fma / fma.py
Harish Kamath
Update fma.py
039ff9b
# Uploaded at: https://huggingface.co/datasets/hkamath-rudra/fma
# To use:
# from datasets import load_dataset
# dataset = load_dataset("hkamath-rudra/fma", "small", streaming=True)
dataset_links = {
"metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip",
"small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip",
"medium": "https://os.unil.cloud.switch.ch/fma/fma_medium.zip",
"large": "https://os.unil.cloud.switch.ch/fma/fma_large.zip",
"full": "https://os.unil.cloud.switch.ch/fma/fma_full.zip",
}
requirements = """
cachetools==5.2.1
certifi==2022.6.15
charset-normalizer==2.1.1
einops==0.4.1
idna==3.3
protobuf==4.21.12
pyasn1==0.4.8
pyasn1-modules==0.2.8
python-dateutil==2.8.2
pytz==2022.2.1
requests==2.28.1
rsa==4.9
six==1.16.0
tqdm==4.64.1
typing_extensions==4.3.0
urllib3==1.26.12
datasets
pandas
""".strip().split(
"\n"
)
import io
def utils_load(filepath: str, file: io.BufferedReader = None):
"""Helper function from fma github: https://github.com/mdeff/fma"""
import pandas as pd
import os
import ast
filename = os.path.basename(filepath)
if "features" in filename:
return pd.read_csv(file, index_col=0, header=[0, 1, 2])
if "echonest" in filename:
return pd.read_csv(file, index_col=0, header=[0, 1, 2])
if "genres" in filename:
return pd.read_csv(file, index_col=0)
if "tracks" in filename:
tracks = pd.read_csv(file, index_col=0, header=[0, 1])
COLUMNS = [
("track", "tags"),
("album", "tags"),
("artist", "tags"),
("track", "genres"),
("track", "genres_all"),
]
for column in COLUMNS:
tracks[column] = tracks[column].map(ast.literal_eval)
COLUMNS = [
("track", "date_created"),
("track", "date_recorded"),
("album", "date_created"),
("album", "date_released"),
("artist", "date_created"),
("artist", "active_year_begin"),
("artist", "active_year_end"),
]
for column in COLUMNS:
tracks[column] = pd.to_datetime(tracks[column])
SUBSETS = ("small", "medium", "large")
try:
tracks["set", "subset"] = tracks["set", "subset"].astype("category", categories=SUBSETS, ordered=True)
except (ValueError, TypeError):
# the categories and ordered arguments were removed in pandas 0.25
tracks["set", "subset"] = tracks["set", "subset"].astype(
pd.CategoricalDtype(categories=SUBSETS, ordered=True)
)
COLUMNS = [
("track", "genre_top"),
("track", "license"),
("album", "type"),
("album", "information"),
("artist", "bio"),
]
for column in COLUMNS:
tracks[column] = tracks[column].astype("category")
return tracks
import pandas as pd
def read_metadata(
tracks_df: pd.DataFrame,
genres_df: pd.DataFrame = None,
features_df: pd.DataFrame = None,
echonest_df: pd.DataFrame = None,
):
import os
import pandas as pd
import time
from dataclasses import dataclass
@dataclass
class Metadata:
tracks: pd.DataFrame
genres: pd.DataFrame = None
features: pd.DataFrame = None
echonest: pd.DataFrame = None
return Metadata(
tracks_df.set_axis(tracks_df.columns.map(".".join), axis=1),
genres_df,
features_df.set_axis(features_df.columns.map(".".join), axis=1) if features_df is not None else None,
echonest_df.set_axis(echonest_df.columns.map(".".join), axis=1) if echonest_df is not None else None,
)
import datasets
_CITATION = """"""
_DESCRIPTION = """
FMA is a dataset for music analysis. It includes song title, album, artist, genres; spectrograms, metadata, and features.
"""
_HOMEPAGE = "http://freemusicarchive.org/"
_LICENSE = ""
# Have to do it this way bc otherwise, you would need to load metadata before _split_generators
METADATA_FIELDS = {
# Tracks
"album.comments": "int64",
"album.date_created": "datetime64[ns]",
"album.date_released": "datetime64[ns]",
"album.engineer": "object",
"album.favorites": "int64",
"album.id": "int64",
"album.information": "category",
"album.listens": "int64",
"album.producer": "object",
"album.tags": "object",
"album.title": "object",
"album.tracks": "int64",
"album.type": "category",
"artist.active_year_begin": "datetime64[ns]",
"artist.active_year_end": "datetime64[ns]",
"artist.associated_labels": "object",
"artist.bio": "category",
"artist.comments": "int64",
"artist.date_created": "datetime64[ns]",
"artist.favorites": "int64",
"artist.id": "int64",
"artist.latitude": "float64",
"artist.location": "object",
"artist.longitude": "float64",
"artist.members": "object",
"artist.name": "object",
"artist.related_projects": "object",
"artist.tags": "object",
"artist.website": "object",
"artist.wikipedia_page": "object",
"set.split": "object",
"set.subset": "category",
"track.bit_rate": "int64",
"track.comments": "int64",
"track.composer": "object",
"track.date_created": "datetime64[ns]",
"track.date_recorded": "datetime64[ns]",
"track.duration": "int64",
"track.favorites": "int64",
"track.genre_top": "category",
"track.genres": "object",
"track.genres_all": "object",
"track.information": "object",
"track.interest": "int64",
"track.language_code": "object",
