File size: 19,072 Bytes
79297dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# %%
'''
Script on Cleansing Wikipedia Data that has been extracted from extract_raw_wiki_data.py
'''
#core functionality modules
import os, gc
import logging
import argparse
import warnings

from functools import partial

#text preprocess modules
import re
import urllib
from xml.etree import ElementTree as ET

#dataset related modules
import numpy as np
import pandas as pd


### MODULES DEFINITION ###
#create custom type-checking of incoming ArgParse
def argparse_bool_check(value: str):
    #cast str with value like float into actual float
    try:
        value = float(value)
    #can't be parsed as float, keep as it is
    except ValueError:
        pass

    #cast float-like value (incl int) into str
    if isinstance(value, float) and int(value) == value:
        value = str(int(value))
    #raise ArgumentTypeError if the value isn't in string already
    else:
        if not isinstance(value, str):
            raise argparse.ArgumentTypeError(f"Not the correct value (args: {value})! Expected is cast-able to '1' or '0' or already in string. Please rectify!")
    #check for these combinations of values
    if value.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif value.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError(f"Value Error! Not the correct value (args: {value})! Please rectify!")


def text_processing_args_checker(value: str):
    if value not in ["all", "text", "title", "neither"]:
        raise argparse.ArgumentTypeError(f"Value Error! Not the correct value (args: {value})! Please rectify!")
    else:
        return value


def set_logger():
    # Set up the logger
    logging.basicConfig(
        level=logging.INFO,  # Set the desired logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
        format='%(asctime)s [%(levelname)s]: %(message)s',  # Customize the log message format
        datefmt='%Y-%m-%d %H:%M:%S'  # Customize the date/time format
    )

    # Create a file handler to write logs into a file
    file_handler = logging.FileHandler('app.log')

    # Set the log level for the file handler
    file_handler.setLevel(logging.INFO) 

    # Create a formatter for the file handler (customize the log format for the file)
    file_formatter = logging.Formatter('%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
    file_handler.setFormatter(file_formatter)

    logger = logging.getLogger("Wiki Dataset Generation")
    logger.addHandler(file_handler)

    return logger


#wrapper fn of text-cleansing
def text_cleansing_wrapper(fn, exception_class_names = []):

    #ensure caught exception class names passed to decorator is a list (if provided)
    if not isinstance(exception_class_names, list):
        raise TypeError("Exception Class Name for Wrapper is not a list!")
    #ensure all values of caught exception class name list is a string
    if not all([isinstance(val, str) for val in exception_class_names]):
        raise ValueError("Found an element of Exception Class Name for Wrapper that is not a string!")

    #lowercase all exception class name
    exception_class_names = [val.lower() for val in exception_class_names]
    if len(exception_class_names) == 0:
        warnings.warn("The wrapper receives 0 `exception_class_names` to be warned! Will return the function value with its input!")

    def text_fn_wrapper(text: str, *args, **kwargs):
        try:
            return fn(text, *args, **kwargs)
        except Exception as e:
            _exc_name = type(e).__name__
            if _exc_name.lower() not in exception_class_names and len(exception_class_names)>0:
                raise Exception(f"Exception Occured of {_exc_name} in {fn.__name__}!") from e
            else:
                _followup_msg = "Returning the input as it is..."
                _text_warn = f"An exception of {_exc_name} occured in {fn.__name__}! {_followup_msg}"
                warnings.warn(_text_warn)
                return text

    return text_fn_wrapper


#create html tags cleanser of a given text
partial_decorator = partial(text_cleansing_wrapper, exception_class_names=["parseerror"])
@partial_decorator
def remove_html_tags(text: str):
    #extracted from "https://stackoverflow.com/a/9662410", w/ additional decorator of error handler
    return (''.join(ET.fromstring(text).itertext())).strip()


#create url decoder of text
@text_cleansing_wrapper
def decode_url(text: str):
    # return (urllib.parse.unquote(text)).encode('utf8', errors='ignore').decode().strip()
    return (urllib.parse.unquote(text)).strip()

#create encoder check of text
@text_cleansing_wrapper
def check_text_by_encoder(text: str, encoder: str="utf8"):
    return text.encode(encoder, errors='ignore').decode().strip()

