|
"""Test-Stanford dataset by Bansal et al.."""
|
|
|
|
import datasets
|
|
import pandas as pd
|
|
|
|
_CITATION = """
|
|
@misc{bansal2015deep,
|
|
title={Towards Deep Semantic Analysis Of Hashtags},
|
|
author={Piyush Bansal and Romil Bansal and Vasudeva Varma},
|
|
year={2015},
|
|
eprint={1501.03210},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.IR}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """
|
|
Manually Annotated Stanford Sentiment Analysis Dataset by Bansal et al..
|
|
"""
|
|
_URLS = {
|
|
"test": "https://raw.githubusercontent.com/ruanchaves/hashformers/master/datasets/Test-Stanford.txt"
|
|
}
|
|
|
|
class TestStanford(datasets.GeneratorBasedBuilder):
|
|
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"index": datasets.Value("int32"),
|
|
"hashtag": datasets.Value("string"),
|
|
"segmentation": datasets.Value("string"),
|
|
"gold_position": datasets.Value("int32"),
|
|
"rank": datasets.Sequence(
|
|
{
|
|
"position": datasets.Value("int32"),
|
|
"candidate": datasets.Value("string")
|
|
}
|
|
)
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage="",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
downloaded_files = dl_manager.download(_URLS)
|
|
return [
|
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"] }),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
|
|
names = ["id","hashtag","candidate", "label"]
|
|
df = pd.read_csv(filepath, sep="\t", skiprows=1, header=None,
|
|
names=names)
|
|
|
|
for col in names[0:-1]:
|
|
df[col] = df[col].apply(lambda x: x.strip("'").strip())
|
|
|
|
records = df.to_dict('records')
|
|
|
|
output = []
|
|
|
|
current_hashtag = None
|
|
hashtag = None
|
|
candidates = []
|
|
ids = []
|
|
label = []
|
|
|
|
|
|
for row in records:
|
|
hashtag = row["hashtag"]
|
|
if current_hashtag != hashtag:
|
|
new_row = {
|
|
"hashtag": current_hashtag,
|
|
"candidate": candidates,
|
|
"id": ids,
|
|
"label": label
|
|
}
|
|
|
|
if current_hashtag:
|
|
output.append(new_row)
|
|
|
|
current_hashtag = row['hashtag']
|
|
candidates = [row["candidate"]]
|
|
ids = int(row["id"])
|
|
label = [int(row["label"])]
|
|
else:
|
|
candidates.append(row["candidate"])
|
|
label.append(int(row["label"]))
|
|
|
|
def get_gold_position(row):
|
|
try:
|
|
return row["label"].index(1)
|
|
except ValueError:
|
|
return None
|
|
|
|
def get_rank(row):
|
|
return [{
|
|
"position": idx + 1,
|
|
"candidate": item
|
|
} for idx, item in enumerate(row["candidate"])]
|
|
|
|
def get_segmentation(row):
|
|
try:
|
|
gold_idx = row["label"].index(1)
|
|
return row["candidate"][gold_idx]
|
|
except ValueError:
|
|
return None
|
|
|
|
for idx, row in enumerate(output):
|
|
yield idx, {
|
|
"index": int(row["id"]),
|
|
"hashtag": row["hashtag"],
|
|
"segmentation": get_segmentation(row),
|
|
"gold_position": get_gold_position(row),
|
|
"rank": get_rank(row)
|
|
} |