"track.license": "category",
"track.listens": "int64",
"track.lyricist": "object",
"track.number": "int64",
"track.publisher": "object",
"track.tags": "object",
"track.title": "object",
# Features
# "chroma_cens.kurtosis.01": "float64",
# "chroma_cens.kurtosis.02": "float64",
# "chroma_cens.kurtosis.03": "float64",
# "chroma_cens.kurtosis.04": "float64",
# "chroma_cens.kurtosis.05": "float64",
# "chroma_cens.kurtosis.06": "float64",
# "chroma_cens.kurtosis.07": "float64",
# "chroma_cens.kurtosis.08": "float64",
# "chroma_cens.kurtosis.09": "float64",
# "chroma_cens.kurtosis.10": "float64",
# "chroma_cens.kurtosis.11": "float64",
# "chroma_cens.kurtosis.12": "float64",
# "chroma_cens.max.01": "float64",
# "chroma_cens.max.02": "float64",
# "chroma_cens.max.03": "float64",
# "chroma_cens.max.04": "float64",
# "chroma_cens.max.05": "float64",
# "chroma_cens.max.06": "float64",
# "chroma_cens.max.07": "float64",
# "chroma_cens.max.08": "float64",
# "chroma_cens.max.09": "float64",
# "chroma_cens.max.10": "float64",
# "chroma_cens.max.11": "float64",
# "chroma_cens.max.12": "float64",
# "chroma_cens.mean.01": "float64",
# "chroma_cens.mean.02": "float64",
# "chroma_cens.mean.03": "float64",
# "chroma_cens.mean.04": "float64",
# "chroma_cens.mean.05": "float64",
# "chroma_cens.mean.06": "float64",
# "chroma_cens.mean.07": "float64",
# "chroma_cens.mean.08": "float64",
# "chroma_cens.mean.09": "float64",
# "chroma_cens.mean.10": "float64",
# "chroma_cens.mean.11": "float64",
# "chroma_cens.mean.12": "float64",
# "chroma_cens.median.01": "float64",
# "chroma_cens.median.02": "float64",
# "chroma_cens.median.03": "float64",
# "chroma_cens.median.04": "float64",
# "chroma_cens.median.05": "float64",
# "chroma_cens.median.06": "float64",
# "chroma_cens.median.07": "float64",
# "chroma_cens.median.08": "float64",
# "chroma_cens.median.09": "float64",
# "chroma_cens.median.10": "float64",
# "chroma_cens.median.11": "float64",
# "chroma_cens.median.12": "float64",
# "chroma_cens.min.01": "float64",
# "chroma_cens.min.02": "float64",
# "chroma_cens.min.03": "float64",
# "chroma_cens.min.04": "float64",
# "chroma_cens.min.05": "float64",
# "chroma_cens.min.06": "float64",
# "chroma_cens.min.07": "float64",
# "chroma_cens.min.08": "float64",
# "chroma_cens.min.09": "float64",
# "chroma_cens.min.10": "float64",
# "chroma_cens.min.11": "float64",
# "chroma_cens.min.12": "float64",
# "chroma_cens.skew.01": "float64",
# "chroma_cens.skew.02": "float64",
# "chroma_cens.skew.03": "float64",
# "chroma_cens.skew.04": "float64",
# "chroma_cens.skew.05": "float64",
# "chroma_cens.skew.06": "float64",
# "chroma_cens.skew.07": "float64",
# "chroma_cens.skew.08": "float64",
# "chroma_cens.skew.09": "float64",
# "chroma_cens.skew.10": "float64",
# "chroma_cens.skew.11": "float64",
# "chroma_cens.skew.12": "float64",
# "chroma_cens.std.01": "float64",
# "chroma_cens.std.02": "float64",
# "chroma_cens.std.03": "float64",
# "chroma_cens.std.04": "float64",
# "chroma_cens.std.05": "float64",
# "chroma_cens.std.06": "float64",
# "chroma_cens.std.07": "float64",
# "chroma_cens.std.08": "float64",
# "chroma_cens.std.09": "float64",
# "chroma_cens.std.10": "float64",
# "chroma_cens.std.11": "float64",
# "chroma_cens.std.12": "float64",
# "chroma_cqt.kurtosis.01": "float64",
# "chroma_cqt.kurtosis.02": "float64",
# "chroma_cqt.kurtosis.03": "float64",
# "chroma_cqt.kurtosis.04": "float64",
# "chroma_cqt.kurtosis.05": "float64",
# "chroma_cqt.kurtosis.06": "float64",
# "chroma_cqt.kurtosis.07": "float64",
# "chroma_cqt.kurtosis.08": "float64",
# "chroma_cqt.kurtosis.09": "float64",
# "chroma_cqt.kurtosis.10": "float64",
# "chroma_cqt.kurtosis.11": "float64",
# "chroma_cqt.kurtosis.12": "float64",
# "chroma_cqt.max.01": "float64",
# "chroma_cqt.max.02": "float64",
# "chroma_cqt.max.03": "float64",
# "chroma_cqt.max.04": "float64",
# "chroma_cqt.max.05": "float64",
# "chroma_cqt.max.06": "float64",
# "chroma_cqt.max.07": "float64",
# "chroma_cqt.max.08": "float64",
# "chroma_cqt.max.09": "float64",
# "chroma_cqt.max.10": "float64",
# "chroma_cqt.max.11": "float64",
# "chroma_cqt.max.12": "float64",
# "chroma_cqt.mean.01": "float64",
# "chroma_cqt.mean.02": "float64",
# "chroma_cqt.mean.03": "float64",
# "chroma_cqt.mean.04": "float64",
# "chroma_cqt.mean.05": "float64",
# "chroma_cqt.mean.06": "float64",
# "chroma_cqt.mean.07": "float64",
# "chroma_cqt.mean.08": "float64",
# "chroma_cqt.mean.09": "float64",
# "chroma_cqt.mean.10": "float64",
# "chroma_cqt.mean.11": "float64",
# "chroma_cqt.mean.12": "float64",
# "chroma_cqt.median.01": "float64",
# "chroma_cqt.median.02": "float64",
# "chroma_cqt.median.03": "float64",
# "chroma_cqt.median.04": "float64",
# "chroma_cqt.median.05": "float64",
# "chroma_cqt.median.06": "float64",
# "chroma_cqt.median.07": "float64",
# "chroma_cqt.median.08": "float64",
# "chroma_cqt.median.09": "float64",
