File size: 5,770 Bytes
bf36292 ac39afc bf36292 ac39afc bf36292 50e2564 bf36292 584333d bf36292 0866492 bf36292 548eda4 bf36292 ac39afc 8f657ef bf36292 ac39afc bf36292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import re
import pdb
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
<bibtext>
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
The SciTechNews dataset consists of scientific papers paired with their corresponding
press release snippet mined from ACM TechNews.
This dataset is designed for the task for automatic science journalism, a task that requires summarization,
text simplification, and style transfer
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/ronaldahmed/scitechnews"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY-SA 3.0"
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLs = {
"train": "train.json",
"validation": "valid.json",
"test": "test.json",
}
class SciTechNews(datasets.GeneratorBasedBuilder):
"""A summarization dataset with multiple domains."""
VERSION = datasets.Version("0.1.0")
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="scitechnews", version=VERSION, description="SciTechNews dataset for science journalism"
),
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"id": datasets.Value("string"),
"pr-title": datasets.Value("string"),
"pr-article": datasets.Value("string"),
"pr-summary": datasets.Value("string"),
"sc-title": datasets.Value("string"),
"sc-article": datasets.Value("string"),
"sc-abstract": datasets.Value("string"),
"sc-section_names": datasets.features.Sequence(datasets.Value("string")),
"sc-sections": datasets.features.Sequence(datasets.Value("string")),
"sc-authors": datasets.features.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
# license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls_to_download = _URLs
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"], "split":"validation"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split":"test"}),
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"],"split": "train"}),
]
def _generate_examples(
self,
filepath,
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
for row in open(filepath, encoding="utf-8"):
data = json.loads(row)
id_ = data["id"]
# pdb.set_trace()
yield id_, data
|