rshrott commited on
Commit
d61a5ba
·
1 Parent(s): 1ea2b26

Update renovation.py

Browse files
Files changed (1) hide show
  1. renovation.py +55 -61
renovation.py CHANGED
@@ -1,36 +1,56 @@
1
- import csv
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import datasets
3
- import requests
4
- from PIL import Image
5
- from io import BytesIO
6
  from datasets.tasks import ImageClassification
7
- import pyarrow as pa
8
 
9
 
10
- _HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation"
11
 
12
  _CITATION = """\
13
- @ONLINE {renovationquality,
14
- author="Your Name",
15
- title="Renovation Quality Dataset",
16
- month="Your Month",
17
- year="Your Year",
18
- url="https://huggingface.co/datasets/rshrott/renovation"
19
  }
20
  """
21
 
22
  _DESCRIPTION = """\
23
- This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
 
 
 
 
24
  """
25
 
26
- _URL = "https://huggingface.co/datasets/rshrott/renovation/raw/main/labels.csv"
 
 
 
 
27
 
28
- _NAMES = ["cheap", "average", "expensive"]
29
 
30
- class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
31
- """Renovation Quality Dataset."""
32
 
33
- VERSION = datasets.Version("1.0.0")
 
34
 
35
  def _info(self):
36
  return datasets.DatasetInfo(
@@ -38,71 +58,45 @@ class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
38
  features=datasets.Features(
39
  {
40
  "image_file_path": datasets.Value("string"),
41
- "image": datasets.Value("string"),
42
- "label": datasets.features.ClassLabel(names=_NAMES),
43
  }
44
  ),
45
- supervised_keys=("image", "label"),
46
  homepage=_HOMEPAGE,
47
  citation=_CITATION,
48
- task_templates=[ImageClassification(image_column="image", label_column="label")],
49
  )
50
 
51
-
52
  def _split_generators(self, dl_manager):
53
- csv_path = dl_manager.download(_URL)
54
  return [
55
  datasets.SplitGenerator(
56
  name=datasets.Split.TRAIN,
57
  gen_kwargs={
58
- "filepath": csv_path,
59
- "split": "train",
60
  },
61
  ),
62
  datasets.SplitGenerator(
63
  name=datasets.Split.VALIDATION,
64
  gen_kwargs={
65
- "filepath": csv_path,
66
- "split": "validation",
67
  },
68
  ),
69
  datasets.SplitGenerator(
70
  name=datasets.Split.TEST,
71
  gen_kwargs={
72
- "filepath": csv_path,
73
- "split": "test",
74
  },
75
  ),
76
  ]
77
 
78
- def _generate_examples(self, filepath, split):
79
- def url_to_image(url):
80
- response = requests.get(url)
81
- img = Image.open(BytesIO(response.content))
82
- return img
83
-
84
- with open(filepath, "r") as f:
85
- reader = csv.reader(f)
86
- next(reader) # skip header
87
- rows = list(reader)
88
- if split == 'train':
89
- rows = rows[:int(0.8 * len(rows))]
90
- elif split == 'validation':
91
- rows = rows[int(0.8 * len(rows)):int(0.9 * len(rows))]
92
- else: # test
93
- rows = rows[int(0.9 * len(rows)):]
94
-
95
- for id_, row in enumerate(rows):
96
- if len(row) < 2:
97
- print(f"Row with id {id_} has less than 2 elements: {row}")
98
- else:
99
- image_file_path = str(row[0])
100
- image = url_to_image(image_file_path)
101
- image_bytes = image.tobytes()
102
- yield id_, {
103
- 'image_file_path': image_file_path,
104
- 'image': image_bytes,
105
- 'label': row[1],
106
- }
107
-
108
-
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Beans leaf dataset with images of diseased and health leaves."""
16
+
17
+ import os
18
+
19
  import datasets
 
 
 
20
  from datasets.tasks import ImageClassification
 
21
 
22
 
23
+ _HOMEPAGE = "https://github.com/AI-Lab-Makerere/ibean/"
24
 
25
  _CITATION = """\
26
+ @ONLINE {beansdata,
27
+ author="Makerere AI Lab",
28
+ title="Bean disease dataset",
29
+ month="January",
30
+ year="2020",
31
+ url="https://github.com/AI-Lab-Makerere/ibean/"
32
  }
33
  """
34
 
35
  _DESCRIPTION = """\
36
+ Beans is a dataset of images of beans taken in the field using smartphone
37
+ cameras. It consists of 3 classes: 2 disease classes and the healthy class.
38
+ Diseases depicted include Angular Leaf Spot and Bean Rust. Data was annotated
39
+ by experts from the National Crops Resources Research Institute (NaCRRI) in
40
+ Uganda and collected by the Makerere AI research lab.
41
  """
42
 
43
+ _URLS = {
44
+ "train": "https://huggingface.co/datasets/beans/resolve/main/data/train.zip",
45
+ "validation": "https://huggingface.co/datasets/beans/resolve/main/data/validation.zip",
46
+ "test": "https://huggingface.co/datasets/beans/resolve/main/data/test.zip",
47
+ }
48
 
49
+ _NAMES = ["angular_leaf_spot", "bean_rust", "healthy"]
50
 
 
 
51
 
52
+ class Beans(datasets.GeneratorBasedBuilder):
53
+ """Beans plant leaf images dataset."""
54
 
55
  def _info(self):
56
  return datasets.DatasetInfo(
 
58
  features=datasets.Features(
59
  {
60
  "image_file_path": datasets.Value("string"),
61
+ "image": datasets.Image(),
62
+ "labels": datasets.features.ClassLabel(names=_NAMES),
63
  }
64
  ),
65
+ supervised_keys=("image", "labels"),
66
  homepage=_HOMEPAGE,
67
  citation=_CITATION,
68
+ task_templates=[ImageClassification(image_column="image", label_column="labels")],
69
  )
70
 
 
71
  def _split_generators(self, dl_manager):
72
+ data_files = dl_manager.download_and_extract(_URLS)
73
  return [
74
  datasets.SplitGenerator(
75
  name=datasets.Split.TRAIN,
76
  gen_kwargs={
77
+ "files": dl_manager.iter_files([data_files["train"]]),
 
78
  },
79
  ),
80
  datasets.SplitGenerator(
81
  name=datasets.Split.VALIDATION,
82
  gen_kwargs={
83
+ "files": dl_manager.iter_files([data_files["validation"]]),
 
84
  },
85
  ),
86
  datasets.SplitGenerator(
87
  name=datasets.Split.TEST,
88
  gen_kwargs={
89
+ "files": dl_manager.iter_files([data_files["test"]]),
 
90
  },
91
  ),
92
  ]
93
 
94
+ def _generate_examples(self, files):
95
+ for i, path in enumerate(files):
96
+ file_name = os.path.basename(path)
97
+ if file_name.endswith(".jpg"):
98
+ yield i, {
99
+ "image_file_path": path,
100
+ "image": path,
101
+ "labels": os.path.basename(os.path.dirname(path)).lower(),
102
+ }