Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
Libraries:
Datasets
pandas
File size: 2,153 Bytes
60fb70c
 
 
1713086
 
66f61cb
f8ed7ef
66f61cb
 
435f4c1
 
1713086
435f4c1
 
66f61cb
 
 
 
 
 
435f4c1
 
66f61cb
1713086
66f61cb
 
435f4c1
 
 
 
 
66f61cb
 
 
 
 
435f4c1
 
 
1713086
66f61cb
 
3b3572f
66f61cb
 
 
 
435f4c1
 
 
 
 
 
 
 
 
66f61cb
 
 
435f4c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
language:
- en
size_categories:
- n<1K
---
# Dataset Card for SecurityEval


This dataset is from the paper titled **SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques**. 
The project is accepted for The first edition of the International Workshop on Mining Software Repositories Applications for Privacy and Security (MSR4P&S '22). 
The paper describes the dataset for evaluating machine learning-based code generation output and the application of the dataset to the code generation tools.



## Dataset Details

### Dataset Description


- **Curated by:** Mohammed Latif Siddiq & Joanna C. S. Santos
- **Language(s):** Python

### Dataset Sources


- **Repository:** https://github.com/s2e-lab/SecurityEval
- **Paper:**
"SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques".
International Workshop on Mining Software Repositories Applications for Privacy and Security (MSR4P&S '22).
https://s2e-lab.github.io/preprints/msr4ps22-preprint.pdf



## Dataset Structure

- dataset.jsonl: dataset file in jsonl format. Every line contains a JSON object with the following fields:
  - `ID`: unique identifier of the sample.
  - `Prompt`: Prompt for the code generation model.
  - `Insecure_code`: code of the vulnerability example that may be generated from the prompt.


## Citation


**BibTeX:**

```
@inproceedings{siddiq2022seceval,
  author={Siddiq, Mohammed Latif and Santos, Joanna C. S. },
  booktitle={Proceedings of the 1st International Workshop on Mining Software Repositories Applications for Privacy and Security (MSR4P&S22)}, 
  title={SecurityEval Dataset: Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Generation Techniques}, 
  year={2022},
  doi={10.1145/3549035.3561184}
}
 ```

**APA:**

Siddiq, M. L., & Santos, J. C. (2022, November). SecurityEval dataset: mining vulnerability examples to evaluate machine learning-based code generation techniques. In Proceedings of the 1st International Workshop on Mining Software Repositories Applications for Privacy and Security (pp. 29-33).