# "chroma_cqt.median.10": "float64",
# "chroma_cqt.median.11": "float64",
# "chroma_cqt.median.12": "float64",
# "chroma_cqt.min.01": "float64",
# "chroma_cqt.min.02": "float64",
# "chroma_cqt.min.03": "float64",
# "chroma_cqt.min.04": "float64",
# "chroma_cqt.min.05": "float64",
# "chroma_cqt.min.06": "float64",
# "chroma_cqt.min.07": "float64",
# "chroma_cqt.min.08": "float64",
# "chroma_cqt.min.09": "float64",
# "chroma_cqt.min.10": "float64",
# "chroma_cqt.min.11": "float64",
# "chroma_cqt.min.12": "float64",
# "chroma_cqt.skew.01": "float64",
# "chroma_cqt.skew.02": "float64",
# "chroma_cqt.skew.03": "float64",
# "chroma_cqt.skew.04": "float64",
# "chroma_cqt.skew.05": "float64",
# "chroma_cqt.skew.06": "float64",
# "chroma_cqt.skew.07": "float64",
# "chroma_cqt.skew.08": "float64",
# "chroma_cqt.skew.09": "float64",
# "chroma_cqt.skew.10": "float64",
# "chroma_cqt.skew.11": "float64",
# "chroma_cqt.skew.12": "float64",
# "chroma_cqt.std.01": "float64",
# "chroma_cqt.std.02": "float64",
# "chroma_cqt.std.03": "float64",
# "chroma_cqt.std.04": "float64",
# "chroma_cqt.std.05": "float64",
# "chroma_cqt.std.06": "float64",
# "chroma_cqt.std.07": "float64",
# "chroma_cqt.std.08": "float64",
# "chroma_cqt.std.09": "float64",
# "chroma_cqt.std.10": "float64",
# "chroma_cqt.std.11": "float64",
# "chroma_cqt.std.12": "float64",
# "chroma_stft.kurtosis.01": "float64",
# "chroma_stft.kurtosis.02": "float64",
# "chroma_stft.kurtosis.03": "float64",
# "chroma_stft.kurtosis.04": "float64",
# "chroma_stft.kurtosis.05": "float64",
# "chroma_stft.kurtosis.06": "float64",
# "chroma_stft.kurtosis.07": "float64",
# "chroma_stft.kurtosis.08": "float64",
# "chroma_stft.kurtosis.09": "float64",
# "chroma_stft.kurtosis.10": "float64",
# "chroma_stft.kurtosis.11": "float64",
# "chroma_stft.kurtosis.12": "float64",
# "chroma_stft.max.01": "float64",
# "chroma_stft.max.02": "float64",
# "chroma_stft.max.03": "float64",
# "chroma_stft.max.04": "float64",
# "chroma_stft.max.05": "float64",
# "chroma_stft.max.06": "float64",
# "chroma_stft.max.07": "float64",
# "chroma_stft.max.08": "float64",
# "chroma_stft.max.09": "float64",
# "chroma_stft.max.10": "float64",
# "chroma_stft.max.11": "float64",
# "chroma_stft.max.12": "float64",
# "chroma_stft.mean.01": "float64",
# "chroma_stft.mean.02": "float64",
# "chroma_stft.mean.03": "float64",
# "chroma_stft.mean.04": "float64",
# "chroma_stft.mean.05": "float64",
# "chroma_stft.mean.06": "float64",
# "chroma_stft.mean.07": "float64",
# "chroma_stft.mean.08": "float64",
# "chroma_stft.mean.09": "float64",
# "chroma_stft.mean.10": "float64",
# "chroma_stft.mean.11": "float64",
# "chroma_stft.mean.12": "float64",
# "chroma_stft.median.01": "float64",
# "chroma_stft.median.02": "float64",
# "chroma_stft.median.03": "float64",
# "chroma_stft.median.04": "float64",
# "chroma_stft.median.05": "float64",
# "chroma_stft.median.06": "float64",
# "chroma_stft.median.07": "float64",
# "chroma_stft.median.08": "float64",
# "chroma_stft.median.09": "float64",
# "chroma_stft.median.10": "float64",
# "chroma_stft.median.11": "float64",
# "chroma_stft.median.12": "float64",
# "chroma_stft.min.01": "float64",
# "chroma_stft.min.02": "float64",
# "chroma_stft.min.03": "float64",
# "chroma_stft.min.04": "float64",
# "chroma_stft.min.05": "float64",
# "chroma_stft.min.06": "float64",
# "chroma_stft.min.07": "float64",
# "chroma_stft.min.08": "float64",
# "chroma_stft.min.09": "float64",
# "chroma_stft.min.10": "float64",
# "chroma_stft.min.11": "float64",
# "chroma_stft.min.12": "float64",
# "chroma_stft.skew.01": "float64",
# "chroma_stft.skew.02": "float64",
# "chroma_stft.skew.03": "float64",
# "chroma_stft.skew.04": "float64",
# "chroma_stft.skew.05": "float64",
# "chroma_stft.skew.06": "float64",
# "chroma_stft.skew.07": "float64",
# "chroma_stft.skew.08": "float64",
# "chroma_stft.skew.09": "float64",
# "chroma_stft.skew.10": "float64",
# "chroma_stft.skew.11": "float64",
# "chroma_stft.skew.12": "float64",
# "chroma_stft.std.01": "float64",
# "chroma_stft.std.02": "float64",
# "chroma_stft.std.03": "float64",
# "chroma_stft.std.04": "float64",
# "chroma_stft.std.05": "float64",
# "chroma_stft.std.06": "float64",
# "chroma_stft.std.07": "float64",
# "chroma_stft.std.08": "float64",
# "chroma_stft.std.09": "float64",
# "chroma_stft.std.10": "float64",
# "chroma_stft.std.11": "float64",
# "chroma_stft.std.12": "float64",
# "mfcc.kurtosis.01": "float64",
# "mfcc.kurtosis.02": "float64",
# "mfcc.kurtosis.03": "float64",
# "mfcc.kurtosis.04": "float64",
# "mfcc.kurtosis.05": "float64",
# "mfcc.kurtosis.06": "float64",
# "mfcc.kurtosis.07": "float64",
# "mfcc.kurtosis.08": "float64",
# "mfcc.kurtosis.09": "float64",
# "mfcc.kurtosis.10": "float64",
# "mfcc.kurtosis.11": "float64",
# "mfcc.kurtosis.12": "float64",
# "mfcc.kurtosis.13": "float64",
# "mfcc.kurtosis.14": "float64",
# "mfcc.kurtosis.15": "float64",
