# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """OCR-IDL: OCR annotations for the Industry Document Library.""" import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{biten2022ocr, title = {OCR-IDL: Ocr annotations for industry document library dataset}, author = {{Biten}, Ali Furkan and {Tito}, Ruben and {Gomez}, Lluis and {Valveny}, Ernest and {Karatzas}, Dimosthenis}, journal = {arXiv preprint arXiv:2202.12985}, year = 2022, eid = {arXiv:2202.12985}, pages = {arXiv:2202.12985}, archivePrefix = {arXiv}, eprint = {2202.12985}, } """ _DESCRIPTION = """\ The OCR-IDL Dataset contains the OCR annotations of 26M pages of theIndustry Document Library (IDL).\ It is specially intended to be used for text-layout self-supervised tasks such as Masked Language Modeling or Text De-noising.\ However, we also include the url to the documents so that can be downloaded for image-text alignment tasks. """ _URL = "http://datasets.cvc.uab.es/UCSF_IDL/" _PROJECT_URL = "https://github.com/furkanbiten/idl_data" _URLS = { "train": _URL + "train-v1.1.json", "dev": _URL + "dev-v1.1.json", } class OCRIDLConfig(datasets.BuilderConfig): """BuilderConfig for OCR-IDL.""" def __init__(self, **kwargs): """BuilderConfig for OCR-IDL. Args: **kwargs: keyword arguments forwarded to super. """ super(OCRIDLConfig, self).__init__(**kwargs) class OCR_IDL(datasets.GeneratorBasedBuilder): """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" BUILDER_CONFIGS = [ OCRIDLConfig( name="OCR-IDL", version=datasets.Version("1.0.0", ""), description=_DESCRIPTION, # This should be the description of the version. Since we have only one, use the same as the global dataset description. ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "document_id": datasets.Value("string"), "document_url": datasets.Value("string"), "page_id": datasets.Value("string"), "page_height": datasets.Value("int32"), "page_width": datasets.Value("int32"), "words": [], "boxes": [], "word_lines_id": [], "text_types": [], "recog_conf": [] } ), # No default supervised_keys (as we have to pass both question and context as input). supervised_keys=None, homepage=_PROJECT_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download('https://huggingface.co/datasets/rubentito/OCR-IDL/resolve/main/val.csv') # data_dir = dl_manager.download_and_extract('http://datasets.cvc.uab.es/UCSF_IDL/Samples/imdb_sample_v2.tar.gz') return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data": downloaded_files[0]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files[0]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: squad = json.load(f) for article in squad["data"]: title = article.get("title", "") for paragraph in article["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"] for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield key, { "title": title, "context": context, "question": qa["question"], "id": qa["id"], "answers": { "answer_start": answer_starts, "text": answers, }, } key += 1