renovation / renovation.py
rshrott's picture
Update renovation.py
d2395f0
raw
history blame
3.22 kB
import os
import glob
import random
import datasets
from datasets.tasks import ImageClassification
_HOMEPAGE = "https://github.com/your-github/renovation"
_CITATION = """\
@ONLINE {renovationdata,
author="Your Name",
title="Renovation dataset",
month="January",
year="2023",
url="https://github.com/your-github/renovation"
}
"""
_DESCRIPTION = """\
Renovations is a dataset of images of houses taken in the field using smartphone
cameras. It consists of 3 classes: cheap, average, and expensive renovations.
Data was collected by the your research lab.
"""
_URLS = {
"cheap": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/cheap.zip",
"average": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/average.zip",
"expensive": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/expensive.zip",
}
_NAMES = ["cheap", "average", "expensive"]
class Renovations(datasets.GeneratorBasedBuilder):
"""Renovations house images dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image", label_column="labels")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URLS)
files = glob.glob(data_files["cheap"] + '/*.jpeg', recursive=True) + \
glob.glob(data_files["average"] + '/*.jpeg', recursive=True) + \
glob.glob(data_files["expensive"] + '/*.jpeg', recursive=True)
# Shuffle files
random.shuffle(files)
num_files = len(files)
train_files = files[:int(num_files*0.7)]
val_files = files[int(num_files*0.7):int(num_files*0.85)]
test_files = files[int(num_files*0.85):]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": train_files,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": val_files,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": test_files,
},
),
]
def _generate_examples(self, files):
print(f"Processing {len(files)} files:")
for i, path in enumerate(files):
print(f"Processing file {i}: {path}")
label = os.path.basename(os.path.dirname(path)).lower()
print(f"Label: {label}")
yield i, {
"image_file_path": path,
"image": path,
"labels": label,
}