# "mfcc.kurtosis.16": "float64",
# "mfcc.kurtosis.17": "float64",
# "mfcc.kurtosis.18": "float64",
# "mfcc.kurtosis.19": "float64",
# "mfcc.kurtosis.20": "float64",
# "mfcc.max.01": "float64",
# "mfcc.max.02": "float64",
# "mfcc.max.03": "float64",
# "mfcc.max.04": "float64",
# "mfcc.max.05": "float64",
# "mfcc.max.06": "float64",
# "mfcc.max.07": "float64",
# "mfcc.max.08": "float64",
# "mfcc.max.09": "float64",
# "mfcc.max.10": "float64",
# "mfcc.max.11": "float64",
# "mfcc.max.12": "float64",
# "mfcc.max.13": "float64",
# "mfcc.max.14": "float64",
# "mfcc.max.15": "float64",
# "mfcc.max.16": "float64",
# "mfcc.max.17": "float64",
# "mfcc.max.18": "float64",
# "mfcc.max.19": "float64",
# "mfcc.max.20": "float64",
# "mfcc.mean.01": "float64",
# "mfcc.mean.02": "float64",
# "mfcc.mean.03": "float64",
# "mfcc.mean.04": "float64",
# "mfcc.mean.05": "float64",
# "mfcc.mean.06": "float64",
# "mfcc.mean.07": "float64",
# "mfcc.mean.08": "float64",
# "mfcc.mean.09": "float64",
# "mfcc.mean.10": "float64",
# "mfcc.mean.11": "float64",
# "mfcc.mean.12": "float64",
# "mfcc.mean.13": "float64",
# "mfcc.mean.14": "float64",
# "mfcc.mean.15": "float64",
# "mfcc.mean.16": "float64",
# "mfcc.mean.17": "float64",
# "mfcc.mean.18": "float64",
# "mfcc.mean.19": "float64",
# "mfcc.mean.20": "float64",
# "mfcc.median.01": "float64",
# "mfcc.median.02": "float64",
# "mfcc.median.03": "float64",
# "mfcc.median.04": "float64",
# "mfcc.median.05": "float64",
# "mfcc.median.06": "float64",
# "mfcc.median.07": "float64",
# "mfcc.median.08": "float64",
# "mfcc.median.09": "float64",
# "mfcc.median.10": "float64",
# "mfcc.median.11": "float64",
# "mfcc.median.12": "float64",
# "mfcc.median.13": "float64",
# "mfcc.median.14": "float64",
# "mfcc.median.15": "float64",
# "mfcc.median.16": "float64",
# "mfcc.median.17": "float64",
# "mfcc.median.18": "float64",
# "mfcc.median.19": "float64",
# "mfcc.median.20": "float64",
# "mfcc.min.01": "float64",
# "mfcc.min.02": "float64",
# "mfcc.min.03": "float64",
# "mfcc.min.04": "float64",
# "mfcc.min.05": "float64",
# "mfcc.min.06": "float64",
# "mfcc.min.07": "float64",
# "mfcc.min.08": "float64",
# "mfcc.min.09": "float64",
# "mfcc.min.10": "float64",
# "mfcc.min.11": "float64",
# "mfcc.min.12": "float64",
# "mfcc.min.13": "float64",
# "mfcc.min.14": "float64",
# "mfcc.min.15": "float64",
# "mfcc.min.16": "float64",
# "mfcc.min.17": "float64",
# "mfcc.min.18": "float64",
# "mfcc.min.19": "float64",
# "mfcc.min.20": "float64",
# "mfcc.skew.01": "float64",
# "mfcc.skew.02": "float64",
# "mfcc.skew.03": "float64",
# "mfcc.skew.04": "float64",
# "mfcc.skew.05": "float64",
# "mfcc.skew.06": "float64",
# "mfcc.skew.07": "float64",
# "mfcc.skew.08": "float64",
# "mfcc.skew.09": "float64",
# "mfcc.skew.10": "float64",
# "mfcc.skew.11": "float64",
# "mfcc.skew.12": "float64",
# "mfcc.skew.13": "float64",
# "mfcc.skew.14": "float64",
# "mfcc.skew.15": "float64",
# "mfcc.skew.16": "float64",
# "mfcc.skew.17": "float64",
# "mfcc.skew.18": "float64",
# "mfcc.skew.19": "float64",
# "mfcc.skew.20": "float64",
# "mfcc.std.01": "float64",
# "mfcc.std.02": "float64",
# "mfcc.std.03": "float64",
# "mfcc.std.04": "float64",
# "mfcc.std.05": "float64",
# "mfcc.std.06": "float64",
# "mfcc.std.07": "float64",
# "mfcc.std.08": "float64",
# "mfcc.std.09": "float64",
# "mfcc.std.10": "float64",
# "mfcc.std.11": "float64",
# "mfcc.std.12": "float64",
# "mfcc.std.13": "float64",
# "mfcc.std.14": "float64",
# "mfcc.std.15": "float64",
# "mfcc.std.16": "float64",
# "mfcc.std.17": "float64",
# "mfcc.std.18": "float64",
# "mfcc.std.19": "float64",
# "mfcc.std.20": "float64",
# "rmse.kurtosis.01": "float64",
# "rmse.max.01": "float64",
# "rmse.mean.01": "float64",
# "rmse.median.01": "float64",
# "rmse.min.01": "float64",
# "rmse.skew.01": "float64",
# "rmse.std.01": "float64",
# "spectral_bandwidth.kurtosis.01": "float64",
# "spectral_bandwidth.max.01": "float64",
# "spectral_bandwidth.mean.01": "float64",
# "spectral_bandwidth.median.01": "float64",
# "spectral_bandwidth.min.01": "float64",
# "spectral_bandwidth.skew.01": "float64",
# "spectral_bandwidth.std.01": "float64",
# "spectral_centroid.kurtosis.01": "float64",
# "spectral_centroid.max.01": "float64",
# "spectral_centroid.mean.01": "float64",
# "spectral_centroid.median.01": "float64",
# "spectral_centroid.min.01": "float64",
# "spectral_centroid.skew.01": "float64",
# "spectral_centroid.std.01": "float64",
# "spectral_contrast.kurtosis.01": "float64",
# "spectral_contrast.kurtosis.02": "float64",
# "spectral_contrast.kurtosis.03": "float64",
# "spectral_contrast.kurtosis.04": "float64",
# "spectral_contrast.kurtosis.05": "float64",
# "spectral_contrast.kurtosis.06": "float64",
# "spectral_contrast.kurtosis.07": "float64",
# "spectral_contrast.max.01": "float64",
# "spectral_contrast.max.02": "float64",
# "spectral_contrast.max.03": "float64",