#create excessive whitespace removal of text
@text_cleansing_wrapper
def remove_excessive_whitespace(text: str):
    return re.sub("(\s)(\s+)", r"\1", text).strip()

#create non-alphanumeric removal of text
@text_cleansing_wrapper
def remove_non_alphanumeric(text: str):
    return re.sub("[^a-z0-9\s]", "", text, flags=re.I).strip()

# def cleanse_wiki_text(text: str):
#     return remove_html_tags(decode_url_and_remove_non_ascii(text))

# def normalize_wiki_title(text: str):
#     return remove_non_alphanumeric(remove_excessive_whitespace(text.lower()))


def _text_normalizer_constructor(
        remove_non_alphanumeric_bool: bool, remove_excessive_whitespace_bool: bool,
        remove_html_tags_bool: bool, decode_url_bool: bool, encoder_check_bool: bool,
        encoder: str="utf8"):

    _lambda_fn_1 = partial(check_text_by_encoder, encoder=encoder) if encoder_check_bool else lambda x: x
    _lambda_fn_2 = lambda x: remove_non_alphanumeric(_lambda_fn_1(x)) if remove_non_alphanumeric_bool else _lambda_fn_1(x)
    _lambda_fn_3 = lambda x: remove_excessive_whitespace(_lambda_fn_2(x)) if remove_excessive_whitespace_bool else _lambda_fn_2(x)
    _lambda_fn_4 = lambda x: remove_html_tags(_lambda_fn_3(x)) if remove_html_tags_bool else _lambda_fn_3(x)
    _lambda_fn_5 = lambda x: decode_url(_lambda_fn_4(x)) if decode_url_bool else _lambda_fn_4(x)

    return _lambda_fn_5


def _args_to_text_constructor_fn(**kwargs):

    def _decode_options(opt: str):
        # return decoded options with format `text_opt`, `title_opt`
        # possible values are ["all", "text", "title", "neither"]
        if opt == "all":
            return True, True
        elif opt == "text":
            return True, False
        elif opt == "title":
            return False, True
        else:
            return False, False

    kwargs_title, kwargs_text = {}, {}

    kwargs_title["encoder"] = kwargs["text_encoder_choice_title"]
    kwargs_text["encoder"] = kwargs["text_encoder_choice_text"]

    for key, val in kwargs.items():
        if key not in [
            "remove_non_alphanumeric_option", "remove_excessive_whitespace_option",
            "remove_html_tags_option", "decode_url_option", "encoder_check_option"]:
            continue
        new_key = "_".join(key.split("_")[:-1]) + "_bool"
        text_opt_val, title_opt_val = _decode_options(val)
        kwargs_text[new_key], kwargs_title[new_key] = text_opt_val, title_opt_val

    return _text_normalizer_constructor(**kwargs_text), _text_normalizer_constructor(**kwargs_title)


def _text_processing_wrapper(text: str, _fn, mode: str="text"):
    if mode not in ["text", "title"]:
        raise ValueError(f"Provided `mode` isn't either 'text' or 'title'! Received: {mode}")
    return _fn(text.lower()) if mode=="title" else _fn(text)


### MAIN CODE ###
if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--raw-csv-path", help="Relative location of csv file containing raw Wikipedia data")

    parser.add_argument("--drop-hard-dupl", help="""Flag whether to drop hard duplicates
                        (exact values of data of relevant text fields, Titles & Desc)""",
          default=True, type=argparse_bool_check)

    parser.add_argument("--drop-soft-dupl", help="""Flag whether to drop soft duplicates
                        (duplicates after cleansed and normalized relevant text fields, Titles & Desc)""",
          default=True, type=argparse_bool_check)

    parser.add_argument("--save-dir-path", help="""Relative dir path of saved Wikipedia CSV data
                        to the `dedup_raw_wiki_data.py` script dir""",
            default=os.path.dirname(os.path.abspath(__file__)))

    ### THE FOLLOWING ARGUMENTS ONLY TEMPORARILY ALTER THE TEXT DATA ONLY FOR SOFT-DEDUP CHECK ###
    ### THE INITIAL TEXT DATA WON'T BE OVERWRITTEN AFTER BEING PREPROCESSED ###
    ### UNLESS YOU ARE SPECIFYING IN ARGS `overwrite-initial-title-data` AND `overwrite-initial-text-data` ###

