mean-square error for the fit variogram function is minimized. linear - [slope, nugget] power - [scale, exponent, nugget] gaussian - [sill, range, nugget] spherical - [sill, range, nugget] exponential - [sill, range, nugget] For a custom variogram model, the parameters are required, as custom variogram models currently will not automatically be fit to the data. The code does not check that the provided list contains the appropriate number of parameters for the custom variogram model, so an incorrect parameter list in such a case will probably trigger an esoteric exception someplace deep in the code. variogram_function (callable, optional): A callable function that must be provided if variogram_model is specified as 'custom'. The function must take only two arguments: first, a list of parameters for the variogram model; second, the distances at which to calculate the variogram model. The list provided in variogram_parameters will be passed to the function as the first argument. nlags (int, optional): Number of averaging bins for the semivariogram. Default is 6. weight (boolean, optional): Flag that specifies if semivariance at smaller lags should be weighted more heavily when automatically calculating variogram model. True indicates that weights will be applied. Default is False. (Kitanidis suggests that the values at smaller lags are more important in fitting a variogram model, so the option is provided to enable such weighting.) anisotropy_scaling_y (float, optional): Scalar stretching value to take into account anisotropy in the y direction. Default is 1 (effectively no stretching). Scaling is applied in the y direction in the rotated data frame (i.e., after adjusting for the anisotropy_angle_x/y/z, if anisotropy_angle_x/y/z is/are not 0). anisotropy_scaling_z (float, optional): Scalar stretching value to take into account anisotropy in the z direction. Default is 1 (effectively no stretching). Scaling is applied in the z direction in the rotated data frame (i.e., after adjusting for the anisotropy_angle_x/y/z, if anisotropy_angle_x/y/z is/are not 0). anisotropy_angle_x (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the x axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. anisotropy_angle_y (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the y axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. anisotropy_angle_z (float, optional): CCW angle (in degrees) by which to rotate coordinate system about the z axis in order to take into account anisotropy. Default is 0 (no rotation). Note that the coordinate system is rotated. X rotation is applied first, then y rotation, then z rotation. Scaling is applied after rotation. drift_terms (list of strings, optional): List of drift terms to include in three-dimensional universal kriging. Supported drift terms are currently 'regional_linear', 'specified', and 'functional'. specified_drift (list of array-like objects, optional): List of arrays that contain the drift values at data points. The arrays must be dim N, where N is the number of data points. Any number of specified-drift terms may be used. functional_drift (list of callable objects, optional): List of callable functions that will be used to evaluate drift terms. The function must be a function of only the three spatial coordinates and must return a single value for each coordinate triplet. It must be set up to be called with only three arguments, first an array of x values, the second an array of y values, and the third an array of z values. If the problem involves anisotropy, the drift values are calculated in the adjusted data frame. verbose (Boolean, optional): Enables program text output to monitor kriging process. Default is False (off). enable_plotting (Boolean, optional): Enables plotting to display variogram. Default is False (off). Callable Methods: display_variogram_model(): Displays semivariogram and variogram model. update_variogram_model(variogram_model, variogram_parameters=None, nlags=6, anisotropy_scaling=1.0, anisotropy_angle=0.0): Changes the variogram model and variogram parameters for the kriging system. Inputs: variogram_model (string): May be any of the variogram models listed above. May also be 'custom', in which case variogram_parameters and variogram_function must be specified. variogram_parameters (list, optional): List of variogram model parameters, as listed above. If not provided, a best fit model will be calculated as described above. variogram_function (callable, optional): A callable function that must be provided if variogram_model is specified as 'custom'. See above for more information. nlags (int, optional): Number of averaging bins for the semivariogram. Defualt is 6. weight (boolean, optional): Flag that specifies if semivariance at smaller lags should be weighted more heavily when automatically calculating variogram model. True indicates that weights will be applied. Default is False. anisotropy_scaling (float, optional): Scalar stretching value to take into account anisotropy. Default is 1 (effectively no stretching). Scaling is applied in the y-direction. anisotropy_angle (float, optional): Angle (in degrees) by which to rotate coordinate system in order to take into account anisotropy. Default is 0 (no rotation). switch_verbose(): Enables/disables program text output. No arguments. switch_plotting(): Enables/disable variogram plot display. No arguments. get_epsilon_residuals(): Returns the epsilon residuals of the variogram fit. No arguments. plot_epsilon_residuals(): Plots the epsilon residuals of the variogram fit in the order in which they were calculated. No arguments. get_statistics(): Returns the Q1, Q2, and cR statistics for the variogram fit (in that order). No arguments. print_statistics(): Prints out the Q1, Q2, and cR statistics for the variogram fit. NOTE that ideally Q1 is close to zero, Q2 is close to 1, and cR is as small as possible. execute(style, xpoints, ypoints, mask=None): Calculates a kriged grid. Inputs: style (string): Specifies how to treat input kriging points. Specifying 'grid' treats xpoints, ypoints, and zpoints as arrays of x, y,z coordinates that define a rectangular grid. Specifying 'points' treats xpoints, ypoints, and zpoints as arrays that provide coordinates at which to solve the kriging system. Specifying 'masked' treats xpoints, ypoints, zpoints as arrays of x, y, z coordinates that define a rectangular grid and uses mask to only evaluate specific points in the grid. xpoints (array-like, dim N): If style is specific as 'grid' or 'masked', x-coordinates of LxMxN grid. If style is specified as 'points', x-coordinates of specific points at which to solve kriging system. ypoints (array-like, dim M): If style is specified as 'grid' or 'masked', y-coordinates of LxMxN grid. If style is specified as 'points', y-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). zpoints (array-like, dim L): If style is specified as 'grid' or 'masked', z-coordinates of LxMxN grid. If style is specified as 'points', z-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). mask (boolean array, dim LxMxN, optional): Specifies the points in the rectangular grid defined by xpoints, ypoints, and zpoints that are to be excluded in the kriging calculations. Must be provided if style is specified as 'masked'. False indicates that the point should not be masked; True indicates that the point should be masked. backend (string, optional): Specifies which approach to use in kriging. Specifying 'vectorized' will solve the entire kriging problem at once in a vectorized operation. This approach is faster but also can consume a significant amount of memory for large grids and/or large datasets. Specifying 'loop' will loop through each point at which the kriging system is to be solved. This approach is slower but also less memory-intensive. Default is 'vectorized'. specified_drift_arrays (list of array-like objects, optional): Specifies the drift values at the points at which the kriging system is to be evaluated. Required if 'specified' drift provided in the list of drift terms when instantiating the UniversalKriging3D class. Must be a list of arrays in the same order as the list provided when instantiating the kriging object. Array(s) must be the same dimension as the specified grid or have the same number of points as the specified points; i.e., the arrays either must be dim LxMxN, where L is the number of z grid-points, M is the number of y grid-points, and N is the number of x grid-points, or dim N, where N is the number of points at which to evaluate the kriging system. Outputs: kvalues (numpy array, dim LxMxN or dim Nx1): Interpolated values of specified grid or at the specified set of points. If style was specified as 'masked', kvalues will be a numpy masked array. sigmasq (numpy array, dim LxMxN or dim Nx1): Variance at specified grid points or at the specified set of points. If style was specified as 'masked', sigmasq will be a numpy masked array. References: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology, (Cambridge University Press, 1997) 272 p. """ UNBIAS = True # This can be changed to remove the unbiasedness condition # Really for testing purposes only... eps = 1.e-10 # Cutoff for comparison to zero variogram_dict = {'linear': variogram_models.linear_variogram_model, 'power': variogram_models.power_variogram_model, 'gaussian': variogram_models.gaussian_variogram_model, 'spherical': variogram_models.spherical_variogram_model, 'exponential': variogram_models.exponential_variogram_model} def __init__(self, x, y, z, val, variogram_model='linear', variogram_parameters=None, variogram_function=None, nlags=6, weight=False, anisotropy_scaling_y=1.0, anisotropy_scaling_z=1.0, anisotropy_angle_x=0.0, anisotropy_angle_y=0.0, anisotropy_angle_z=0.0, drift_terms=None, specified_drift=None, functional_drift=None, verbose=False, enable_plotting=False): # Deal with mutable default argument if drift_terms is None: drift_terms = [] if specified_drift is None: specified_drift = [] if functional_drift is None: functional_drift = [] # Code assumes 1D input arrays. Ensures that any extraneous dimensions # don't get in the way. Copies are created to avoid any problems with # referencing the original passed arguments. self.X_ORIG = np.atleast_1d(np.squeeze(np.array(x, copy=True))) self.Y_ORIG = np.atleast_1d(np.squeeze(np.array(y, copy=True))) self.Z_ORIG = np.atleast_1d(np.squeeze(np.array(z, copy=True))) self.VALUES = np.atleast_1d(np.squeeze(np.array(val, copy=True))) self.verbose = verbose self.enable_plotting = enable_plotting if self.enable_plotting and self.verbose: print "Plotting Enabled\n" self.XCENTER = (np.amax(self.X_ORIG) + np.amin(self.X_ORIG))/2.0 self.YCENTER = (np.amax(self.Y_ORIG) + np.amin(self.Y_ORIG))/2.0 self.ZCENTER = (np.amax(self.Z_ORIG) + np.amin(self.Z_ORIG))/2.0 self.anisotropy_scaling_y = anisotropy_scaling_y self.anisotropy_scaling_z = anisotropy_scaling_z self.anisotropy_angle_x = anisotropy_angle_x self.anisotropy_angle_y = anisotropy_angle_y self.anisotropy_angle_z = anisotropy_angle_z if self.verbose: print "Adjusting data for anisotropy..." self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED = \ core.adjust_for_anisotropy_3d(np.copy(self.X_ORIG), np.copy(self.Y_ORIG), np.copy(self.Z_ORIG), self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) self.variogram_model = variogram_model if self.variogram_model not in self.variogram_dict.keys() and self.variogram_model != 'custom': raise ValueError("Specified variogram model '%s' is not supported." % variogram_model) elif self.variogram_model == 'custom': if variogram_function is None or not callable(variogram_function): raise ValueError("Must specify callable function for custom variogram model.") else: self.variogram_function = variogram_function else: self.variogram_function = self.variogram_dict[self.variogram_model] if self.verbose: print "Initializing variogram model..." self.lags, self.semivariance, self.variogram_model_parameters = \ core.initialize_variogram_model_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_model, variogram_parameters, self.variogram_function, nlags, weight) if self.verbose: if self.variogram_model == 'linear': print "Using '%s' Variogram Model" % 'linear' print "Slope:", self.variogram_model_parameters[0] print "Nugget:", self.variogram_model_parameters[1], '\n' elif self.variogram_model == 'power': print "Using '%s' Variogram Model" % 'power' print "Scale:", self.variogram_model_parameters[0] print "Exponent:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' elif self.variogram_model == 'custom': print "Using Custom Variogram Model" else: print "Using '%s' Variogram Model" % self.variogram_model print "Sill:", self.variogram_model_parameters[0] print "Range:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' if self.enable_plotting: self.display_variogram_model() if self.verbose: print "Calculating statistics on variogram model fit..." self.delta, self.sigma, self.epsilon = core.find_statistics_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_function, self.variogram_model_parameters) self.Q1 = core.calcQ1(self.epsilon) self.Q2 = core.calcQ2(self.epsilon) self.cR = core.calc_cR(self.Q2, self.sigma) if self.verbose: print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR, '\n' if self.verbose: print "Initializing drift terms..." # Note that the regional linear drift values will be based on the adjusted coordinate system. # Really, it doesn't actually matter which coordinate system is used here. if 'regional_linear' in drift_terms: self.regional_linear_drift = True if self.verbose: print "Implementing regional linear drift." else: self.regional_linear_drift = False if 'specified' in drift_terms: if type(specified_drift) is not list: raise TypeError("Arrays for specified drift terms must be encapsulated in a list.") if len(specified_drift) == 