|
"""FaQUAD-NLI dataset""" |
|
|
|
import datasets |
|
import pandas as pd |
|
import json |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
""" |
|
|
|
_URLS = { |
|
"data": "https://raw.githubusercontent.com/liafacom/faquad/6ad978f20672bb41625b3b71fbe4a88b893d0a86/data/dataset.json", |
|
"spans": "https://huggingface.co/datasets/ruanchaves/faquad-nli/raw/main/spans.csv" |
|
} |
|
|
|
def check_overlap(interval1, interval2): |
|
"""Check for overlap between two integer intervals""" |
|
return not (interval1[1] < interval2[0] or interval2[1] < interval1[0]) |
|
|
|
|
|
class Faquad(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"document_index": datasets.Value("int32"), |
|
"document_title": datasets.Value("string"), |
|
"paragraph_index": datasets.Value("int32"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"label": datasets.Value("int32") |
|
}), |
|
supervised_keys=None, |
|
homepage="https://github.com/franciellevargas/HateBR", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": downloaded_files["data"], |
|
"spans": downloaded_files["spans"], |
|
"split": "train" |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data": downloaded_files["data"], |
|
"spans": downloaded_files["spans"], |
|
"split": "validation" |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data": downloaded_files["data"], |
|
"spans": downloaded_files["spans"], |
|
"split": "test" |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, data, spans, split): |
|
|
|
with open(data, 'r') as f: |
|
json_data = json.load(f) |
|
|
|
spans = pd.read_csv(spans).to_dict("records") |
|
counter = 0 |
|
for span_row in spans: |
|
if span_row["split"] != split: |
|
continue |
|
|
|
document_title = json_data["data"][ |
|
span_row["document_index"] |
|
]["title"] |
|
|
|
sentence = json_data["data"][ |
|
span_row["document_index"] |
|
]["paragraphs"][ |
|
span_row["paragraph_index"] |
|
]["context"][ |
|
span_row["sentence_start_char"]:span_row["sentence_end_char"] |
|
] |
|
sentence_interval = (span_row["sentence_start_char"], span_row["sentence_end_char"]) |
|
|
|
for qas_row in json_data["data"][ |
|
span_row["document_index"] |
|
]["paragraphs"][ |
|
span_row["paragraph_index"] |
|
]["qas"]: |
|
question = qas_row["question"] |
|
question_spans = [] |
|
for qas_answer in qas_row["answers"]: |
|
qas_answer_start_span = qas_answer["answer_start"] |
|
qas_answer_end_span = qas_answer["answer_start"] + len(qas_answer["text"]) |
|
question_spans.append((qas_answer_start_span, qas_answer_end_span)) |
|
for question_interval in question_spans: |
|
if check_overlap(sentence_interval, question_interval): |
|
yield counter, { |
|
"document_index": span_row["document_index"], |
|
"document_title": document_title, |
|
"paragraph_index": span_row["paragraph_index"], |
|
"question": question, |
|
"answer": sentence, |
|
"label": 1 |
|
} |
|
counter += 1 |
|
break |
|
else: |
|
yield counter, { |
|
"document_index": span_row["document_index"], |
|
"document_title": document_title, |
|
"paragraph_index": span_row["paragraph_index"], |
|
"question": question, |
|
"answer": sentence, |
|
"label": 0 |
|
} |
|
counter += 1 |