import os import glob import random import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "https://github.com/your-github/renovation" _CITATION = """\ @ONLINE {renovationdata, author="Your Name", title="Renovation dataset", month="January", year="2023", url="https://github.com/your-github/renovation" } """ _DESCRIPTION = """\ Renovations is a dataset of images of houses taken in the field using smartphone cameras. It consists of 3 classes: cheap, average, and expensive renovations. Data was collected by the your research lab. """ _URLS = { "cheap": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/cheap.zip", "average": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/average.zip", "expensive": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/expensive.zip", } _NAMES = ["cheap", "average", "expensive"] class Renovations(datasets.GeneratorBasedBuilder): """Renovations house images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) files = glob.glob(data_files["cheap"] + '/*.jpeg', recursive=True) + \ glob.glob(data_files["average"] + '/*.jpeg', recursive=True) + \ glob.glob(data_files["expensive"] + '/*.jpeg', recursive=True) # Shuffle files random.shuffle(files) num_files = len(files) train_files = files[:int(num_files*0.7)] val_files = files[int(num_files*0.7):int(num_files*0.85)] test_files = files[int(num_files*0.85):] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": train_files, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": val_files, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": test_files, }, ), ] def _generate_examples(self, files): print(f"Processing {len(files)} files:") for i, path in enumerate(files): print(f"Processing file {i}: {path}") label = os.path.basename(os.path.dirname(path)).lower() print(f"Label: {label}") yield i, { "image_file_path": path, "image": path, "labels": label, }