# "spectral_contrast.max.04": "float64",
# "spectral_contrast.max.05": "float64",
# "spectral_contrast.max.06": "float64",
# "spectral_contrast.max.07": "float64",
# "spectral_contrast.mean.01": "float64",
# "spectral_contrast.mean.02": "float64",
# "spectral_contrast.mean.03": "float64",
# "spectral_contrast.mean.04": "float64",
# "spectral_contrast.mean.05": "float64",
# "spectral_contrast.mean.06": "float64",
# "spectral_contrast.mean.07": "float64",
# "spectral_contrast.median.01": "float64",
# "spectral_contrast.median.02": "float64",
# "spectral_contrast.median.03": "float64",
# "spectral_contrast.median.04": "float64",
# "spectral_contrast.median.05": "float64",
# "spectral_contrast.median.06": "float64",
# "spectral_contrast.median.07": "float64",
# "spectral_contrast.min.01": "float64",
# "spectral_contrast.min.02": "float64",
# "spectral_contrast.min.03": "float64",
# "spectral_contrast.min.04": "float64",
# "spectral_contrast.min.05": "float64",
# "spectral_contrast.min.06": "float64",
# "spectral_contrast.min.07": "float64",
# "spectral_contrast.skew.01": "float64",
# "spectral_contrast.skew.02": "float64",
# "spectral_contrast.skew.03": "float64",
# "spectral_contrast.skew.04": "float64",
# "spectral_contrast.skew.05": "float64",
# "spectral_contrast.skew.06": "float64",
# "spectral_contrast.skew.07": "float64",
# "spectral_contrast.std.01": "float64",
# "spectral_contrast.std.02": "float64",
# "spectral_contrast.std.03": "float64",
# "spectral_contrast.std.04": "float64",
# "spectral_contrast.std.05": "float64",
# "spectral_contrast.std.06": "float64",
# "spectral_contrast.std.07": "float64",
# "spectral_rolloff.kurtosis.01": "float64",
# "spectral_rolloff.max.01": "float64",
# "spectral_rolloff.mean.01": "float64",
# "spectral_rolloff.median.01": "float64",
# "spectral_rolloff.min.01": "float64",
# "spectral_rolloff.skew.01": "float64",
# "spectral_rolloff.std.01": "float64",
# "tonnetz.kurtosis.01": "float64",
# "tonnetz.kurtosis.02": "float64",
# "tonnetz.kurtosis.03": "float64",
# "tonnetz.kurtosis.04": "float64",
# "tonnetz.kurtosis.05": "float64",
# "tonnetz.kurtosis.06": "float64",
# "tonnetz.max.01": "float64",
# "tonnetz.max.02": "float64",
# "tonnetz.max.03": "float64",
# "tonnetz.max.04": "float64",
# "tonnetz.max.05": "float64",
# "tonnetz.max.06": "float64",
# "tonnetz.mean.01": "float64",
# "tonnetz.mean.02": "float64",
# "tonnetz.mean.03": "float64",
# "tonnetz.mean.04": "float64",
# "tonnetz.mean.05": "float64",
# "tonnetz.mean.06": "float64",
# "tonnetz.median.01": "float64",
# "tonnetz.median.02": "float64",
# "tonnetz.median.03": "float64",
# "tonnetz.median.04": "float64",
# "tonnetz.median.05": "float64",
# "tonnetz.median.06": "float64",
# "tonnetz.min.01": "float64",
# "tonnetz.min.02": "float64",
# "tonnetz.min.03": "float64",
# "tonnetz.min.04": "float64",
# "tonnetz.min.05": "float64",
# "tonnetz.min.06": "float64",
# "tonnetz.skew.01": "float64",
# "tonnetz.skew.02": "float64",
# "tonnetz.skew.03": "float64",
# "tonnetz.skew.04": "float64",
# "tonnetz.skew.05": "float64",
# "tonnetz.skew.06": "float64",
# "tonnetz.std.01": "float64",
# "tonnetz.std.02": "float64",
# "tonnetz.std.03": "float64",
# "tonnetz.std.04": "float64",
# "tonnetz.std.05": "float64",
# "tonnetz.std.06": "float64",
# "zcr.kurtosis.01": "float64",
# "zcr.max.01": "float64",
# "zcr.mean.01": "float64",
# "zcr.median.01": "float64",
# "zcr.min.01": "float64",
# "zcr.skew.01": "float64",
# "zcr.std.01": "float64",
# Echo Nest
"echonest.audio_features.acousticness": "float64",
"echonest.audio_features.danceability": "float64",
"echonest.audio_features.energy": "float64",
"echonest.audio_features.instrumentalness": "float64",
"echonest.audio_features.liveness": "float64",
"echonest.audio_features.speechiness": "float64",
"echonest.audio_features.tempo": "float64",
"echonest.audio_features.valence": "float64",
"echonest.metadata.album_date": "object",
"echonest.metadata.album_name": "object",
"echonest.metadata.artist_latitude": "float64",
"echonest.metadata.artist_location": "object",
"echonest.metadata.artist_longitude": "float64",
"echonest.metadata.artist_name": "object",
"echonest.metadata.release": "object",
"echonest.ranks.artist_discovery_rank": "float64",
"echonest.ranks.artist_familiarity_rank": "float64",
"echonest.ranks.artist_hotttnesss_rank": "float64",
"echonest.ranks.song_currency_rank": "float64",
"echonest.ranks.song_hotttnesss_rank": "float64",
"echonest.social_features.artist_discovery": "float64",
"echonest.social_features.artist_familiarity": "float64",
"echonest.social_features.artist_hotttnesss": "float64",
"echonest.social_features.song_currency": "float64",
"echonest.social_features.song_hotttnesss": "float64",
"echonest.temporal_features.000": "float64",
"echonest.temporal_features.001": "float64",
"echonest.temporal_features.002": "float64",
"echonest.temporal_features.003": "float64",
