rshrott commited on
Commit
a186294
1 Parent(s): 23578c0

Update renovation.py

Browse files
Files changed (1) hide show
  1. renovation.py +17 -15
renovation.py CHANGED
@@ -19,17 +19,21 @@ _CITATION = """\
19
 
20
  _DESCRIPTION = """\
21
  Renovations is a dataset of images of houses taken in the field using smartphone
22
- cameras. It consists of 3 classes: cheap, average, and expensive renovations.
23
  Data was collected by the your research lab.
24
  """
25
 
26
  _URLS = {
27
- "cheap": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/cheap.zip",
28
- "average": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/average.zip",
29
- "expensive": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/expensive.zip",
 
 
 
 
30
  }
31
 
32
- _NAMES = ["cheap", "average", "expensive"]
33
 
34
  class Renovations(datasets.GeneratorBasedBuilder):
35
  """Renovations house images dataset."""
@@ -75,32 +79,30 @@ class Renovations(datasets.GeneratorBasedBuilder):
75
  },
76
  ),
77
  ]
 
78
  def _generate_examples(self, data_files, split):
79
  all_files_and_labels = []
80
  for label, path in data_files.items():
81
  files = glob.glob(path + '/*.jpeg', recursive=True)
82
  all_files_and_labels.extend((file, label) for file in files)
83
-
84
  random.seed(43) # ensure reproducibility
85
  random.shuffle(all_files_and_labels)
86
-
87
  num_files = len(all_files_and_labels)
88
  train_data = all_files_and_labels[:int(num_files*0.9)]
89
- val_test_data = all_files_and_labels[int(num_files*0.9):] # This will be used for both val and test
90
-
91
  if split == "train":
92
  data_to_use = train_data
93
- else: # "val" or "test" split
94
  data_to_use = val_test_data
95
-
96
  for idx, (file, label) in enumerate(data_to_use):
97
  yield idx, {
98
  "image_file_path": file,
99
  "image": file,
100
  "labels": label,
101
- }
102
-
103
-
104
-
105
 
106
 
 
19
 
20
  _DESCRIPTION = """\
21
  Renovations is a dataset of images of houses taken in the field using smartphone
22
+ cameras. It consists of 7 classes: Not Applicable, Very Poor, Poor, Fair, Good, Excellent, and Exceptional renovations.
23
  Data was collected by the your research lab.
24
  """
25
 
26
  _URLS = {
27
+ "Not Applicable": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Not Applicable.zip",
28
+ "Very Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Very Poor.zip",
29
+ "Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Poor.zip",
30
+ "Fair": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Fair.zip",
31
+ "Good": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Good.zip",
32
+ "Excellent": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Excellent.zip",
33
+ "Exceptional": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Exceptional.zip"
34
  }
35
 
36
+ _NAMES = ["Not Applicable", "Very Poor", "Poor", "Fair", "Good", "Excellent", "Exceptional"]
37
 
38
  class Renovations(datasets.GeneratorBasedBuilder):
39
  """Renovations house images dataset."""
 
79
  },
80
  ),
81
  ]
82
+
83
  def _generate_examples(self, data_files, split):
84
  all_files_and_labels = []
85
  for label, path in data_files.items():
86
  files = glob.glob(path + '/*.jpeg', recursive=True)
87
  all_files_and_labels.extend((file, label) for file in files)
88
+
89
  random.seed(43) # ensure reproducibility
90
  random.shuffle(all_files_and_labels)
91
+
92
  num_files = len(all_files_and_labels)
93
  train_data = all_files_and_labels[:int(num_files*0.9)]
94
+ val_test_data = all_files_and_labels[int(num_files*0.9):] # This will be used for both val and test
95
+
96
  if split == "train":
97
  data_to_use = train_data
98
+ else: # "val" or "test" split
99
  data_to_use = val_test_data
100
+
101
  for idx, (file, label) in enumerate(data_to_use):
102
  yield idx, {
103
  "image_file_path": file,
104
  "image": file,
105
  "labels": label,
106
+ }
 
 
 
107
 
108