|
"""B2W-Reviews01 dataset""" |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """ |
|
@inproceedings{real2019b2w, |
|
title={B2W-reviews01: an open product reviews corpus}, |
|
author={Real, Livy and Oshiro, Marcio and Mafra, Alexandre}, |
|
booktitle={STIL-Symposium in Information and Human Language Technology}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
B2W-Reviews01 is an open corpus of product reviews. It contains more than 130k e-commerce customer reviews, collected from the Americanas.com website between January and May, 2018. B2W-Reviews01 offers rich information about the reviewer profile, such as gender, age, and geographical location. The corpus also has two different review rates""" |
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/americanas-tech/b2w-reviews01/4639429ec698d7821fc99a0bc665fa213d9fcd5a/B2W-Reviews01.csv" |
|
} |
|
|
|
class Reviews(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
dict( |
|
submission_date=datasets.Value("string"), |
|
reviewer_id=datasets.Value("string"), |
|
product_id=datasets.Value("string"), |
|
product_name=datasets.Value("string"), |
|
product_brand=datasets.Value("string"), |
|
site_category_lv1=datasets.Value("string"), |
|
site_category_lv2=datasets.Value("string"), |
|
review_title=datasets.Value("string"), |
|
overall_rating=datasets.Value("int32"), |
|
recommend_to_a_friend=datasets.Value("string"), |
|
review_text=datasets.Value("string"), |
|
reviewer_birth_year=datasets.Value("int32"), |
|
reviewer_gender=datasets.Value("string"), |
|
reviewer_state=datasets.Value("string"))), |
|
supervised_keys=None, |
|
homepage="https://github.com/americanas-tech/b2w-reviews01", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
def process_row(row): |
|
|
|
row["overall_rating"] = int(row["overall_rating"]) |
|
|
|
try: |
|
row["reviewer_birth_year"] = int(float(row["reviewer_birth_year"])) |
|
except ValueError: |
|
row["reviewer_birth_year"] = None |
|
|
|
return row |
|
|
|
records = pd.read_csv(filepath).to_dict("records") |
|
for idx, row in enumerate(records): |
|
yield idx, process_row(row) |