0: raise ValueError("Must provide at least one drift-value array when using the " "'specified' drift capability.") self.specified_drift = True self.specified_drift_data_arrays = [] for term in specified_drift: specified = np.squeeze(np.array(term, copy=True)) if specified.size != self.X_ORIG.size: raise ValueError("Must specify the drift values for each data point when using the " "'specified' drift capability.") self.specified_drift_data_arrays.append(specified) else: self.specified_drift = False # The provided callable functions will be evaluated using the adjusted coordinates. if 'functional' in drift_terms: if type(functional_drift) is not list: raise TypeError("Callables for functional drift terms must be encapsulated in a list.") if len(functional_drift) == 0: raise ValueError("Must provide at least one callable object when using the " "'functional' drift capability.") self.functional_drift = True self.functional_drift_terms = functional_drift else: self.functional_drift = False def update_variogram_model(self, variogram_model, variogram_parameters=None, variogram_function=None, nlags=6, weight=False, anisotropy_scaling_y=1.0, anisotropy_scaling_z=1.0, anisotropy_angle_x=0.0, anisotropy_angle_y=0.0, anisotropy_angle_z=0.0): """Allows user to update variogram type and/or variogram model parameters.""" if anisotropy_scaling_y != self.anisotropy_scaling_y or anisotropy_scaling_z != self.anisotropy_scaling_z or \ anisotropy_angle_x != self.anisotropy_angle_x or anisotropy_angle_y != self.anisotropy_angle_y or \ anisotropy_angle_z != self.anisotropy_angle_z: if self.verbose: print "Adjusting data for anisotropy..." self.anisotropy_scaling_y = anisotropy_scaling_y self.anisotropy_scaling_z = anisotropy_scaling_z self.anisotropy_angle_x = anisotropy_angle_x self.anisotropy_angle_y = anisotropy_angle_y self.anisotropy_angle_z = anisotropy_angle_z self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED = \ core.adjust_for_anisotropy_3d(np.copy(self.X_ORIG), np.copy(self.Y_ORIG), np.copy(self.Z_ORIG), self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) self.variogram_model = variogram_model if self.variogram_model not in self.variogram_dict.keys() and self.variogram_model != 'custom': raise ValueError("Specified variogram model '%s' is not supported." % variogram_model) elif self.variogram_model == 'custom': if variogram_function is None or not callable(variogram_function): raise ValueError("Must specify callable function for custom variogram model.") else: self.variogram_function = variogram_function else: self.variogram_function = self.variogram_dict[self.variogram_model] if self.verbose: print "Updating variogram mode..." self.lags, self.semivariance, self.variogram_model_parameters = \ core.initialize_variogram_model_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_model, variogram_parameters, self.variogram_function, nlags, weight) if self.verbose: if self.variogram_model == 'linear': print "Using '%s' Variogram Model" % 'linear' print "Slope:", self.variogram_model_parameters[0] print "Nugget:", self.variogram_model_parameters[1], '\n' elif self.variogram_model == 'power': print "Using '%s' Variogram Model" % 'power' print "Scale:", self.variogram_model_parameters[0] print "Exponent:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' elif self.variogram_model == 'custom': print "Using Custom Variogram Model" else: print "Using '%s' Variogram Model" % self.variogram_model print "Sill:", self.variogram_model_parameters[0] print "Range:", self.variogram_model_parameters[1] print "Nugget:", self.variogram_model_parameters[2], '\n' if self.enable_plotting: self.display_variogram_model() if self.verbose: print "Calculating statistics on variogram model fit..." self.delta, self.sigma, self.epsilon = core.find_statistics_3d(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED, self.VALUES, self.variogram_function, self.variogram_model_parameters) self.Q1 = core.calcQ1(self.epsilon) self.Q2 = core.calcQ2(self.epsilon) self.cR = core.calc_cR(self.Q2, self.sigma) if self.verbose: print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR, '\n' def display_variogram_model(self): """Displays variogram model with the actual binned data""" fig = plt.figure() ax = fig.add_subplot(111) ax.plot(self.lags, self.semivariance, 'r*') ax.plot(self.lags, self.variogram_function(self.variogram_model_parameters, self.lags), 'k-') plt.show() def switch_verbose(self): """Allows user to switch code talk-back on/off. Takes no arguments.""" self.verbose = not self.verbose def switch_plotting(self): """Allows user to switch plot display on/off. Takes no arguments.""" self.enable_plotting = not self.enable_plotting def get_epsilon_residuals(self): """Returns the epsilon residuals for the variogram fit.""" return self.epsilon def plot_epsilon_residuals(self): """Plots the epsilon residuals for the variogram fit.""" fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(range(self.epsilon.size), self.epsilon, c='k', marker='*') ax.axhline(y=0.0) plt.show() def get_statistics(self): return self.Q1, self.Q2, self.cR def print_statistics(self): print "Q1 =", self.Q1 print "Q2 =", self.Q2 print "cR =", self.cR def _get_kriging_matrix(self, n, n_withdrifts): """Assembles the kriging matrix.""" xyz = np.concatenate((self.X_ADJUSTED[:, np.newaxis], self.Y_ADJUSTED[:, np.newaxis], self.Z_ADJUSTED[:, np.newaxis]), axis=1) d = cdist(xyz, xyz, 'euclidean') if self.UNBIAS: a = np.zeros((n_withdrifts+1, n_withdrifts+1)) else: a = np.zeros((n_withdrifts, n_withdrifts)) a[:n, :n] = - self.variogram_function(self.variogram_model_parameters, d) np.fill_diagonal(a, 0.) i = n if self.regional_linear_drift: a[:n, i] = self.X_ADJUSTED a[i, :n] = self.X_ADJUSTED i += 1 a[:n, i] = self.Y_ADJUSTED a[i, :n] = self.Y_ADJUSTED i += 1 a[:n, i] = self.Z_ADJUSTED a[i, :n] = self.Z_ADJUSTED i += 1 if self.specified_drift: for arr in self.specified_drift_data_arrays: a[:n, i] = arr a[i, :n] = arr i += 1 if self.functional_drift: for func in self.functional_drift_terms: a[:n, i] = func(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED) a[i, :n] = func(self.X_ADJUSTED, self.Y_ADJUSTED, self.Z_ADJUSTED) i += 1 if i != n_withdrifts: print "WARNING: Error in creating kriging matrix. Kriging may fail." if self.UNBIAS: a[n_withdrifts, :n] = 1.0 a[:n, n_withdrifts] = 1.0 a[n:n_withdrifts + 1, n:n_withdrifts + 1] = 0.0 return a def _exec_vector(self, a, bd, xyz, mask, n_withdrifts, spec_drift_grids): """Solves the kriging system as a vectorized operation. This method can take a lot of memory for large grids and/or large datasets.""" npt = bd.shape[0] n = self.X_ADJUSTED.shape[0] zero_index = None zero_value = False a_inv = scipy.linalg.inv(a) if np.any(np.absolute(bd) <= self.eps): zero_value = True zero_index = np.where(np.absolute(bd) <= self.eps) if self.UNBIAS: b = np.zeros((npt, n_withdrifts+1, 1)) else: b = np.zeros((npt, n_withdrifts, 1)) b[:, :n, 0] = - self.variogram_function(self.variogram_model_parameters, bd) if zero_value: b[zero_index[0], zero_index[1], 0] = 0.0 i = n if self.regional_linear_drift: b[:, i, 0] = xyz[:, 2] i += 1 b[:, i, 0] = xyz[:, 1] i += 1 b[:, i, 0] = xyz[:, 0] i += 1 if self.specified_drift: for spec_vals in spec_drift_grids: b[:, i, 0] = spec_vals.flatten() i += 1 if self.functional_drift: for func in self.functional_drift_terms: b[:, i, 0] = func(xyz[:, 2], xyz[:, 1], xyz[:, 0]) i += 1 if i != n_withdrifts: print "WARNING: Error in setting up kriging system. Kriging may fail." if self.UNBIAS: b[:, n_withdrifts, 0] = 1.0 if (~mask).any(): mask_b = np.repeat(mask[:, np.newaxis, np.newaxis], n_withdrifts+1, axis=1) b = np.ma.array(b, mask=mask_b) if self.UNBIAS: x = np.dot(a_inv, b.reshape((npt, n_withdrifts+1)).T).reshape((1, n_withdrifts+1, npt)).T else: x = np.dot(a_inv, b.reshape((npt, n_withdrifts)).T).reshape((1, n_withdrifts, npt)).T kvalues = np.sum(x[:, :n, 0] * self.VALUES, axis=1) sigmasq = np.sum(x[:, :, 0] * -b[:, :, 0], axis=1) return kvalues, sigmasq def _exec_loop(self, a, bd_all, xyz, mask, n_withdrifts, spec_drift_grids): """Solves the kriging system by looping over all specified points. Less memory-intensive, but involves a Python-level loop.""" npt = bd_all.shape[0] n = self.X_ADJUSTED.shape[0] kvalues = np.zeros(npt) sigmasq = np.zeros(npt) a_inv = scipy.linalg.inv(a) for j in np.nonzero(~mask)[0]: # Note that this is the same thing as range(npt) if mask is not defined, bd = bd_all[j] # otherwise it takes the non-masked elements. if np.any(np.absolute(bd) <= self.eps): zero_value = True zero_index = np.where(np.absolute(bd) <= self.eps) else: zero_value = False zero_index = None if self.UNBIAS: b = np.zeros((n_withdrifts+1, 1)) else: b = np.zeros((n_withdrifts, 1)) b[:n, 0] = - self.variogram_function(self.variogram_model_parameters, bd) if zero_value: b[zero_index[0], 0] = 0.0 i = n if self.regional_linear_drift: b[i, 0] = xyz[j, 2] i += 1 b[i, 0] = xyz[j, 1] i += 1 b[i, 0] = xyz[j, 0] i += 1 if self.specified_drift: for spec_vals in spec_drift_grids: b[i, 0] = spec_vals.flatten()[i] i += 1 if self.functional_drift: for func in self.functional_drift_terms: b[i, 0] = func(xyz[j, 2], xyz[j, 1], xyz[j, 0]) i += 1 if i != n_withdrifts: print "WARNING: Error in setting up kriging system. Kriging may fail." if self.UNBIAS: b[n_withdrifts, 0] = 1.0 x = np.dot(a_inv, b) kvalues[j] = np.sum(x[:n, 0] * self.VALUES) sigmasq[j] = np.sum(x[:, 0] * -b[:, 0]) return kvalues, sigmasq def execute(self, style, xpoints, ypoints, zpoints, mask=None, backend='vectorized', specified_drift_arrays=None): """Calculates a kriged grid and the associated variance. This is now the method that performs the main kriging calculation. Note that currently measurements (i.e., z values) are considered 'exact'. This means that, when a specified coordinate for interpolation is exactly the same as one of the data points, the variogram evaluated at the point is forced to be zero. Also, the diagonal of the kriging matrix is also always forced to be zero. In forcing the variogram evaluated at data points to be zero, we are effectively saying that there is no variance at that point (no uncertainty, so the value is 'exact'). In the future, the code may include an extra 'exact_values' boolean flag that can be adjusted to specify whether to treat the measurements as 'exact'. Setting the flag to false would indicate that the variogram should not be forced to be zero at zero distance (i.e., when evaluated at data points). Instead, the uncertainty in the point will be equal to the nugget. This would mean that the diagonal of the kriging matrix would be set to the nugget instead of to zero. Inputs: style (string): Specifies how to treat input kriging points. Specifying 'grid' treats xpoints, ypoints, and zpoints as arrays of x, y, and z coordinates that define a rectangular grid. Specifying 'points' treats xpoints, ypoints, and zpoints as arrays that provide coordinates at which to solve the kriging system. Specifying 'masked' treats xpoints, ypoints, and zpoints as arrays of x, y, and z coordinates that define a rectangular grid and uses mask to only evaluate specific points in the grid. xpoints (array-like, dim N): If style is specific as 'grid' or 'masked', x-coordinates of MxNxL grid. If style is specified as 'points', x-coordinates of specific points at which to solve kriging system. ypoints (array-like, dim M): If style is specified as 'grid' or 'masked', y-coordinates of LxMxN grid. If style is specified as 'points', y-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). zpoints (array-like, dim L): If style is specified as 'grid' or 'masked', z-coordinates of LxMxN grid. If style is specified as 'points', z-coordinates of specific points at which to solve kriging system. Note that in this case, xpoints, ypoints, and zpoints must have the same dimensions (i.e., L = M = N). mask (boolean array, dim LxMxN, optional): Specifies the points in the rectangular grid defined by xpoints, ypoints, zpoints that are to be excluded in the kriging calculations. Must be provided if style is specified as 'masked'. False indicates that the point should not be masked, so the kriging system will be solved at the point. True indicates that the point should be masked, so the kriging system should will not be solved at the point. backend (string, optional): Specifies which approach to use in kriging. Specifying 'vectorized' will solve the entire kriging problem at once in a vectorized operation. This approach is faster but also can consume a significant amount of memory for large grids and/or large datasets. Specifying 'loop' will loop through each point at which the kriging system is to be solved. This approach is slower but also less memory-intensive. Default is 'vectorized'. specified_drift_arrays (list of array-like objects, optional): Specifies the drift values at the points at which the kriging system is to be evaluated. Required if 'specified' drift provided in the list of drift terms when instantiating the UniversalKriging3D class. Must be a list of arrays in the same order as the list provided when instantiating the kriging object. Array(s) must be the same dimension as the specified grid or have the same number of points as the specified points; i.e., the arrays either must be dim LxMxN, where L is the number of z grid-points, M is the number of y grid-points, and N is the number of x grid-points, or dim N, where N is the number of points at which to evaluate the kriging system. Outputs: kvalues (numpy array, dim LxMxN or dim N): Interpolated values of specified grid or at the specified set of points. If style was specified as 'masked', kvalues will be a numpy masked array. sigmasq (numpy array, dim LxMxN or dim N): Variance at specified grid points or at the specified set of points. If style was specified as 'masked', sigmasq will be a numpy masked array. """ if self.verbose: print "Executing Ordinary Kriging...