    ### ARGS TO OVERWRITTE INITIAL TEXT DATA WITH PROCESSED ONES ###
    parser.add_argument("--overwrite-initial-title-data", help="""Flag whether to overwrite title
                        init data w/ processed data (True) or keep it as it is (False)""",
          default=False, type=argparse_bool_check)

    parser.add_argument("--overwrite-initial-text-data", help="""Flag whether to overwrite text
                        init data w/ processed data (True) or keep it as it is (False)""",
          default=False, type=argparse_bool_check)

    ### INSTANTIATOR ARGS FOR CONSTRUCTING TEXT PROCESSING FN TO BE APPLIED ###
    parser.add_argument("--remove-non-alphanumeric-option", help="""Identifier which columns to be preprocessed
                        using `remove_non_alphanumeric` for soft duplicates detection
                        (Choices are "all", "text", "title", "neither")""",
          default="neither", type=text_processing_args_checker)

    parser.add_argument("--remove-excessive-whitespace-option", help="""Identifier which columns to be preprocessed
                        using `remove_excessive_whitespace` for soft duplicates detection
                        (Choices are "all", "text", "title", "neither")""",
          default="all", type=text_processing_args_checker)

    parser.add_argument("--remove-html-tags-option", help="""Identifier which columns to be preprocessed
                        using `remove_html_tags` for soft duplicates detection
                        (Choices are "all", "text", "title", "neither")""",
          default="all", type=text_processing_args_checker)

    parser.add_argument("--decode-url-option", help="""Identifier which columns to be preprocessed
                        using `decode_url` for soft duplicates detection
                        (Choices are "all", "text", "title", "neither")""",
          default="all", type=text_processing_args_checker)

    ### ARGS TO CHOOSE ENCODER CHECKING AND ITS CONFIG INITIALIZATION ###
    parser.add_argument("--encoder-check-option", help="""Identifier which columns to be preprocessed
                        using `check_text_by_encoder` for soft duplicates detection
                        (Choices are "all", "text", "title", "neither")""",
          default="all", type=text_processing_args_checker)

    parser.add_argument("--text-encoder-choice-title", help="""Identifier of title encoder type
                        to be applied into `check_text_by_encoder` for soft duplicates detection""",
          default="utf8", type=str)

    parser.add_argument("--text-encoder-choice-text", help="""Identifier of text encoder type
                        to be applied into `check_text_by_encoder` for soft duplicates detection""",
          default="utf8", type=str)


    _EXPECTED_COLNAMES = ["id", "url", "title", "text"]

    logger = set_logger()
    logger.info("Parsing arguments...")

    args = parser.parse_args()

    # class dotdict(dict):
    #     """dot.notation access to dictionary attributes"""
    #     __getattr__ = dict.get
    #     __setattr__ = dict.__setitem__
    #     __delattr__ = dict.__delitem__
    
    # args = dotdict({
    #     "raw_csv_path":"",
    #     "drop_hard_dupl": True,
    #     "drop_soft_dupl": True,
    #     "save_dir_path": os.path.dirname(os.path.abspath(__file__)),
    #     "overwrite_initial_title_data": False,
    #     "overwrite_initial_text_data": False,
    #     "remove_non_alphanumeric_option":"neither",
    #     "remove_excessive_whitespace_option": "neither",
    #     "remove_html_tags_option":"neither",
    #     "decode_url_option":"neither",
    #     "encoder_check_option":"all",
    #     "text_encoder_choice_title":"utf8",
    #     "text_encoder_choice_text":"utf8"
    # })

    _TEXT_PROCESSING_FN, _TITLE_PROCESSING_FN = _args_to_text_constructor_fn(
        remove_non_alphanumeric_option = args.remove_non_alphanumeric_option,
        remove_excessive_whitespace_option = args.remove_excessive_whitespace_option,
        remove_html_tags_option = args.remove_html_tags_option,
        decode_url_option = args.text_encoder_choice_title,
        encoder_check_option = args.encoder_check_option,
        text_encoder_choice_title = args.text_encoder_choice_title,
        text_encoder_choice_text = args.text_encoder_choice_text
    )

