import csv import datasets import requests import os from PIL import Image from io import BytesIO from datasets.tasks import ImageClassification _HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation" _CITATION = """\ @ONLINE {renovationquality, author="Your Name", title="Renovation Quality Dataset", month="Your Month", year="Your Year", url="https://huggingface.co/datasets/rshrott/renovation" } """ _DESCRIPTION = """\ This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'. """ _URL = "https://huggingface.co/datasets/rshrott/renovation/raw/main/labels.csv" _NAMES = ["cheap", "average", "expensive"] class RenovationQualityDataset(datasets.GeneratorBasedBuilder): """Renovation Quality Dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): csv_path = dl_manager.download(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": csv_path, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": csv_path, "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": csv_path, "split": "test", }, ), ] def _generate_examples(self, filepath, split): def url_to_image(url): response = requests.get(url) img = Image.open(BytesIO(response.content)) return img with open(filepath, "r") as f: reader = csv.reader(f) next(reader) # skip header rows = list(reader) if split == 'train': rows = rows[:int(0.8 * len(rows))] elif split == 'validation': rows = rows[int(0.8 * len(rows)):int(0.9 * len(rows))] else: # test rows = rows[int(0.9 * len(rows)):] for id_, row in enumerate(rows): if len(row) < 2: print(f"Row with id {id_} has less than 2 elements: {row}") else: image_file_path = str(row[0]) image = url_to_image(image_file_path) yield id_, { 'image_file_path': image_file_path, 'image': image, 'labels': row[1], }