\n" if style != 'grid' and style != 'masked' and style != 'points': raise ValueError("style argument must be 'grid', 'points', or 'masked'") xpts = np.atleast_1d(np.squeeze(np.array(xpoints, copy=True))) ypts = np.atleast_1d(np.squeeze(np.array(ypoints, copy=True))) zpts = np.atleast_1d(np.squeeze(np.array(zpoints, copy=True))) n = self.X_ADJUSTED.shape[0] n_withdrifts = n if self.regional_linear_drift: n_withdrifts += 3 if self.specified_drift: n_withdrifts += len(self.specified_drift_data_arrays) if self.functional_drift: n_withdrifts += len(self.functional_drift_terms) nx = xpts.size ny = ypts.size nz = zpts.size a = self._get_kriging_matrix(n, n_withdrifts) if style in ['grid', 'masked']: if style == 'masked': if mask is None: raise IOError("Must specify boolean masking array when style is 'masked'.") if mask.ndim != 3: raise ValueError("Mask is not three-dimensional.") if mask.shape[0] != nz or mask.shape[1] != ny or mask.shape[2] != nx: if mask.shape[0] == nx and mask.shape[2] == nz and mask.shape[1] == ny: mask = mask.swapaxes(0, 2) else: raise ValueError("Mask dimensions do not match specified grid dimensions.") mask = mask.flatten() npt = nz * ny * nx grid_z, grid_y, grid_x = np.meshgrid(zpts, ypts, xpts, indexing='ij') xpts = grid_x.flatten() ypts = grid_y.flatten() zpts = grid_z.flatten() elif style == 'points': if xpts.size != ypts.size and ypts.size != zpts.size: raise ValueError("xpoints and ypoints must have same dimensions " "when treated as listing discrete points.") npt = nx else: raise ValueError("style argument must be 'grid', 'points', or 'masked'") if specified_drift_arrays is None: specified_drift_arrays = [] spec_drift_grids = [] if self.specified_drift: if len(specified_drift_arrays) == 0: raise ValueError("Must provide drift values for kriging points when using " "'specified' drift capability.") if type(specified_drift_arrays) is not list: raise TypeError("Arrays for specified drift terms must be encapsulated in a list.") for spec in specified_drift_arrays: if style in ['grid', 'masked']: if spec.ndim < 3: raise ValueError("Dimensions of drift values array do not match specified grid dimensions.") elif spec.shape[0] != nz or spec.shape[1] != ny or spec.shape[2] != nx: if spec.shape[0] == nx and spec.shape[2] == nz and spec.shape[1] == ny: spec_drift_grids.append(np.squeeze(spec.swapaxes(0, 2))) else: raise ValueError("Dimensions of drift values array do not match specified grid dimensions.") else: spec_drift_grids.append(np.squeeze(spec)) elif style == 'points': if spec.ndim != 1: raise ValueError("Dimensions of drift values array do not match specified grid dimensions.") elif spec.shape[0] != xpts.size: raise ValueError("Number of supplied drift values in array do not match " "specified number of kriging points.") else: spec_drift_grids.append(np.squeeze(spec)) if len(spec_drift_grids) != len(self.specified_drift_data_arrays): raise ValueError("Inconsistent number of specified drift terms supplied.") else: if len(specified_drift_arrays) != 0: print "WARNING: Provided specified drift values, but 'specified' drift was not initialized during " \ "instantiation of UniversalKriging3D class." xpts, ypts, zpts = core.adjust_for_anisotropy_3d(xpts, ypts, zpts, self.XCENTER, self.YCENTER, self.ZCENTER, self.anisotropy_scaling_y, self.anisotropy_scaling_z, self.anisotropy_angle_x, self.anisotropy_angle_y, self.anisotropy_angle_z) if style != 'masked': mask = np.zeros(npt, dtype='bool') xyz_points = np.concatenate((zpts[:, np.newaxis], ypts[:, np.newaxis], xpts[:, np.newaxis]), axis=1) xyz_data = np.concatenate((self.Z_ADJUSTED[:, np.newaxis], self.Y_ADJUSTED[:, np.newaxis], self.X_ADJUSTED[:, np.newaxis]), axis=1) bd = cdist(xyz_points, xyz_data, 'euclidean') if backend == 'vectorized': kvalues, sigmasq = self._exec_vector(a, bd, xyz_points, mask, n_withdrifts, spec_drift_grids) elif backend == 'loop': kvalues, sigmasq = self._exec_loop(a, bd, xyz_points, mask, n_withdrifts, spec_drift_grids) else: raise ValueError('Specified backend {} is not supported for 3D ordinary kriging.'.format(backend)) if style == 'masked': kvalues = np.ma.array(kvalues, mask=mask) sigmasq = np.ma.array(sigmasq, mask=mask) if style in ['masked', 'grid']: kvalues = kvalues.reshape((nz, ny, nx)) sigmasq = sigmasq.reshape((nz, ny, nx)) return kvalues, sigmasq
bsd-3-clause
yantrabuddhi/opencog
opencog/nlp/sentiment/basic_sentiment_analysis.py
11
6919
# coding: utf-8 """ basic_sentiment_analysis ~~~~~~~~~~~~~~~~~~~~~~~~ This module contains the code and examples described in http://fjavieralba.com/basic-sentiment-analysis-with-python.html Modified by Ruiting Lian, 2016/7 """ import nltk import yaml import sys import os import re class Splitter(object): def __init__(self): self.nltk_splitter = nltk.data.load('tokenizers/punkt/english.pickle') self.nltk_tokenizer = nltk.tokenize.TreebankWordTokenizer() def split(self, text): """ input format: a paragraph of text output format: a list of lists of words. e.g.: [['this', 'is', 'a', 'sentence'], ['this', 'is', 'another', 'one']] """ sentences = self.nltk_splitter.tokenize(text) tokenized_sentences = [self.nltk_tokenizer.tokenize(sent) for sent in sentences] return tokenized_sentences class POSTagger(object): def __init__(self): pass def pos_tag(self, sentences): """ input format: list of lists of words e.g.: [['this', 'is', 'a', 'sentence'], ['this', 'is', 'another', 'one']] output format: list of lists of tagged tokens. Each tagged tokens has a form, a lemma, and a list of tags e.g: [[('this', 'this', ['DT']), ('is', 'be', ['VB']), ('a', 'a', ['DT']), ('sentence', 'sentence', ['NN'])], [('this', 'this', ['DT']), ('is', 'be', ['VB']), ('another', 'another', ['DT']), ('one', 'one', ['CARD'])]] """ pos = [nltk.pos_tag(sentence) for sentence in sentences] #adapt format pos = [[(word, word, [postag]) for (word, postag) in sentence] for sentence in pos] return pos class DictionaryTagger(object): def __init__(self, dictionary_paths): files = [open(path, 'r') for path in dictionary_paths] dictionaries = [yaml.safe_load(dict_file) for dict_file in files] map(lambda x: x.close(), files) self.dictionary = {} self.max_key_size = 0 for curr_dict in dictionaries: for key in curr_dict: if key in self.dictionary: self.dictionary[key].extend(curr_dict[key]) elif key is not False and key is not True: self.dictionary[key] = curr_dict[key] self.max_key_size = max(self.max_key_size, len(key)) elif key is False: # print curr_dict[key] key = "false" self.dictionary[key] = curr_dict [False] self.max_key_size = max(self.max_key_size, len(key)) else: key = "true" self.dictionary[key] = curr_dict [True] self.max_key_size = max(self.max_key_size, len(key)) def tag(self, postagged_sentences): return [self.tag_sentence(sentence) for sentence in postagged_sentences] def tag_sentence(self, sentence, tag_with_lemmas=False): """ the result is only one tagging of all the possible ones. The resulting tagging is determined by these two priority rules: - longest matches have higher priority - search is made from left to right """ tag_sentence = [] N = len(sentence) if self.max_key_size == 0: self.max_key_size = N i = 0 while (i < N): j = min(i + self.max_key_size, N) #avoid overflow tagged = False while (j > i): expression_form = ' '.join([word[0] for word in sentence[i:j]]).lower() expression_lemma = ' '.join([word[1] for word in sentence[i:j]]).lower() if tag_with_lemmas: literal = expression_lemma else: literal = expression_form if literal in self.dictionary: #self.logger.debug("found: %s" % literal) is_single_token = j - i == 1 original_position = i i = j taggings = [tag for tag in self.dictionary[literal]] tagged_expression = (expression_form, expression_lemma, taggings) if is_single_token: #if the tagged literal is a single token, conserve its previous taggings: original_token_tagging = sentence[original_position][2] tagged_expression[2].extend(original_token_tagging) tag_sentence.append(tagged_expression) tagged = True else: j = j - 1 if not tagged: tag_sentence.append(sentence[i]) i += 1 return tag_sentence def value_of(sentiment): if sentiment == 'positive': return 1 if sentiment == 'negative': return -1 return 0 def sentence_score(sentence_tokens, previous_token, acum_score, neg_num): if not sentence_tokens: if(neg_num % 2 == 0): return acum_score else: acum_score *= -1.0 return acum_score else: current_token = sentence_tokens[0] tags = current_token[2] token_score = sum([value_of(tag) for tag in tags]) if previous_token is not None: previous_tags = previous_token[2] if 'inc' in previous_tags: token_score *= 2.0 elif 'dec' in previous_tags: token_score /= 2.0 elif 'inv' in previous_tags: neg_num += 1 return sentence_score(sentence_tokens[1:], current_token, acum_score + token_score, neg_num) def sentiment_score(review): return sum([sentence_score(sentence, None, 0.0, 0) for sentence in review]) configpath = '/usr/local/etc/' path = os.path.join(configpath, 'opencog/dicts'); dictfilenames = ['positive.yml', 'negative.yml', 'inc.yml', 'dec.yml', 'inv.yml'] dicttagger = DictionaryTagger([os.path.join(path, d) for d in dictfilenames]) def sentiment_parse(plain_text): splitter = Splitter() postagger = POSTagger() splitted_sentences = splitter.split(plain_text) pos_tagged_sentences = postagger.pos_tag(splitted_sentences) dict_tagged_sentences = dicttagger.tag(pos_tagged_sentences) score = sentiment_score(dict_tagged_sentences) return score if __name__ == "__main__": #text = """What can I say about this place. The staff of the restaurant is #nice and the eggplant is not bad. Apart from that, very uninspired food, #lack of atmosphere and too expensive. I am a staunch vegetarian and was #sorely dissapointed with the veggie options on the menu. Will be the last #time I visit, I recommend others to avoid.""" text = """His statement is false. So he is a dishonest guy.""" score = sentiment_parse(text) print(score)
agpl-3.0
Yingmin-Li/keras
examples/cifar10_cnn.py
35
4479
from __future__ import absolute_import from __future__ import print_function from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import SGD, Adadelta, Adagrad from keras.utils import np_utils, generic_utils from six.moves import range ''' Train a (fairly simple) deep CNN on the CIFAR10 small images dataset. GPU run command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cifar10_cnn.py It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs. (it's still underfitting at that point, though). Note: the data was pickled with Python 2, and some encoding issues might prevent you from loading it in Python 3. You might have to load it in Python 2, save it in a different format, load it in Python 3 and repickle it. ''' batch_size = 32 nb_classes = 10 nb_epoch = 200 data_augmentation = True # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = cifar10.load_data() print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(32, 3, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(Convolution2D(32, 32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(Convolution2D(64, 64, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64*8*8, 512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(512, nb_classes)) model.add(Activation('softmax')) # let's train the model using SGD + momentum (how original). sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd) if not data_augmentation: print("Not using data augmentation or normalization") X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch) score = model.evaluate(X_test, Y_test, batch_size=batch_size) print('Test score:', score) else: print("Using real time data augmentation") # this will do preprocessing and realtime data augmentation datagen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=True, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) height_shift_range=0.2, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images # compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied) datagen.fit(X_train) for e in range(nb_epoch): print('-'*40) print('Epoch', e) print('-'*40) print("Training...") # batch train with realtime data augmentation progbar = generic_utils.Progbar(X_train.shape[0]) for X_batch, Y_batch in datagen.flow(X_train, Y_train): loss = model.train_on_batch(X_batch, Y_batch) progbar.add(X_batch.shape[0], values=[("train loss", loss)]) print("Testing...") # test time! progbar = generic_utils.Progbar(X_test.shape[0]) for X_batch, Y_batch in datagen.flow(X_test, Y_test): score = model.test_on_batch(X_batch, Y_batch) progbar.add(X_batch.shape[0], values=[("test loss", score)])
mit
herilalaina/scikit-learn
sklearn/ensemble/forest.py
6
79027