"echonest.temporal_features.004": "float64",
"echonest.temporal_features.005": "float64",
"echonest.temporal_features.006": "float64",
"echonest.temporal_features.007": "float64",
"echonest.temporal_features.008": "float64",
"echonest.temporal_features.009": "float64",
"echonest.temporal_features.010": "float64",
"echonest.temporal_features.011": "float64",
"echonest.temporal_features.012": "float64",
"echonest.temporal_features.013": "float64",
"echonest.temporal_features.014": "float64",
"echonest.temporal_features.015": "float64",
"echonest.temporal_features.016": "float64",
"echonest.temporal_features.017": "float64",
"echonest.temporal_features.018": "float64",
"echonest.temporal_features.019": "float64",
"echonest.temporal_features.020": "float64",
"echonest.temporal_features.021": "float64",
"echonest.temporal_features.022": "float64",
"echonest.temporal_features.023": "float64",
"echonest.temporal_features.024": "float64",
"echonest.temporal_features.025": "float64",
"echonest.temporal_features.026": "float64",
"echonest.temporal_features.027": "float64",
"echonest.temporal_features.028": "float64",
"echonest.temporal_features.029": "float64",
"echonest.temporal_features.030": "float64",
"echonest.temporal_features.031": "float64",
"echonest.temporal_features.032": "float64",
"echonest.temporal_features.033": "float64",
"echonest.temporal_features.034": "float64",
"echonest.temporal_features.035": "float64",
"echonest.temporal_features.036": "float64",
"echonest.temporal_features.037": "float64",
"echonest.temporal_features.038": "float64",
"echonest.temporal_features.039": "float64",
"echonest.temporal_features.040": "float64",
"echonest.temporal_features.041": "float64",
"echonest.temporal_features.042": "float64",
"echonest.temporal_features.043": "float64",
"echonest.temporal_features.044": "float64",
"echonest.temporal_features.045": "float64",
"echonest.temporal_features.046": "float64",
"echonest.temporal_features.047": "float64",
"echonest.temporal_features.048": "float64",
"echonest.temporal_features.049": "float64",
"echonest.temporal_features.050": "float64",
"echonest.temporal_features.051": "float64",
"echonest.temporal_features.052": "float64",
"echonest.temporal_features.053": "float64",
"echonest.temporal_features.054": "float64",
"echonest.temporal_features.055": "float64",
"echonest.temporal_features.056": "float64",
"echonest.temporal_features.057": "float64",
"echonest.temporal_features.058": "float64",
"echonest.temporal_features.059": "float64",
"echonest.temporal_features.060": "float64",
"echonest.temporal_features.061": "float64",
"echonest.temporal_features.062": "float64",
"echonest.temporal_features.063": "float64",
"echonest.temporal_features.064": "float64",
"echonest.temporal_features.065": "float64",
"echonest.temporal_features.066": "float64",
"echonest.temporal_features.067": "float64",
"echonest.temporal_features.068": "float64",
"echonest.temporal_features.069": "float64",
"echonest.temporal_features.070": "float64",
"echonest.temporal_features.071": "float64",
"echonest.temporal_features.072": "float64",
"echonest.temporal_features.073": "float64",
"echonest.temporal_features.074": "float64",
"echonest.temporal_features.075": "float64",
"echonest.temporal_features.076": "float64",
"echonest.temporal_features.077": "float64",
"echonest.temporal_features.078": "float64",
"echonest.temporal_features.079": "float64",
"echonest.temporal_features.080": "float64",
"echonest.temporal_features.081": "float64",
"echonest.temporal_features.082": "float64",
"echonest.temporal_features.083": "float64",
"echonest.temporal_features.084": "float64",
"echonest.temporal_features.085": "float64",
"echonest.temporal_features.086": "float64",
"echonest.temporal_features.087": "float64",
"echonest.temporal_features.088": "float64",
"echonest.temporal_features.089": "float64",
"echonest.temporal_features.090": "float64",
"echonest.temporal_features.091": "float64",
"echonest.temporal_features.092": "float64",
"echonest.temporal_features.093": "float64",
"echonest.temporal_features.094": "float64",
"echonest.temporal_features.095": "float64",
"echonest.temporal_features.096": "float64",
"echonest.temporal_features.097": "float64",
"echonest.temporal_features.098": "float64",
"echonest.temporal_features.099": "float64",
"echonest.temporal_features.100": "float64",
"echonest.temporal_features.101": "float64",
"echonest.temporal_features.102": "float64",
"echonest.temporal_features.103": "float64",
"echonest.temporal_features.104": "float64",
"echonest.temporal_features.105": "float64",
"echonest.temporal_features.106": "float64",
"echonest.temporal_features.107": "float64",
"echonest.temporal_features.108": "float64",
"echonest.temporal_features.109": "float64",
"echonest.temporal_features.110": "float64",
"echonest.temporal_features.111": "float64",
