File size: 5,411 Bytes
fd54ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65aa9e9
274fbdf
 
 
 
fd54ac3
 
 
 
 
 
 
 
 
 
faa996a
 
6fcd89d
fd54ac3
faa996a
07ca393
fd54ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""OCR-IDL: OCR annotations for the Industry Document Library."""


import json

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
    @article{biten2022ocr,
      title         = {OCR-IDL: Ocr annotations for industry document library dataset},
      author        = {{Biten}, Ali Furkan and {Tito}, Ruben and {Gomez}, Lluis and {Valveny}, Ernest and {Karatzas}, Dimosthenis},
      journal       = {arXiv preprint arXiv:2202.12985},
      year          = 2022,
      eid           = {arXiv:2202.12985},
      pages         = {arXiv:2202.12985},
      archivePrefix = {arXiv},
      eprint        = {2202.12985},
    }
"""

_DESCRIPTION = """\
    The OCR-IDL Dataset contains the OCR annotations of 26M pages of theIndustry Document Library (IDL).\
    It is specially intended to be used for text-layout self-supervised tasks such as Masked Language Modeling or Text De-noising.\
    However, we also include the url to the documents so that can be downloaded for image-text alignment tasks.
"""

_URL = "http://datasets.cvc.uab.es/UCSF_IDL/"
_PROJECT_URL = "https://github.com/furkanbiten/idl_data"
_URLS = {
    "train": _URL + "train-v1.1.json",
    "dev": _URL + "dev-v1.1.json",
}


class OCRIDLConfig(datasets.BuilderConfig):
    """BuilderConfig for OCR-IDL."""

    def __init__(self, **kwargs):
        """BuilderConfig for OCR-IDL.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(OCRIDLConfig, self).__init__(**kwargs)


class OCR_IDL(datasets.GeneratorBasedBuilder):
    """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        OCRIDLConfig(
            name="OCR-IDL",
            version=datasets.Version("1.0.0", ""),
            description=_DESCRIPTION,  # This should be the description of the version. Since we have only one, use the same as the global dataset description.
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "document_url": datasets.Value("string"),
                    "page_id": datasets.Value("string"),
                    "page_height": datasets.Value("int32"),
                    "page_width": datasets.Value("int32"),
                    "words": [],
                    "boxes": [],
                    "word_lines_id": [],
                    "text_types": [],
                    "recog_conf": []
                }
            ),
            # No default supervised_keys (as we have to pass both question and context as input).
            supervised_keys=None,
            homepage=_PROJECT_URL,
            citation=_CITATION,

        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download('https://huggingface.co/datasets/rubentito/OCR-IDL/resolve/main/val.csv')
#         data_dir = dl_manager.download_and_extract('http://datasets.cvc.uab.es/UCSF_IDL/Samples/imdb_sample_v2.tar.gz')

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data": downloaded_files[0]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files[0]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            for article in squad["data"]:
                title = article.get("title", "")
                for paragraph in article["paragraphs"]:
                    context = paragraph["context"]  # do not strip leading blank spaces GH-2585
                    for qa in paragraph["qas"]:
                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"] for answer in qa["answers"]]
                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        yield key, {
                            "title": title,
                            "context": context,
                            "question": qa["question"],
                            "id": qa["id"],
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }
                        key += 1