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <g.louppe@gmail.com> # Brian Holt <bdholt1@gmail.com> # Joly Arnaud <arnaud.v.joly@gmail.com> # Fares Hedayati <fares.hedayati@gmail.com> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn import threading from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = np.bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = np.bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) # This is a utility function for joblib's Parallel. It can't go locally in # ForestClassifier or ForestRegressor, because joblib complains that it cannot # pickle it when placed there. def accumulate_prediction(predict, X, out, lock): prediction = predict(X, check_input=False) with lock: if len(out) == 1: out[0] += prediction else: for i in range(len(out)): out[i] += prediction[i] class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # avoid storing the output of every estimator by summing them here all_proba = [np.zeros((X.shape[0], j), dtype=np.float64) for j in np.atleast_1d(self.n_classes_)] lock = threading.Lock() Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(accumulate_prediction)(e.predict_proba, X, all_proba, lock) for e in self.estimators_) for proba in all_proba: proba /= len(self.estimators_) if len(all_proba) == 1: return all_proba[0] else: return all_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # avoid storing the output of every estimator by summing them here if self.n_outputs_ > 1: y_hat = np.zeros((X.shape[0], self.n_outputs_), dtype=np.float64) else: y_hat = np.zeros((X.shape[0]), dtype=np.float64) # Parallel loop lock = threading.Lock() Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(accumulate_prediction)(e.predict, X, [y_hat], lock) for e in self.estimators_) y_hat /= len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. Examples -------- >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.datasets import make_classification >>> >>> X, y = make_classification(n_samples=1000, n_features=4, ... n_informative=2, n_redundant=0, ... random_state=0, shuffle=False) >>> clf = RandomForestClassifier(max_depth=2, random_state=0) >>> clf.fit(X, y) RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False) >>> print(clf.feature_importances_) [ 0.17287856 0.80608704 0.01884792 0.00218648] >>> print(clf.predict([[0, 0, 0, 0]])) [1] Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. Examples -------- >>> from sklearn.ensemble import RandomForestRegressor >>> from sklearn.datasets import make_regression >>> >>> X, y = make_regression(n_features=4, n_informative=2, ... random_state=0, shuffle=False) >>> regr = RandomForestRegressor(max_depth=2, random_state=0) >>> regr.fit(X, y) RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False) >>> print(regr.feature_importances_) [ 0.17339552 0.81594114 0. 0.01066333] >>> print(regr.predict([[0, 0, 0, 0]])) [-2.50699856] Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
herilalaina/scikit-learn
sklearn/tests/test_docstring_parameters.py
22
5738
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Raghav RV <rvraghav93@gmail.com> # License: BSD 3 clause import inspect import sys import warnings import importlib from pkgutil import walk_packages from inspect import getsource, isabstract import sklearn from sklearn.base import signature from sklearn.utils.testing import SkipTest from sklearn.utils.testing import check_docstring_parameters from sklearn.utils.testing import _get_func_name from sklearn.utils.testing import ignore_warnings from sklearn.utils.deprecation import _is_deprecated PUBLIC_MODULES = set([pckg[1] for pckg in walk_packages(prefix='sklearn.', path=sklearn.__path__) if not ("._" in pckg[1] or ".tests." in pckg[1])]) # TODO Uncomment all modules and fix doc inconsistencies everywhere # The list of modules that are not tested for now IGNORED_MODULES = ( 'cross_decomposition', 'covariance', 'cluster', 'datasets', 'decomposition', 'feature_extraction', 'gaussian_process', 'linear_model', 'manifold', 'metrics', 'discriminant_analysis', 'ensemble', 'feature_selection', 'kernel_approximation', 'model_selection', 'multioutput', 'random_projection', 'setup', 'svm', 'utils', 'neighbors', # Deprecated modules 'cross_validation', 'grid_search', 'learning_curve', ) # functions to ignore args / docstring of _DOCSTRING_IGNORES = [ 'sklearn.utils.deprecation.load_mlcomp', 'sklearn.pipeline.make_pipeline', 'sklearn.pipeline.make_union', 'sklearn.utils.extmath.safe_sparse_dot', ] # Methods where y param should be ignored if y=None by default _METHODS_IGNORE_NONE_Y = [ 'fit', 'score', 'fit_predict', 'fit_transform', 'partial_fit', 'predict' ] def test_docstring_parameters(): # Test module docstring formatting # Skip test if numpydoc is not found or if python version is < 3.5 try: import numpydoc # noqa assert sys.version_info >= (3, 5) except (ImportError, AssertionError): raise SkipTest("numpydoc is required to test the docstrings, " "as well as python version >= 3.5") from numpydoc import docscrape incorrect = [] for name in PUBLIC_MODULES: if name.startswith('_') or name.split(".")[1] in IGNORED_MODULES: continue with warnings.catch_warnings(record=True): module = importlib.import_module(name) classes = inspect.getmembers(module, inspect.isclass) # Exclude imported classes classes = [cls for cls in classes if cls[1].__module__ == name] for cname, cls in classes: this_incorrect = [] if cname in _DOCSTRING_IGNORES or cname.startswith('_'): continue if isabstract(cls): continue with warnings.catch_warnings(record=True) as w: cdoc = docscrape.ClassDoc(cls) if len(w): raise RuntimeError('Error for __init__ of %s in %s:\n%s' % (cls, name, w[0])) cls_init = getattr(cls, '__init__', None) if _is_deprecated(cls_init): continue elif cls_init is not None: this_incorrect += check_docstring_parameters( cls.__init__, cdoc, class_name=cname) for method_name in cdoc.methods: method = getattr(cls, method_name) if _is_deprecated(method): continue param_ignore = None # Now skip docstring test for y when y is None # by default for API reason if method_name in _METHODS_IGNORE_NONE_Y: sig = signature(method) if ('y' in sig.parameters and sig.parameters['y'].default is None): param_ignore = ['y'] # ignore y for fit and score result = check_docstring_parameters( method, ignore=param_ignore, class_name=cname) this_incorrect += result incorrect += this_incorrect functions = inspect.getmembers(module, inspect.isfunction) # Exclude imported functions functions = [fn for fn in functions if fn[1].__module__ == name] for fname, func in functions: # Don't test private methods / functions if fname.startswith('_'): continue if fname == "configuration" and name.endswith("setup"): continue name_ = _get_func_name(func) if (not any(d in name_ for d in _DOCSTRING_IGNORES) and not _is_deprecated(func)): incorrect += check_docstring_parameters(func) msg = '\n' + '\n'.join(sorted(list(set(incorrect)))) if len(incorrect) > 0: raise AssertionError("Docstring Error: " + msg) @ignore_warnings(category=DeprecationWarning) def test_tabs(): # Test that there are no tabs in our source files for importer, modname, ispkg in walk_packages(sklearn.__path__, prefix='sklearn.'): # because we don't import mod = importlib.import_module(modname) try: source = getsource(mod) except IOError: # user probably should have run "make clean" continue assert '\t' not in source, ('"%s" has tabs, please remove them ', 'or add it to theignore list' % modname)
bsd-3-clause
rflamary/POT
examples/plot_otda_semi_supervised.py
2
4643
# -*- coding: utf-8 -*- """ ============================================ OTDA unsupervised vs semi-supervised setting ============================================ This example introduces a semi supervised domain adaptation in a 2D setting. It explicits the problem of semi supervised domain adaptation and introduces some optimal transport approaches to solve it. Quantities such as optimal couplings, greater coupling coefficients and transported samples are represented in order to give a visual understanding of what the transport methods are doing. """ # Authors: Remi Flamary <remi.flamary@unice.fr> # Stanislas Chambon <stan.chambon@gmail.com> # # License: MIT License import matplotlib.pylab as pl import ot ############################################################################## # Generate data # ------------- n_samples_source = 150 n_samples_target = 150 Xs, ys = ot.datasets.make_data_classif('3gauss', n_samples_source) Xt, yt = ot.datasets.make_data_classif('3gauss2', n_samples_target) ############################################################################## # Transport source samples onto target samples # -------------------------------------------- # unsupervised domain adaptation ot_sinkhorn_un = ot.da.SinkhornTransport(reg_e=1e-1) ot_sinkhorn_un.fit(Xs=Xs, Xt=Xt) transp_Xs_sinkhorn_un = ot_sinkhorn_un.transform(Xs=Xs) # semi-supervised domain adaptation ot_sinkhorn_semi = ot.da.SinkhornTransport(reg_e=1e-1) ot_sinkhorn_semi.fit(Xs=Xs, Xt=Xt, ys=ys, yt=yt) transp_Xs_sinkhorn_semi = ot_sinkhorn_semi.transform(Xs=Xs) # semi supervised DA uses available labaled target samples to modify the cost # matrix involved in the OT problem. The cost of transporting a source sample # of class A onto a target sample of class B != A is set to infinite, or a # very large value # note that in the present case we consider that all the target samples are # labeled. For daily applications, some target sample might not have labels, # in this case the element of yt corresponding to these samples should be # filled with -1. # Warning: we recall that -1 cannot be used as a class label ############################################################################## # Fig 1 : plots source and target samples + matrix of pairwise distance # --------------------------------------------------------------------- pl.figure(1, figsize=(10, 10)) pl.subplot(2, 2, 1) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title('Source samples') pl.subplot(2, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title('Target samples') pl.subplot(2, 2, 3) pl.imshow(ot_sinkhorn_un.cost_, interpolation='nearest') pl.xticks([]) pl.yticks([]) pl.title('Cost matrix - unsupervised DA') pl.subplot(2, 2, 4) pl.imshow(ot_sinkhorn_semi.cost_, interpolation='nearest') pl.xticks([]) pl.yticks([]) pl.title('Cost matrix - semisupervised DA') pl.tight_layout() # the optimal coupling in the semi-supervised DA case will exhibit " shape # similar" to the cost matrix, (block diagonal matrix) ############################################################################## # Fig 2 : plots optimal couplings for the different methods # --------------------------------------------------------- pl.figure(2, figsize=(8, 4)) pl.subplot(1, 2, 1) pl.imshow(ot_sinkhorn_un.coupling_, interpolation='nearest') pl.xticks([]) pl.yticks([]) pl.title('Optimal coupling\nUnsupervised DA') pl.subplot(1, 2, 2) pl.imshow(ot_sinkhorn_semi.coupling_, interpolation='nearest') pl.xticks([]) pl.yticks([]) pl.title('Optimal coupling\nSemi-supervised DA') pl.tight_layout() ############################################################################## # Fig 3 : plot transported samples # -------------------------------- # display transported samples pl.figure(4, figsize=(8, 4)) pl.subplot(1, 2, 1) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=0.5) pl.scatter(transp_Xs_sinkhorn_un[:, 0], transp_Xs_sinkhorn_un[:, 1], c=ys, marker='+', label='Transp samples', s=30) pl.title('Transported samples\nEmdTransport') pl.legend(loc=0) pl.xticks([]) pl.yticks([]) pl.subplot(1, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=0.5) pl.scatter(transp_Xs_sinkhorn_semi[:, 0], transp_Xs_sinkhorn_semi[:, 1], c=ys, marker='+', label='Transp samples', s=30) pl.title('Transported samples\nSinkhornTransport') pl.xticks([]) pl.yticks([]) pl.tight_layout() pl.show()
mit
shareactorIO/pipeline
source.ml/jupyterhub.ml/notebooks/zz_old/TensorFlow/GoogleTraining/workshop_sections/mnist_series/the_hard_way/mnist_onehlayer.py
3
9561
#!/usr/bin/env python # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import argparse import math import os import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets # Define some constants. # The MNIST dataset has 10 classes, representing the digits 0 through 9. NUM_CLASSES = 10 # The MNIST images are always 28x28 pixels. IMAGE_SIZE = 28 IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE # Batch size. Must be evenly dividable by dataset sizes. BATCH_SIZE = 100 EVAL_BATCH_SIZE = 3 # Number of units in hidden layers. HIDDEN1_UNITS = 128 FLAGS = None # Build inference graph. def mnist_inference(images, hidden1_units): """Build the MNIST model up to where it may be used for inference. Args: images: Images placeholder. hidden1_units: Size of the first hidden layer. Returns: logits: Output tensor with the computed logits. """ # Hidden 1 with tf.name_scope('hidden1'): weights = tf.Variable( tf.truncated_normal([IMAGE_PIXELS, hidden1_units], stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights') biases = tf.Variable(tf.zeros([hidden1_units]), name='biases') hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases) # Linear with tf.name_scope('softmax_linear'): weights = tf.Variable( tf.truncated_normal([hidden1_units, NUM_CLASSES], stddev=1.0 / math.sqrt(float(hidden1_units))), name='weights') biases = tf.Variable(tf.zeros([NUM_CLASSES]), name='biases') logits = tf.matmul(hidden1, weights) + biases # Uncomment the following line to see what we have constructed. # tf.train.write_graph(tf.get_default_graph().as_graph_def(), # "/tmp", "inference.pbtxt", as_text=True) return logits # Build training graph. def mnist_training(logits, labels, learning_rate): """Build the training graph. Args: logits: Logits tensor, float - [BATCH_SIZE, NUM_CLASSES]. labels: Labels tensor, int32 - [BATCH_SIZE], with values in the range [0, NUM_CLASSES). learning_rate: The learning rate to use for gradient descent. Returns: train_op: The Op for training. loss: The Op for calculating loss. """ # Create an operation that calculates loss. labels = tf.to_int64(labels) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, labels, name='xentropy') loss = tf.reduce_mean(cross_entropy, name='xentropy_mean') # Create the gradient descent optimizer with the given learning rate. optimizer = tf.train.GradientDescentOptimizer(learning_rate) # Create a variable to track the global step. global_step = tf.Variable(0, name='global_step', trainable=False) # Use the optimizer to apply the gradients that minimize the loss # (and also increment the global step counter) as a single training step. train_op = optimizer.minimize(loss, global_step=global_step) return train_op, loss def main(_): """Build the full graph for feeding inputs, training, and saving checkpoints. Run the training. Then, load the saved graph and run some predictions.""" # Get input data: get the sets of images and labels for training, # validation, and test on MNIST. data_sets = read_data_sets(FLAGS.data_dir, False) mnist_graph = tf.Graph() with mnist_graph.as_default(): # Generate placeholders for the images and labels. images_placeholder = tf.placeholder(tf.float32) labels_placeholder = tf.placeholder(tf.int32) tf.add_to_collection("images", images_placeholder) # Remember this Op. tf.add_to_collection("labels", labels_placeholder) # Remember this Op. # Build a Graph that computes predictions from the inference model. logits = mnist_inference(images_placeholder, HIDDEN1_UNITS) tf.add_to_collection("logits", logits) # Remember this Op. # Add to the Graph the Ops that calculate and apply gradients. train_op, loss = mnist_training( logits, labels_placeholder, 0.01) # prediction accuracy _, indices_op = tf.nn.top_k(logits) flattened = tf.reshape(indices_op, [-1]) correct_prediction = tf.cast( tf.equal(labels_placeholder, flattened), tf.float32) accuracy = tf.reduce_mean(correct_prediction) # Define info to be used by the SummaryWriter. This will let # TensorBoard plot values during the training process. loss_summary = tf.scalar_summary("loss", loss) train_summary_op = tf.merge_summary([loss_summary]) # Add the variable initializer Op. init = tf.initialize_all_variables() # Create a saver for writing training checkpoints. saver = tf.train.Saver() # Create a summary writer. print("Writing Summaries to %s" % FLAGS.model_dir) train_summary_writer = tf.train.SummaryWriter(FLAGS.model_dir) # Run training and save checkpoint at the end. with tf.Session(graph=mnist_graph) as sess: # Run the Op to initialize the variables. sess.run(init) # Start the training loop. for step in xrange(FLAGS.num_steps): # Read a batch of images and labels. images_feed, labels_feed = data_sets.train.next_batch(BATCH_SIZE) # Run one step of the model. The return values are the activations # from the `train_op` (which is discarded) and the `loss` Op. To # inspect the values of your Ops or variables, you may include them # in the list passed to sess.run() and the value tensors will be # returned in the tuple from the call. _, loss_value, tsummary, acc = sess.run( [train_op, loss, train_summary_op, accuracy], feed_dict={images_placeholder: images_feed, labels_placeholder: labels_feed}) if step % 100 == 0: # Write summary info train_summary_writer.add_summary(tsummary, step) if step % 1000 == 0: # Print loss/accuracy info print('----Step %d: loss = %.4f' % (step, loss_value)) print("accuracy: %s" % acc) print("\nWriting checkpoint file.") checkpoint_file = os.path.join(FLAGS.model_dir, 'checkpoint') saver.save(sess, checkpoint_file, global_step=step) _, loss_value = sess.run( [train_op, loss], feed_dict={images_placeholder: data_sets.test.images, labels_placeholder: data_sets.test.labels}) print("Test set loss: %s" % loss_value) # Run evaluation based on the saved checkpoint. with tf.Session(graph=tf.Graph()) as sess: checkpoint_file = tf.train.latest_checkpoint(FLAGS.model_dir) print("\nRunning predictions based on saved checkpoint.") print("checkpoint file: {}".format(checkpoint_file)) # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Retrieve the Ops we 'remembered'. logits = tf.get_collection("logits")[0] images_placeholder = tf.get_collection("images")[0] labels_placeholder = tf.get_collection("labels")[0] # Add an Op that chooses the top k predictions. eval_op = tf.nn.top_k(logits) # Run evaluation. images_feed, labels_feed = data_sets.validation.next_batch( EVAL_BATCH_SIZE) prediction = sess.run(eval_op, feed_dict={images_placeholder: images_feed, labels_placeholder: labels_feed}) for i in range(len(labels_feed)): print("Ground truth: %d\nPrediction: %d" % (labels_feed[i], prediction.indices[i][0])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/tmp/MNIST_data', help='Directory for storing data') parser.add_argument('--num_steps', type=int, default=25000, help='Number of training steps to run') parser.add_argument('--model_dir', type=str, default=os.path.join( "/tmp/tfmodels/mnist_onehlayer", str(int(time.time()))), help='Directory for storing model info') FLAGS = parser.parse_args() tf.app.run()
apache-2.0
marmarko/ml101
tensorflow/examples/skflow/multioutput_regression.py
9
2552
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This example uses the same data as one here: http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html Instead of DecisionTree a 2-layer Deep Neural Network with RELU activations is used. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from tensorflow.contrib import learn # Create random dataset. rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T # Fit regression DNN models. regressors = [] options = [[2], [10, 10], [20, 20]] for hidden_units in options: def tanh_dnn(X, y): features = learn.ops.dnn(X, hidden_units=hidden_units, activation=learn.tf.tanh) return learn.models.linear_regression(features, y) regressor = learn.TensorFlowEstimator(model_fn=tanh_dnn, n_classes=0, steps=500, learning_rate=0.1, batch_size=100) regressor.fit(X, y) score = mean_squared_error(regressor.predict(X), y) print("Mean Squared Error for {0}: {1:f}".format(str(hidden_units), score)) regressors.append(regressor) # Predict on new random Xs. X_test = np.arange(-100.0, 100.0, 0.1)[:, np.newaxis] y_1 = regressors[0].predict(X_test) y_2 = regressors[1].predict(X_test) y_3 = regressors[2].predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="hidden_units{}".format(str(options[0]))) plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="hidden_units{}".format(str(options[1]))) plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="hidden_units{}".format(str(options[2]))) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output DNN Regression") plt.legend() plt.show()
bsd-2-clause
herilalaina/scikit-learn
sklearn/linear_model/base.py
28
21031
""" Generalized Linear models. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Vincent Michel <vincent.michel@inria.fr> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Mathieu Blondel <mathieu@mblondel.org> # Lars Buitinck # Maryan Morel <maryan.morel@polytechnique.edu> # Giorgio Patrini <giorgio.patrini@anu.edu.au> # License: BSD 3 clause from __future__ import division from abc import ABCMeta, abstractmethod import numbers import warnings import numpy as np import scipy.sparse as sp from scipy import linalg from scipy import sparse from ..externals import six from ..externals.joblib import Parallel, delayed from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..utils import check_array, check_X_y, deprecated, as_float_array from ..utils.validation import FLOAT_DTYPES from ..utils import check_random_state from ..utils.extmath import safe_sparse_dot from ..utils.sparsefuncs import mean_variance_axis, inplace_column_scale from ..utils.fixes import sparse_lsqr from ..utils.seq_dataset import ArrayDataset, CSRDataset from ..utils.validation import check_is_fitted from ..exceptions import NotFittedError from ..preprocessing.data import normalize as f_normalize # TODO: bayesian_ridge_regression and bayesian_regression_ard # should be squashed into its respective objects. SPARSE_INTERCEPT_DECAY = 0.01 # For sparse data intercept updates are scaled by this decay factor to avoid # intercept oscillation. def make_dataset(X, y, sample_weight, random_state=None): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. """ rng = check_random_state(random_state) # seed should never be 0 in SequentialDataset seed = rng.randint(1, np.iinfo(np.int32).max) if sp.issparse(X): dataset = CSRDataset(X.data, X.indptr, X.indices, y, sample_weight, seed=seed) intercept_decay = SPARSE_INTERCEPT_DECAY else: dataset = ArrayDataset(X, y, sample_weight, seed=seed) intercept_decay = 1.0 return dataset, intercept_decay @deprecated("sparse_center_data was deprecated in version 0.18 and will be " "removed in 0.20. Use utilities in preprocessing.data instead") def sparse_center_data(X, y, fit_intercept, normalize=False): """ Compute information needed to center data to have mean zero along axis 0. Be aware that X will not be centered since it would break the sparsity, but will be normalized if asked so. """ if fit_intercept: # we might require not to change the csr matrix sometimes # store a copy if normalize is True. # Change dtype to float64 since mean_variance_axis accepts # it that way. if sp.isspmatrix(X) and X.getformat() == 'csr': X = sp.csr_matrix(X, copy=normalize, dtype=np.float64) else: X = sp.csc_matrix(X, copy=normalize, dtype=np.float64) X_offset, X_var = mean_variance_axis(X, axis=0) if normalize: # transform variance to std in-place X_var *= X.shape[0] X_std = np.sqrt(X_var, X_var) del X_var X_std[X_std == 0] = 1 inplace_column_scale(X, 1. / X_std) else: X_std = np.ones(X.shape[1]) y_offset = y.mean(axis=0) y = y - y_offset else: X_offset = np.zeros(X.shape[1]) X_std = np.ones(X.shape[1]) y_offset = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_std @deprecated("center_data was deprecated in version 0.18 and will be removed " "in 0.20. Use utilities in preprocessing.data instead") def center_data(X, y, fit_intercept, normalize=False, copy=True, sample_weight=None): """ Centers data to have mean zero along axis 0. This is here because nearly all linear models will want their data to be centered. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself """ X = as_float_array(X, copy) if fit_intercept: if isinstance(sample_weight, numbers.Number): sample_weight = None if sp.issparse(X): X_offset = np.zeros(X.shape[1]) X_std = np.ones(X.shape[1]) else: X_offset = np.average(X, axis=0, weights=sample_weight) X -= X_offset # XXX: currently scaled to variance=n_samples if normalize: X_std = np.sqrt(np.sum(X ** 2, axis=0)) X_std[X_std == 0] = 1 X /= X_std else: X_std = np.ones(X.shape[1]) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1]) X_std = np.ones(X.shape[1]) y_offset = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_std def _preprocess_data(X, y, fit_intercept, normalize=False, copy=True, sample_weight=None, return_mean=False): """ Centers data to have mean zero along axis 0. If fit_intercept=False or if the X is a sparse matrix, no centering is done, but normalization can still be applied. The function returns the statistics necessary to reconstruct the input data, which are X_offset, y_offset, X_scale, such that the output X = (X - X_offset) / X_scale X_scale is the L2 norm of X - X_offset. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself. If return_mean=True, the mean, eventually weighted, is returned, independently of whether X was centered (option used for optimization with sparse data in coordinate_descend). This is here because nearly all linear models will want their data to be centered. This function also systematically makes y consistent with X.dtype """ if isinstance(sample_weight, numbers.Number): sample_weight = None X = check_array(X, copy=copy, accept_sparse=['csr', 'csc'], dtype=FLOAT_DTYPES) y = np.asarray(y, dtype=X.dtype) if fit_intercept: if sp.issparse(X): X_offset, X_var = mean_variance_axis(X, axis=0) if not return_mean: X_offset[:] = X.dtype.type(0) if normalize: # TODO: f_normalize could be used here as well but the function # inplace_csr_row_normalize_l2 must be changed such that it # can return also the norms computed internally # transform variance to norm in-place X_var *= X.shape[0] X_scale = np.sqrt(X_var, X_var) del X_var X_scale[X_scale == 0] = 1 inplace_column_scale(X, 1. / X_scale) else: X_scale = np.ones(X.shape[1], dtype=X.dtype) else: X_offset = np.average(X, axis=0, weights=sample_weight) X -= X_offset if normalize: X, X_scale = f_normalize(X, axis=0, copy=False, return_norm=True) else: X_scale = np.ones(X.shape[1], dtype=X.dtype) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1], dtype=X.dtype) X_scale = np.ones(X.shape[1], dtype=X.dtype) if y.ndim == 1: y_offset = X.dtype.type(0) else: y_offset = np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_scale # TODO: _rescale_data should be factored into _preprocess_data. # Currently, the fact that sag implements its own way to deal with # sample_weight makes the refactoring tricky. def _rescale_data(X, y, sample_weight): """Rescale data so as to support sample_weight""" n_samples = X.shape[0] sample_weight = sample_weight * np.ones(n_samples) sample_weight = np.sqrt(sample_weight) sw_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) X = safe_sparse_dot(sw_matrix, X) y = safe_sparse_dot(sw_matrix, y) return X, y class LinearModel(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for Linear Models""" @abstractmethod def fit(self, X, y): """Fit model.""" def _decision_function(self, X): check_is_fitted(self, "coef_") X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. Returns ------- C : array, shape = (n_samples,) Returns predicted values. """ return self._decision_function(X) _preprocess_data = staticmethod(_preprocess_data) def _set_intercept(self, X_offset, y_offset, X_scale): """Set the intercept_ """ if self.fit_intercept: self.coef_ = self.coef_ / X_scale self.intercept_ = y_offset - np.dot(X_offset, self.coef_.T) else: self.intercept_ = 0. # XXX Should this derive from LinearModel? It should be a mixin, not an ABC. # Maybe the n_features checking can be moved to LinearModel. class LinearClassifierMixin(ClassifierMixin): """Mixin for linear classifiers. Handles prediction for sparse and dense X. """ def decision_function(self, X): """Predict confidence scores for samples. The confidence score for a sample is the signed distance of that sample to the hyperplane. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Samples. Returns ------- array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted. """ if not hasattr(self, 'coef_') or self.coef_ is None: raise NotFittedError("This %(name)s instance is not fitted " "yet" % {'name': type(self).