"echonest.temporal_features.112": "float64",
"echonest.temporal_features.113": "float64",
"echonest.temporal_features.114": "float64",
"echonest.temporal_features.115": "float64",
"echonest.temporal_features.116": "float64",
"echonest.temporal_features.117": "float64",
"echonest.temporal_features.118": "float64",
"echonest.temporal_features.119": "float64",
"echonest.temporal_features.120": "float64",
"echonest.temporal_features.121": "float64",
"echonest.temporal_features.122": "float64",
"echonest.temporal_features.123": "float64",
"echonest.temporal_features.124": "float64",
"echonest.temporal_features.125": "float64",
"echonest.temporal_features.126": "float64",
"echonest.temporal_features.127": "float64",
"echonest.temporal_features.128": "float64",
"echonest.temporal_features.129": "float64",
"echonest.temporal_features.130": "float64",
"echonest.temporal_features.131": "float64",
"echonest.temporal_features.132": "float64",
"echonest.temporal_features.133": "float64",
"echonest.temporal_features.134": "float64",
"echonest.temporal_features.135": "float64",
"echonest.temporal_features.136": "float64",
"echonest.temporal_features.137": "float64",
"echonest.temporal_features.138": "float64",
"echonest.temporal_features.139": "float64",
"echonest.temporal_features.140": "float64",
"echonest.temporal_features.141": "float64",
"echonest.temporal_features.142": "float64",
"echonest.temporal_features.143": "float64",
"echonest.temporal_features.144": "float64",
"echonest.temporal_features.145": "float64",
"echonest.temporal_features.146": "float64",
"echonest.temporal_features.147": "float64",
"echonest.temporal_features.148": "float64",
"echonest.temporal_features.149": "float64",
"echonest.temporal_features.150": "float64",
"echonest.temporal_features.151": "float64",
"echonest.temporal_features.152": "float64",
"echonest.temporal_features.153": "float64",
"echonest.temporal_features.154": "float64",
"echonest.temporal_features.155": "float64",
"echonest.temporal_features.156": "float64",
"echonest.temporal_features.157": "float64",
"echonest.temporal_features.158": "float64",
"echonest.temporal_features.159": "float64",
"echonest.temporal_features.160": "float64",
"echonest.temporal_features.161": "float64",
"echonest.temporal_features.162": "float64",
"echonest.temporal_features.163": "float64",
"echonest.temporal_features.164": "float64",
"echonest.temporal_features.165": "float64",
"echonest.temporal_features.166": "float64",
"echonest.temporal_features.167": "float64",
"echonest.temporal_features.168": "float64",
"echonest.temporal_features.169": "float64",
"echonest.temporal_features.170": "float64",
"echonest.temporal_features.171": "float64",
"echonest.temporal_features.172": "float64",
"echonest.temporal_features.173": "float64",
"echonest.temporal_features.174": "float64",
"echonest.temporal_features.175": "float64",
"echonest.temporal_features.176": "float64",
"echonest.temporal_features.177": "float64",
"echonest.temporal_features.178": "float64",
"echonest.temporal_features.179": "float64",
"echonest.temporal_features.180": "float64",
"echonest.temporal_features.181": "float64",
"echonest.temporal_features.182": "float64",
"echonest.temporal_features.183": "float64",
"echonest.temporal_features.184": "float64",
"echonest.temporal_features.185": "float64",
"echonest.temporal_features.186": "float64",
"echonest.temporal_features.187": "float64",
"echonest.temporal_features.188": "float64",
"echonest.temporal_features.189": "float64",
"echonest.temporal_features.190": "float64",
"echonest.temporal_features.191": "float64",
"echonest.temporal_features.192": "float64",
"echonest.temporal_features.193": "float64",
"echonest.temporal_features.194": "float64",
"echonest.temporal_features.195": "float64",
"echonest.temporal_features.196": "float64",
"echonest.temporal_features.197": "float64",
"echonest.temporal_features.198": "float64",
"echonest.temporal_features.199": "float64",
"echonest.temporal_features.200": "float64",
"echonest.temporal_features.201": "float64",
"echonest.temporal_features.202": "float64",
"echonest.temporal_features.203": "float64",
"echonest.temporal_features.204": "float64",
"echonest.temporal_features.205": "float64",
"echonest.temporal_features.206": "float64",
"echonest.temporal_features.207": "float64",
"echonest.temporal_features.208": "float64",
"echonest.temporal_features.209": "float64",
"echonest.temporal_features.210": "float64",
"echonest.temporal_features.211": "float64",
"echonest.temporal_features.212": "float64",
"echonest.temporal_features.213": "float64",
"echonest.temporal_features.214": "float64",
"echonest.temporal_features.215": "float64",
"echonest.temporal_features.216": "float64",
"echonest.temporal_features.217": "float64",
"echonest.temporal_features.218": "float64",
"echonest.temporal_features.219": "float64",
"echonest.temporal_features.220": "float64",