__name__}) X = check_array(X, accept_sparse='csr') n_features = self.coef_.shape[1] if X.shape[1] != n_features: raise ValueError("X has %d features per sample; expecting %d" % (X.shape[1], n_features)) scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() if scores.shape[1] == 1 else scores def predict(self, X): """Predict class labels for samples in X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] Predicted class label per sample. """ scores = self.decision_function(X) if len(scores.shape) == 1: indices = (scores > 0).astype(np.int) else: indices = scores.argmax(axis=1) return self.classes_[indices] def _predict_proba_lr(self, X): """Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob class SparseCoefMixin(object): """Mixin for converting coef_ to and from CSR format. L1-regularizing estimators should inherit this. """ def densify(self): """Convert coefficient matrix to dense array format. Converts the ``coef_`` member (back) to a numpy.ndarray. This is the default format of ``coef_`` and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op. Returns ------- self : estimator """ msg = "Estimator, %(name)s, must be fitted before densifying." check_is_fitted(self, "coef_", msg=msg) if sp.issparse(self.coef_): self.coef_ = self.coef_.toarray() return self def sparsify(self): """Convert coefficient matrix to sparse format. Converts the ``coef_`` member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation. The ``intercept_`` member is not converted. Notes ----- For non-sparse models, i.e. when there are not many zeros in ``coef_``, this may actually *increase* memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with ``(coef_ == 0).sum()``, must be more than 50% for this to provide significant benefits. After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify. Returns ------- self : estimator """ msg = "Estimator, %(name)s, must be fitted before sparsifying." check_is_fitted(self, "coef_", msg=msg) self.coef_ = sp.csr_matrix(self.coef_) return self class LinearRegression(LinearModel, RegressorMixin): """ Ordinary least squares Linear Regression. Parameters ---------- fit_intercept : boolean, optional, default True whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. n_jobs : int, optional, default 1 The number of jobs to use for the computation. If -1 all CPUs are used. This will only provide speedup for n_targets > 1 and sufficient large problems. Attributes ---------- coef_ : array, shape (n_features, ) or (n_targets, n_features) Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features. intercept_ : array Independent term in the linear model. Notes ----- From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) wrapped as a predictor object. """ def __init__(self, fit_intercept=True, normalize=False, copy_X=True, n_jobs=1): self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.n_jobs = n_jobs def fit(self, X, y, sample_weight=None): """ Fit linear model. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples, n_targets] Target values. Will be cast to X's dtype if necessary sample_weight : numpy array of shape [n_samples] Individual weights for each sample .. versionadded:: 0.17 parameter *sample_weight* support to LinearRegression. Returns ------- self : returns an instance of self. """ n_jobs_ = self.n_jobs X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], y_numeric=True, multi_output=True) if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, fit_intercept=self.fit_intercept, normalize=self.normalize, copy=self.copy_X, sample_weight=sample_weight) if sample_weight is not None: # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) if sp.issparse(X): if y.ndim < 2: out = sparse_lsqr(X, y) self.coef_ = out[0] self._residues = out[3] else: # sparse_lstsq cannot handle y with shape (M, K) outs = Parallel(n_jobs=n_jobs_)( delayed(sparse_lsqr)(X, y[:, j].ravel()) for j in range(y.shape[1])) self.coef_ = np.vstack(out[0] for out in outs) self._residues = np.vstack(out[3] for out in outs) else: self.coef_, self._residues, self.rank_, self.singular_ = \ linalg.lstsq(X, y) self.coef_ = self.coef_.T if y.ndim == 1: self.coef_ = np.ravel(self.coef_) self._set_intercept(X_offset, y_offset, X_scale) return self def _pre_fit(X, y, Xy, precompute, normalize, fit_intercept, copy): """Aux function used at beginning of fit in linear models""" n_samples, n_features = X.shape if sparse.isspmatrix(X): # copy is not needed here as X is not modified inplace when X is sparse precompute = False X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=fit_intercept, normalize=normalize, copy=False, return_mean=True) else: # copy was done in fit if necessary X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, fit_intercept=fit_intercept, normalize=normalize, copy=copy) if hasattr(precompute, '__array__') and ( fit_intercept and not np.allclose(X_offset, np.zeros(n_features)) or normalize and not np.allclose(X_scale, np.ones(n_features))): warnings.warn("Gram matrix was provided but X was centered" " to fit intercept, " "or X was normalized : recomputing Gram matrix.", UserWarning) # recompute Gram precompute = 'auto' Xy = None # precompute if n_samples > n_features if isinstance(precompute, six.string_types) and precompute == 'auto': precompute = (n_samples > n_features) if precompute is True: # make sure that the 'precompute' array is contiguous. precompute = np.empty(shape=(n_features, n_features), dtype=X.dtype, order='C') np.dot(X.T, X, out=precompute) if not hasattr(precompute, '__array__'): Xy = None # cannot use Xy if precompute is not Gram if hasattr(precompute, '__array__') and Xy is None: common_dtype = np.find_common_type([X.dtype, y.dtype], []) if y.ndim == 1: # Xy is 1d, make sure it is contiguous. Xy = np.empty(shape=n_features, dtype=common_dtype, order='C') np.dot(X.T, y, out=Xy) else: # Make sure that Xy is always F contiguous even if X or y are not # contiguous: the goal is to make it fast to extract the data for a # specific target. n_targets = y.shape[1] Xy = np.empty(shape=(n_features, n_targets), dtype=common_dtype, order='F') np.dot(y.T, X, out=Xy.T) return X, y, X_offset, y_offset, X_scale, precompute, Xy
bsd-3-clause
sangwook236/general-development-and-testing
sw_dev/python/ext/test/file_format/hdf_test.py
2
3531
#!/usr/bin/env python # -*- coding: UTF-8 -*- import numpy as np import h5py # REF [site] >> https://docs.h5py.org/en/stable/quick.html def quick_start_guide(): # An HDF5 file is a container for two kinds of objects: # datasets, which are array-like collections of data, and groups, which are folder-like containers that hold datasets and other groups. # The most fundamental thing to remember when using h5py is: # Groups work like dictionaries, and datasets work like NumPy arrays. hdf5_filepath = "./mytestfile.hdf5" # Create a file. with h5py.File(hdf5_filepath, "w") as f: dset = f.create_dataset("mydataset", shape=(100,), dtype="i") print("f.name = {}.".format(f.name)) print("dset.name = {}.".format(dset.name)) # Attribute. # The official way to store metadata in HDF5. dset.attrs["temperature"] = 99.5 print('dset.attrs["temperature"] = {}.'.format(dset.attrs["temperature"])) print('"temperature" in dset.attrs = {}.'.format("temperature" in dset.attrs)) with h5py.File(hdf5_filepath, "a") as f: grp = f.create_group("subgroup") dset2 = grp.create_dataset("another_dataset", shape=(50,), dtype="f") print("dset2.name = {}.".format(dset2.name)) dset3 = f.create_dataset("subgroup2/dataset_three", shape=(10,), dtype="i") print("dset3.name = {}.".format(dset3.name)) for name in f: print(name) print('"mydataset" in f = {}.'.format("mydataset" in f)) print('"somethingelse" in f = {}.'.format("somethingelse" in f)) print('"subgroup/another_dataset" in f = {}.'.format("subgroup/another_dataset" in f)) print("f.keys() = {}.".format(f.keys())) print("f.values() = {}.".format(f.values())) print("f.items() = {}.".format(f.items())) #print("f.iter() = {}.".format(f.iter())) # AttributeError: 'File' object has no attribute 'iter'. print('f.get("subgroup/another_dataset") = {}.'.format(f.get("subgroup/another_dataset"))) print('f.get("another_dataset") = {}.'.format(f.get("another_dataset"))) print('f["subgroup/another_dataset"] = {}.'.format(f["subgroup/another_dataset"])) #print('f["another_dataset"] = {}.'.format(f["another_dataset"])) # KeyError: "Unable to open object (object 'another_dataset' doesn't exist)". dataset_three = f["subgroup2/dataset_three"] print("grp.keys() = {}.".format(grp.keys())) print("grp.values() = {}.".format(grp.values())) print("grp.items() = {}.".format(grp.items())) #print("grp.iter() = {}.".format(grp.iter())) # AttributeError: 'Group' object has no attribute 'iter'. print('grp.get("another_dataset") = {}.'.format(grp.get("another_dataset"))) print('grp.get("subgroup/another_dataset") = {}.'.format(grp.get("subgroup/another_dataset"))) print('grp["another_dataset"] = {}.'.format(grp["another_dataset"])) #print('grp["subgroup/another_dataset"] = {}.'.format(grp["subgroup/another_dataset"])) # KeyError: 'Unable to open object (component not found)'. del grp["another_dataset"] def print_name(name): print(name) f.visit(print_name) def print_item(name, obj): print(name, obj) f.visititems(print_item) with h5py.File(hdf5_filepath, "r+") as f: dset = f["mydataset"] print("dset.shape = {}, dset.dtype= {}.".format(dset.shape, dset.dtype)) dset[...] = np.arange(100) print("dset[0] = {}.".format(dset[0])) print("dset[10] = {}.".format(dset[10])) print("dset[0:100:10] = {}.".format(dset[0:100:10])) def main(): quick_start_guide() #-------------------------------------------------------------------- if "__main__" == __name__: main()
gpl-2.0
marctc/django
tests/gis_tests/test_geoip.py
73
5275
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import unittest import warnings from unittest import skipUnless from django.conf import settings from django.contrib.gis.geoip import HAS_GEOIP from django.contrib.gis.geos import HAS_GEOS, GEOSGeometry from django.test import ignore_warnings from django.utils import six from django.utils.deprecation import RemovedInDjango20Warning if HAS_GEOIP: from django.contrib.gis.geoip import GeoIP, GeoIPException # Note: Requires use of both the GeoIP country and city datasets. # The GEOIP_DATA path should be the only setting set (the directory # should contain links or the actual database files 'GeoIP.dat' and # 'GeoLiteCity.dat'. @skipUnless(HAS_GEOIP and getattr(settings, "GEOIP_PATH", None), "GeoIP is required along with the GEOIP_PATH setting.") @ignore_warnings(category=RemovedInDjango20Warning) class GeoIPTest(unittest.TestCase): addr = '128.249.1.1' fqdn = 'tmc.edu' def test01_init(self): "Testing GeoIP initialization." g1 = GeoIP() # Everything inferred from GeoIP path path = settings.GEOIP_PATH g2 = GeoIP(path, 0) # Passing in data path explicitly. g3 = GeoIP.open(path, 0) # MaxMind Python API syntax. for g in (g1, g2, g3): self.assertTrue(g._country) self.assertTrue(g._city) # Only passing in the location of one database. city = os.path.join(path, 'GeoLiteCity.dat') cntry = os.path.join(path, 'GeoIP.dat') g4 = GeoIP(city, country='') self.assertIsNone(g4._country) g5 = GeoIP(cntry, city='') self.assertIsNone(g5._city) # Improper parameters. bad_params = (23, 'foo', 15.23) for bad in bad_params: self.assertRaises(GeoIPException, GeoIP, cache=bad) if isinstance(bad, six.string_types): e = GeoIPException else: e = TypeError self.assertRaises(e, GeoIP, bad, 0) def test02_bad_query(self): "Testing GeoIP query parameter checking." cntry_g = GeoIP(city='<foo>') # No city database available, these calls should fail. self.assertRaises(GeoIPException, cntry_g.city, 'google.com') self.assertRaises(GeoIPException, cntry_g.coords, 'yahoo.com') # Non-string query should raise TypeError self.assertRaises(TypeError, cntry_g.country_code, 17) self.assertRaises(TypeError, cntry_g.country_name, GeoIP) def test03_country(self): "Testing GeoIP country querying methods." g = GeoIP(city='<foo>') for query in (self.fqdn, self.addr): for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query), 'Failed for func %s and query %s' % (func, query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query), 'Failed for func %s and query %s' % (func, query)) self.assertEqual({'country_code': 'US', 'country_name': 'United States'}, g.country(query)) @skipUnless(HAS_GEOS, "Geos is required") def test04_city(self): "Testing GeoIP city querying methods." g = GeoIP(country='<foo>') for query in (self.fqdn, self.addr): # Country queries should still work. for func in (g.country_code, g.country_code_by_addr, g.country_code_by_name): self.assertEqual('US', func(query)) for func in (g.country_name, g.country_name_by_addr, g.country_name_by_name): self.assertEqual('United States', func(query)) self.assertEqual({'country_code': 'US', 'country_name': 'United States'}, g.country(query)) # City information dictionary. d = g.city(query) self.assertEqual('USA', d['country_code3']) self.assertEqual('Houston', d['city']) self.assertEqual('TX', d['region']) self.assertEqual(713, d['area_code']) geom = g.geos(query) self.assertIsInstance(geom, GEOSGeometry) lon, lat = (-95.4010, 29.7079) lat_lon = g.lat_lon(query) lat_lon = (lat_lon[1], lat_lon[0]) for tup in (geom.tuple, g.coords(query), g.lon_lat(query), lat_lon): self.assertAlmostEqual(lon, tup[0], 4) self.assertAlmostEqual(lat, tup[1], 4) def test05_unicode_response(self): "Testing that GeoIP strings are properly encoded, see #16553." g = GeoIP() d = g.city("duesseldorf.de") self.assertEqual('Düsseldorf', d['city']) d = g.country('200.26.205.1') # Some databases have only unaccented countries self.assertIn(d['country_name'], ('Curaçao', 'Curacao')) def test_deprecation_warning(self): with warnings.catch_warnings(record=True) as warns: warnings.simplefilter('always') GeoIP() self.assertEqual(len(warns), 1) msg = str(warns[0].message) self.assertIn('django.contrib.gis.geoip is deprecated', msg)
bsd-3-clause
moonbury/notebooks
github/MasteringPandas/2060_11_Code/display_iris_dimensions.py
3
1180
%matplotlib inline import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from IPython.core.pylabtools import figsize iris_data=load_iris() # Load the iris dataset figsize(12.5, 10) fig = plt.figure() fig.suptitle('Plots of Iris Dimensions', fontsize=14) fig.subplots_adjust(wspace=0.35,hspace=0.5) colors=('r','g','b') cols=[colors[i] for i in iris_data.target] def get_legend_data(clrs): leg_data = [] for clr in clrs: line=plt.Line2D(range(1),range(1),marker='o', color=clr) leg_data.append(line) return tuple(leg_data) def display_iris_dimensions(fig,x_idx, y_idx,sp_idx): ax = fig.add_subplot(3,2,sp_idx) ax.scatter(iris_data.data[:, x_idx], iris_data.data[:,y_idx],c=cols) ax.set_xlabel(iris_data.feature_names[x_idx]) ax.set_ylabel(iris_data.feature_names[y_idx]) leg_data = get_legend_data(colors) ax.legend(leg_data,iris_data.target_names, numpoints=1, bbox_to_anchor=(1.265,1.0),prop={'size':8.5}) idx = 1 pairs = [(x,y) for x in range(0,4) for y in range(0,4) if x < y] for (x,y) in pairs: display_iris_dimensions(fig,x,y,idx); idx += 1
gpl-3.0
yhpeng-git/mxnet
python/mxnet/model.py
1
38915
# pylint: disable=fixme, invalid-name, too-many-arguments, too-many-locals, too-many-lines # pylint: disable=too-many-branches, too-many-statements """MXNet model module""" from __future__ import absolute_import, print_function import time import logging import warnings from collections import namedtuple import numpy as np from . import io from . import nd from . import symbol as sym from . import optimizer as opt from . import metric from . import kvstore as kvs from .context import Context, cpu from .initializer import Uniform from .optimizer import get_updater from .executor_manager import DataParallelExecutorManager, _check_arguments, _load_data from .io import DataDesc from .base import mx_real_t BASE_ESTIMATOR = object try: from sklearn.base import BaseEstimator BASE_ESTIMATOR = BaseEstimator except ImportError: SKLEARN_INSTALLED = False # Parameter to pass to batch_end_callback BatchEndParam = namedtuple('BatchEndParams', ['epoch', 'nbatch', 'eval_metric', 'locals']) def _create_kvstore(kvstore, num_device, arg_params): """Create kvstore This function select and create a proper kvstore if given the kvstore type. Parameters ---------- kvstore : KVStore or str The kvstore. num_device : int The number of devices arg_params : dict of str to `NDArray`. Model parameter, dict of name to `NDArray` of net's weights. """ update_on_kvstore = True if kvstore is None: kv = None elif isinstance(kvstore, kvs.KVStore): kv = kvstore elif isinstance(kvstore, str): # create kvstore using the string type if num_device is 1 and 'dist' not in kvstore: # no need to use kv for single device and single machine kv = None else: kv = kvs.create(kvstore) if kvstore is 'local': # automatically select a proper local, what is the meaning? max_size = max(np.prod(param.shape) for param in arg_params.values()) if max_size > 1024 * 1024 * 16: update_on_kvstore = False else: raise TypeError('kvstore must be KVStore, str or None') if kv is None: update_on_kvstore = False return (kv, update_on_kvstore) def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, update_on_kvstore): """Initialize kvstore""" for idx, param_on_devs in enumerate(param_arrays): kvstore.init(idx, arg_params[param_names[idx]]) if update_on_kvstore: kvstore.pull(idx, param_on_devs, priority=-idx) def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore): """Perform update of param_arrays from grad_arrays on kvstore.""" for index, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue # push gradient, priority is negative index kvstore.push(index, grad_list, priority=-index) # pull back the weights kvstore.pull(index, arg_list, priority=-index) def _update_params(param_arrays, grad_arrays, updater, num_device, kvstore=None): """Perform update of param_arrays from grad_arrays not on kvstore.""" for index, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue if kvstore: # push gradient, priority is negative index kvstore.push(index, grad_list, priority=-index) # pull back the sum gradients, to the same locations. kvstore.pull(index, grad_list, priority=-index) for k, p in enumerate(zip(arg_list, grad_list)): # faked an index here, to make optimizer create diff # state for the same index but on diff devs, TODO(mli) # use a better solution latter w, g = p updater(index*num_device+k, g, w) def _multiple_callbacks(callbacks, *args, **kwargs): """Sends args and kwargs to any configured callbacks. This handles the cases where the 'callbacks' variable is ``None``, a single function, or a list. """ if isinstance(callbacks, list): for cb in callbacks: cb(*args, **kwargs) return if callbacks: callbacks(*args, **kwargs) def _train_multi_device(symbol, ctx, arg_names, param_names, aux_names, arg_params, aux_params, begin_epoch, end_epoch, epoch_size, optimizer, kvstore, update_on_kvstore, train_data, eval_data=None, eval_metric=None, epoch_end_callback=None, batch_end_callback=None, logger=None, work_load_list=None, monitor=None, eval_end_callback=None, eval_batch_end_callback=None, sym_gen=None): """Internal training function on multiple devices. This function will also work for single device as well. Parameters ---------- symbol : Symbol The network configuration. ctx : list of Context The training devices. arg_names: list of str Name of all arguments of the network. param_names: list of str Name of all trainable parameters of the network. aux_names: list of str Name of all auxiliary states of the network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. begin_epoch : int The begining training epoch. end_epoch : int The end training epoch. epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : Optimizer The optimization algorithm train_data : DataIter Training data iterator. eval_data : DataIter Validation data iterator. eval_metric : EvalMetric An evaluation function or a list of evaluation functions. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback : callable(BatchEndParams) A callback that is invoked at end of each batch. This can be used to measure speed, get result from evaluation metric. etc. kvstore : KVStore The KVStore. update_on_kvstore : bool Whether or not perform weight updating on kvstore. logger : logging logger When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as ``ctx``. monitor : Monitor, optional Monitor installed to executor, for monitoring outputs, weights, and gradients for debugging. Notes ----- - This function will inplace update the NDArrays in `arg_params` and `aux_states`. """ if logger is None: logger = logging executor_manager = DataParallelExecutorManager(symbol=symbol, sym_gen=sym_gen, ctx=ctx, train_data=train_data, param_names=param_names, arg_names=arg_names, aux_names=aux_names, work_load_list=work_load_list, logger=logger) if monitor: executor_manager.install_monitor(monitor) executor_manager.set_params(arg_params, aux_params) if not update_on_kvstore: updater = get_updater(optimizer) if kvstore: _initialize_kvstore(kvstore=kvstore, param_arrays=executor_manager.param_arrays, arg_params=arg_params, param_names=executor_manager.param_names, update_on_kvstore=update_on_kvstore) if update_on_kvstore: kvstore.set_optimizer(optimizer) # Now start training train_data.reset() for epoch in range(begin_epoch, end_epoch): # Training phase tic = time.time() eval_metric.reset() nbatch = 0 # Iterate over training data. while True: do_reset = True for data_batch in train_data: executor_manager.load_data_batch(data_batch) if monitor is not None: monitor.tic() executor_manager.forward(is_train=True) executor_manager.backward() if update_on_kvstore: _update_params_on_kvstore(executor_manager.param_arrays, executor_manager.grad_arrays, kvstore) else: _update_params(executor_manager.param_arrays, executor_manager.grad_arrays, updater=updater, num_device=len(ctx), kvstore=kvstore) if monitor is not None: monitor.toc_print() # evaluate at end, so we can lazy copy executor_manager.update_metric(eval_metric, data_batch.label) nbatch += 1 # batch callback (for print purpose) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=nbatch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) # this epoch is done possibly earlier if epoch_size is not None and nbatch >= epoch_size: do_reset = False break if do_reset: logger.info('Epoch[%d] Resetting Data Iterator', epoch) train_data.reset() # this epoch is done if epoch_size is None or nbatch >= epoch_size: break toc = time.time() logger.info('Epoch[%d] Time cost=%.3f', epoch, (toc - tic)) if epoch_end_callback or epoch + 1 == end_epoch: executor_manager.copy_to(arg_params, aux_params) _multiple_callbacks(epoch_end_callback, epoch, symbol, arg_params, aux_params) # evaluation if eval_data: eval_metric.reset() eval_data.reset() total_num_batch = 0 for i, eval_batch in enumerate(eval_data): executor_manager.load_data_batch(eval_batch) executor_manager.forward(is_train=False) executor_manager.update_metric(eval_metric, eval_batch.label) if eval_batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_batch_end_callback, batch_end_params) total_num_batch += 1 if eval_end_callback is not None: eval_end_params = BatchEndParam(epoch=epoch, nbatch=total_num_batch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_end_callback, eval_end_params) eval_data.reset() # end of all epochs return def save_checkpoint(prefix, epoch, symbol, arg_params, aux_params): """Checkpoint the model data into file. Parameters ---------- prefix : str Prefix of model name. epoch : int The epoch number of the model. symbol : Symbol The input Symbol. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if symbol is not None: symbol.save('%s-symbol.json' % prefix) save_dict = {('arg:%s' % k) : v.as_in_context(cpu()) for k, v in arg_params.items()} save_dict.update({('aux:%s' % k) : v.as_in_context(cpu()) for k, v in aux_params.items()}) param_name = '%s-%04d.params' % (prefix, epoch) nd.save(param_name, save_dict) logging.info('Saved checkpoint to \"%s\"', param_name) def load_checkpoint(prefix, epoch): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int Epoch number of model we would like to load. Returns ------- symbol : Symbol The symbol configuration of computation network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - Symbol will be loaded from ``prefix-symbol.json``. - Parameters will be loaded from ``prefix-epoch.params``. """ symbol = sym.load('%s-symbol.json' % prefix) save_dict = nd.load('%s-%04d.params' % (prefix, epoch)) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return (symbol, arg_params, aux_params) from .callback import LogValidationMetricsCallback # pylint: disable=wrong-import-position class FeedForward(BASE_ESTIMATOR): """Model class of MXNet for training and predicting feedforward nets. This class is designed for a single-data single output supervised network. Parameters ---------- symbol : Symbol The symbol configuration of computation network. ctx : Context or list of Context, optional The device context of training and prediction. To use multi GPU training, pass in a list of gpu contexts. num_epoch : int, optional Training parameter, number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional Training parameter, name or optimizer object for training. initializer : initializer function, optional Training parameter, the initialization scheme used. numpy_batch_size : int, optional The batch size of training data. Only needed when input array is numpy. arg_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's auxiliary states. allow_extra_params : boolean, optional Whether allow extra parameters that are not needed by symbol to be passed by aux_params and ``arg_params``. If this is True, no error will be thrown when ``aux_params`` and ``arg_params`` contain more parameters than needed. begin_epoch : int, optional The begining training epoch. kwargs : dict The additional keyword arguments passed to optimizer. """ def __init__(self, symbol, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), numpy_batch_size=128, arg_params=None, aux_params=None, allow_extra_params=False, begin_epoch=0, **kwargs): warnings.warn( '\033[91mmxnet.model.FeedForward has been deprecated. ' + \ 'Please use mxnet.mod.Module instead.\033[0m', DeprecationWarning, stacklevel=2) if isinstance(symbol, sym.Symbol): self.symbol = symbol self.sym_gen = None else: assert(callable(symbol)) self.symbol = None self.sym_gen = symbol # model parameters self.arg_params = arg_params self.aux_params = aux_params self.allow_extra_params = allow_extra_params self.argument_checked = False if self.sym_gen is None: self._check_arguments() # basic configuration if ctx is None: ctx = [cpu()] elif isinstance(ctx, Context): ctx = [ctx] self.ctx = ctx # training parameters self.num_epoch = num_epoch self.epoch_size = epoch_size self.kwargs = kwargs.copy() self.optimizer = optimizer self.initializer = initializer self.numpy_batch_size = numpy_batch_size # internal helper state self._pred_exec = None self.begin_epoch = begin_epoch def _check_arguments(self): """verify the argument of the default symbol and user provided parameters""" if self.argument_checked: return assert(self.symbol is not None) self.argument_checked = True # check if symbol contain duplicated names. _check_arguments(self.symbol) # rematch parameters to delete useless ones if self.allow_extra_params: if self.arg_params: arg_names = set(self.symbol.list_arguments()) self.arg_params = {k : v for k, v in self.arg_params.items() if k in arg_names} if self.aux_params: aux_names = set(self.symbol.list_auxiliary_states()) self.aux_params = {k : v for k, v in self.aux_params.items() if k in aux_names} @staticmethod def _is_data_arg(name): """Check if name is a data argument.""" return name.endswith('data') or name.endswith('label') def _init_params(self, inputs, overwrite=False): """Initialize weight parameters and auxiliary states.""" inputs = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in inputs] input_shapes = {item.name: item.shape for item in inputs} arg_shapes, _, aux_shapes = self.symbol.infer_shape(**input_shapes) assert arg_shapes is not None input_dtypes = {item.name: item.dtype for item in inputs} arg_dtypes, _, aux_dtypes = self.symbol.infer_type(**input_dtypes) assert arg_dtypes is not None arg_names = self.symbol.list_arguments() input_names = input_shapes.keys() param_names = [key for key in arg_names if key not in input_names] aux_names = self.symbol.list_auxiliary_states() param_name_attrs = [x for x in zip(arg_names, arg_shapes, arg_dtypes) if x[0] in param_names] arg_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in param_name_attrs} aux_name_attrs = [x for x in zip(aux_names, aux_shapes, aux_dtypes) if x[0] in aux_names] aux_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in aux_name_attrs} for k, v in arg_params.items(): if self.arg_params and k in self.arg_params and (not overwrite): arg_params[k][:] = self.arg_params[k][:] else: self.initializer(k, v) for k, v in aux_params.items(): if self.aux_params and k in self.aux_params and (not overwrite): aux_params[k][:] = self.aux_params[k][:] else: self.initializer(k, v) self.arg_params = arg_params self.aux_params = aux_params return (arg_names, list(param_names), aux_names) def __getstate__(self): this = self.