"echonest.temporal_features.221": "float64",
"echonest.temporal_features.222": "float64",
"echonest.temporal_features.223": "float64",
}
class FMADataset(datasets.GeneratorBasedBuilder):
"""FMA."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=f"small", version=VERSION, description="8,000 tracks of 30s, 8 balanced genres (GTZAN-like) (7.2 GiB)"
),
datasets.BuilderConfig(
name=f"medium", version=VERSION, description="25,000 tracks of 30s, 16 unbalanced genres (22 GiB)"
),
datasets.BuilderConfig(
name=f"large", version=VERSION, description="106,574 tracks of 30s, 161 unbalanced genres (93 GiB)"
),
datasets.BuilderConfig(name=f"all", version=VERSION, description="All splits together"),
]
def _info(self):
def parseValueType(dtype):
try:
return datasets.Value(dtype)
except:
return datasets.Value("string")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"audio": datasets.features.Audio(),
**{k: parseValueType(v) for k, v in METADATA_FIELDS.items()},
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
metadata = dl_manager.download(dataset_links["metadata"])
metadata = dl_manager.iter_archive(metadata)
for f in metadata:
if f[0] == "fma_metadata/tracks.csv":
tracks = utils_load(*f)
elif f[0] == "fma_metadata/genres.csv":
genres = None # utils_load(*f)
elif f[0] == "fma_metadata/features.csv":
features = None # utils_load(*f)
elif f[0] == "fma_metadata/echonest.csv":
echonest = utils_load(*f)
metadata = read_metadata(tracks, genres, features, echonest)
audio = dl_manager.download(dataset_links[self.config.name if self.config.name != "all" else "large"])
audio = dl_manager.iter_archive(audio)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"audio": audio,
"metadata": metadata,
"split": "training",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"audio": audio,
"metadata": metadata,
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"audio": audio,
"metadata": metadata,
"split": "test",
},
),
]
def _generate_examples(self, audio, metadata, split):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
import os
for audio_path, f in audio:
try:
track_id = int(os.path.splitext(os.path.basename(audio_path))[0])
except:
# README or checksums or some other non-audio file
continue
track_metadata = metadata.tracks.loc[track_id].to_dict()
if track_metadata["set.split"] != split:
continue
if track_metadata["set.subset"] != self.config.name and not self.config.name == "all":
continue
try:
echonest_features = metadata.echonest.loc[track_id].to_dict()
except:
echonest_features = {k: None for k in metadata.echonest.columns.values.tolist()}
yield track_id, {
"id": track_id,
"audio": {"path": audio_path, "bytes": f.read()},
**track_metadata,
**echonest_features,
}
## DEPRECATED
# def download(dset_version: str, zip_prefix: str):
# from tqdm import tqdm
# import os
# import requests
# zip_filename = os.path.join(zip_prefix, f"fma_{dset_version}.zip")
# with tqdm(desc=f"(GB - not exact) Downloading {zip_filename}") as pbar:
# with requests.get(dataset_links[dset_version], stream=True) as r:
# r.raise_for_status()
# with open(zip_filename, "wb") as f:
# for i, chunk in enumerate(r.iter_content(chunk_size=8192)):
# if i % 125000 == 0:
# pbar.update(1)
# f.write(chunk)
# print(f"Downloaded {dset_version} ZIP")
# def extract_metadata(zip_prefix: str, extraction_prefix: str):
# import os
# from zipfile import ZipFile
# from tqdm import tqdm
# os.makedirs(os.path.join(zip_prefix, "metadata"), exist_ok=True)
# zip_filename = os.path.join(zip_prefix, f"fma_metadata.zip")
# with ZipFile(zip_filename, "r") as handle:
# members = handle.namelist()
# for member in tqdm(
# members,
# ncols=0,
# mininterval=10,
# maxinterval=30,
# desc="Extracting metadata",
# ):
# handle.extract(member, os.path.join(zip_prefix, "metadata"))
# print("Metadata extraction complete")
# def extract(dset_version: str, zip_prefix: str, extraction_prefix: str):
# from zipfile import ZipFile
# import os
# import requests
# from tqdm import tqdm
# import random
# import shutil
# if dset_version == "metadata":
# extract_metadata(zip_prefix, extraction_prefix)
# return
# metadata = read_metadata(zip_prefix)
# zip_filename = os.path.join(zip_prefix, f"fma_{dset_version}.zip")
# with ZipFile(zip_filename, "r") as handle:
# random.seed(0)
# members = handle.namelist()
# random.shuffle(members)
# for member in tqdm(
# members,
# ncols=0,
# mininterval=10,
# maxinterval=30,
# desc="Uploading to Huggingface Datasets",
# ):
# # sink.write(
# # {
# # "__key__": member[4:].replace("/", "_").replace(".mp3", ""),
# # "mp3": handle.read(member),
# # }
# # )
# # if sink.fname != current_local_shard:
# # shutil.copyfile(
# # current_local_shard,
# # os.path.join(
# # extraction_prefix,
# # dset_version,
# # os.path.basename(current_local_shard),
# # ),
# # )
# # os.remove(current_local_shard)
# # current_local_shard = sink.fname
# print("Upload complete")