__dict__.copy() this['_pred_exec'] = None return this def __setstate__(self, state): self.__dict__.update(state) def _init_predictor(self, input_shapes, type_dict=None): """Initialize the predictor module for running prediction.""" if self._pred_exec is not None: arg_shapes, _, _ = self.symbol.infer_shape(**dict(input_shapes)) assert arg_shapes is not None, "Incomplete input shapes" pred_shapes = [x.shape for x in self._pred_exec.arg_arrays] if arg_shapes == pred_shapes: return # for now only use the first device pred_exec = self.symbol.simple_bind( self.ctx[0], grad_req='null', type_dict=type_dict, **dict(input_shapes)) pred_exec.copy_params_from(self.arg_params, self.aux_params) _check_arguments(self.symbol) self._pred_exec = pred_exec def _init_iter(self, X, y, is_train): """Initialize the iterator given input.""" if isinstance(X, (np.ndarray, nd.NDArray)): if y is None: if is_train: raise ValueError('y must be specified when X is numpy.ndarray') else: y = np.zeros(X.shape[0]) if not isinstance(y, (np.ndarray, nd.NDArray)): raise TypeError('y must be ndarray when X is numpy.ndarray') if X.shape[0] != y.shape[0]: raise ValueError("The numbers of data points and labels not equal") if y.ndim == 2 and y.shape[1] == 1: y = y.flatten() if y.ndim != 1: raise ValueError("Label must be 1D or 2D (with 2nd dimension being 1)") if is_train: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=is_train, last_batch_handle='roll_over') else: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=False) if not isinstance(X, io.DataIter): raise TypeError('X must be DataIter, NDArray or numpy.ndarray') return X def _init_eval_iter(self, eval_data): """Initialize the iterator given eval_data.""" if eval_data is None: return eval_data if isinstance(eval_data, (tuple, list)) and len(eval_data) == 2: if eval_data[0] is not None: if eval_data[1] is None and isinstance(eval_data[0], io.DataIter): return eval_data[0] input_data = (np.array(eval_data[0]) if isinstance(eval_data[0], list) else eval_data[0]) input_label = (np.array(eval_data[1]) if isinstance(eval_data[1], list) else eval_data[1]) return self._init_iter(input_data, input_label, is_train=True) else: raise ValueError("Eval data is NONE") if not isinstance(eval_data, io.DataIter): raise TypeError('Eval data must be DataIter, or ' \ 'NDArray/numpy.ndarray/list pair (i.e. tuple/list of length 2)') return eval_data def predict(self, X, num_batch=None, return_data=False, reset=True): """Run the prediction, always only use one device. Parameters ---------- X : mxnet.DataIter num_batch : int or None The number of batch to run. Go though all batches if ``None``. Returns ------- y : numpy.ndarray or a list of numpy.ndarray if the network has multiple outputs. The predicted value of the output. """ X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) batch_size = X.batch_size data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] output_list = [[] for _ in range(len(self._pred_exec.outputs))] if return_data: data_list = [[] for _ in X.provide_data] label_list = [[] for _ in X.provide_label] i = 0 for batch in X: _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) padded = batch.pad real_size = batch_size - padded for o_list, o_nd in zip(output_list, self._pred_exec.outputs): o_list.append(o_nd[0:real_size].asnumpy()) if return_data: for j, x in enumerate(batch.data): data_list[j].append(x[0:real_size].asnumpy()) for j, x in enumerate(batch.label): label_list[j].append(x[0:real_size].asnumpy()) i += 1 if num_batch is not None and i == num_batch: break outputs = [np.concatenate(x) for x in output_list] if len(outputs) == 1: outputs = outputs[0] if return_data: data = [np.concatenate(x) for x in data_list] label = [np.concatenate(x) for x in label_list] if len(data) == 1: data = data[0] if len(label) == 1: label = label[0] return outputs, data, label else: return outputs def score(self, X, eval_metric='acc', num_batch=None, batch_end_callback=None, reset=True): """Run the model given an input and calculate the score as assessed by an evaluation metric. Parameters ---------- X : mxnet.DataIter eval_metric : metric.metric The metric for calculating score. num_batch : int or None The number of batches to run. Go though all batches if ``None``. Returns ------- s : float The final score. """ # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] for i, batch in enumerate(X): if num_batch is not None and i == num_batch: break _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) eval_metric.update(batch.label, self._pred_exec.outputs) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=0, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) return eval_metric.get()[1] def fit(self, X, y=None, eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, monitor=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None): """Fit the model. Parameters ---------- X : DataIter, or numpy.ndarray/NDArray Training data. If `X` is a `DataIter`, the name or (if name not available) the position of its outputs should match the corresponding variable names defined in the symbolic graph. y : numpy.ndarray/NDArray, optional Training set label. If X is ``numpy.ndarray`` or `NDArray`, `y` is required to be set. While y can be 1D or 2D (with 2nd dimension as 1), its first dimension must be the same as `X`, i.e. the number of data points and labels should be equal. eval_data : DataIter or numpy.ndarray/list/NDArray pair If eval_data is numpy.ndarray/list/NDArray pair, it should be ``(valid_data, valid_label)``. eval_metric : metric.EvalMetric or str or callable The evaluation metric. This could be the name of evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for purposes of printing. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dist_async' In default uses 'local', often no need to change for single machiine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : float or int, optional The list of work load for different devices, in the same order as `ctx`. Note ---- KVStore behavior - 'local', multi-devices on a single machine, will automatically choose best type. - 'dist_sync', multiple machines communicating via BSP. - 'dist_async', multiple machines with asynchronous communication. """ data = self._init_iter(X, y, is_train=True) eval_data = self._init_eval_iter(eval_data) if self.sym_gen: self.symbol = self.sym_gen(data.default_bucket_key) # pylint: disable=no-member self._check_arguments() self.kwargs["sym"] = self.symbol arg_names, param_names, aux_names = \ self._init_params(data.provide_data+data.provide_label) # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) # create kvstore (kvstore, update_on_kvstore) = _create_kvstore( kvstore, len(self.ctx), self.arg_params) param_idx2name = {} if update_on_kvstore: param_idx2name.update(enumerate(param_names)) else: for i, n in enumerate(param_names): for k in range(len(self.ctx)): param_idx2name[i*len(self.ctx)+k] = n self.kwargs["param_idx2name"] = param_idx2name # init optmizer if isinstance(self.optimizer, str): batch_size = data.batch_size if kvstore and 'dist' in kvstore.type and not '_async' in kvstore.type: batch_size *= kvstore.num_workers optimizer = opt.create(self.optimizer, rescale_grad=(1.0/batch_size), **(self.kwargs)) elif isinstance(self.optimizer, opt.Optimizer): optimizer = self.optimizer # do training _train_multi_device(self.symbol, self.ctx, arg_names, param_names, aux_names, self.arg_params, self.aux_params, begin_epoch=self.begin_epoch, end_epoch=self.num_epoch, epoch_size=self.epoch_size, optimizer=optimizer, train_data=data, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, update_on_kvstore=update_on_kvstore, logger=logger, work_load_list=work_load_list, monitor=monitor, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback, sym_gen=self.sym_gen) def save(self, prefix, epoch=None): """Checkpoint the model checkpoint into file. You can also use `pickle` to do the job if you only work on Python. The advantage of `load` and `save` (as compared to `pickle`) is that the resulting file can be loaded from other MXNet language bindings. One can also directly `load`/`save` from/to cloud storage(S3, HDFS) Parameters ---------- prefix : str Prefix of model name. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if epoch is None: epoch = self.num_epoch assert epoch is not None save_checkpoint(prefix, epoch, self.symbol, self.arg_params, self.aux_params) @staticmethod def load(prefix, epoch, ctx=None, **kwargs): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int epoch number of model we would like to load. ctx : Context or list of Context, optional The device context of training and prediction. kwargs : dict Other parameters for model, including `num_epoch`, optimizer and `numpy_batch_size`. Returns ------- model : FeedForward The loaded model that can be used for prediction. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ symbol, arg_params, aux_params = load_checkpoint(prefix, epoch) return FeedForward(symbol, ctx=ctx, arg_params=arg_params, aux_params=aux_params, begin_epoch=epoch, **kwargs) @staticmethod def create(symbol, X, y=None, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None, **kwargs): """Functional style to create a model. This function is more consistent with functional languages such as R, where mutation is not allowed. Parameters ---------- symbol : Symbol The symbol configuration of a computation network. X : DataIter Training data. y : numpy.ndarray, optional If `X` is a ``numpy.ndarray``, `y` must be set. ctx : Context or list of Context, optional The device context of training and prediction. To use multi-GPU training, pass in a list of GPU contexts. num_epoch : int, optional The number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional The name of the chosen optimizer, or an optimizer object, used for training. initializier : initializer function, optional The initialization scheme used. eval_data : DataIter or numpy.ndarray pair If `eval_set` is ``numpy.ndarray`` pair, it should be (`valid_data`, `valid_label`). eval_metric : metric.EvalMetric or str or callable The evaluation metric. Can be the name of an evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for print purposes. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dis_async'. Defaults to 'local', often no need to change for single machiine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as `ctx`. """ model = FeedForward(symbol, ctx=ctx, num_epoch=num_epoch, epoch_size=epoch_size, optimizer=optimizer, initializer=initializer, **kwargs) model.fit(X, y, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, logger=logger, work_load_list=work_load_list, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback) return model
apache-2.0
nens/raster-tools
raster_tools/srtm/fix_nodata.py
1
2321
# -*- coding: utf-8 -*- # (c) Nelen & Schuurmans. GPL licensed, see LICENSE.rst. """ Replace no data value with 0 and pixels with 32767 with 0 too. Recreates the tifs and leaves old ones as .org files.""" import argparse import logging import numpy as np import os import sys import gdal from raster_tools import datasets gdal.UseExceptions() logger = logging.getLogger(__name__) def fix_nodata(source_paths): for source_path in source_paths: # analyze source source = gdal.Open(source_path) array = source.ReadAsArray()[np.newaxis, ...] index = np.where(array == -32767) no_data_value = source.GetRasterBand(1).GetNoDataValue() if no_data_value == 0 and index[0].size == 0: logger.debug('Skip {}'.format(source_path)) continue # save modified tif logger.debug('Convert {}'.format(source_path)) array[index] = 0 kwargs = {'no_data_value': 0, 'projection': source.GetProjection(), 'geo_transform': source.GetGeoTransform()} target_path = '{}.target'.format(source_path) driver = source.GetDriver() with datasets.Dataset(array, **kwargs) as target: target.SetMetadata(source.GetMetadata_List()) target.GetRasterBand(1).SetUnitType( source.GetRasterBand(1).GetUnitType(), ) driver.CreateCopy(target_path, target, options=['compress=deflate']) # swap files source = None backup_path = '{}.org'.format(source_path) os.rename(source_path, backup_path) os.rename(target_path, source_path) def get_parser(): """ Return argument parser. """ parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('source_paths', metavar='SOURCE', nargs='*') return parser def main(): """ Call command with args from parser. """ kwargs = vars(get_parser().parse_args()) logging.basicConfig(stream=sys.stderr, level=logging.DEBUG, format='%(message)s') try: fix_nodata(**kwargs) return 0 except Exception: logger.exception('An exception has occurred.') return 1
gpl-3.0