    raw_data_path = args.raw_csv_path
    drop_hard_dupl = args.drop_hard_dupl
    drop_soft_dupl = args.drop_soft_dupl
    save_dir = args.save_dir_path

    overwrite_initial_title_data = args.overwrite_initial_title_data
    overwrite_initial_text_data = args.overwrite_initial_text_data


    df = pd.read_csv(raw_data_path)
    if len(set(df.columns).difference(set(_EXPECTED_COLNAMES))) != 0 or len(set(_EXPECTED_COLNAMES).difference(set(df.columns))) != 0:
        raise ValueError(f"The data schema expected, consist of columns: {', '.join(df.columns.to_list())} doesn't match with expected column values of {', '.join(_EXPECTED_COLNAMES)}!")

    if (not drop_hard_dupl) and (not drop_soft_dupl):
        raise AssertionError("The script won't run with both `drop-hard-dupl` and `drop-soft-dupl` args turned off!")
    elif (not drop_hard_dupl):
        warnings.warn("The args of `drop_hard_dupl` isn't turned off! Possibly the data will contain one template value of Wikipedia (usually no contribution text!)")

    #will save id identifier colname first (popping first list val)
    id_colname = _EXPECTED_COLNAMES.pop(0)

    # if any of the data has duplicate values from columns checked (url, title, or text),
    # it means the data integrity is questionable
    # i.e. copied from other article or filled with template text
    # hence, we will delete those duplicated datasets

    #hard duplicate drop (drop all duplicate values that has exact same text on expected unique colnames)
    if drop_hard_dupl:

        for colname in _EXPECTED_COLNAMES:
            logger.info(f"Checking data integrity on column {colname} on removing hard-duplicate(s)...")
            dupl_text_df = df[df.duplicated(subset=colname,keep=False)]
            shape_of_dupl_data = dupl_text_df.shape[0]

            if shape_of_dupl_data > 0:
                logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
                df.drop_duplicates(subset=colname, keep=False, inplace=True)


        #check id/idx of the cleansed data, whether it has duplicate
        # (the duplication of id/idx should came from the very first extraction, not from the cleansing)

        if df[df.duplicated(subset=id_colname,keep=False)].shape[0] > 0:
            logger.info("Duplicated ID found! Re-assigning ID to the new ones based on `df.reset_index` method!")
            df[id_colname] = df.reset_index().index

    #soft duplicate drop (drop all except one duplicate values that has exact same text on expected unique colnames)
    #keep the data that has longest value of its raw form
    if drop_soft_dupl:

        idx_to_keep = set(df.index.to_list())
        #clean from text & title only, url isn't needed for this process
        _EXPECTED_COLNAMES.remove("url")

        for colname in _EXPECTED_COLNAMES:
            #Construct Text Cleanser Fn for soft-duplicate cleansing
            _PROCESSING_FN = _TEXT_PROCESSING_FN if colname == "text" else _TITLE_PROCESSING_FN
            text_processing_fn = partial(_text_processing_wrapper, _fn=_PROCESSING_FN, mode=colname)
            logger.info(f"Checking data integrity on column {colname} on removing soft-duplicate(s)...")
            _df = df.copy(deep=True)

            #Setting up DF cols as String so it can be text-processed
            _df = _df[[colname]]
            _df[colname] = _df[colname].astype("str")
            logger.info(f"Cleansing the data based on {colname}")

            #applying text processing
            _df[colname+"_raw_len"] = _df[colname].apply(len)
            _df[colname+"_cleansed"] = _df[colname].apply(lambda row_text: text_processing_fn(text=row_text))

            #overwrite its text data if set as true
            if overwrite_initial_title_data and colname == "title":
                df[colname] = _df[colname+"_cleansed"]
            elif overwrite_initial_text_data and colname == "text":
                df[colname] = _df[colname+"_cleansed"]

            #choose the data to keep by "ranking" it according to len of its raw text (greatest to keep)
            logger.info(f"Ranking and grouping the data based on {colname}")
            _df["rk"] = _df.groupby(colname+"_cleansed")[colname+"_raw_len"].rank(method="min", ascending=False)
            shape_of_dupl_data = _df[_df["rk"]>1].shape[0]

            if shape_of_dupl_data > 0:
                logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
                _idx_to_keep = _df[_df["rk"]==1].index.to_list()
                if len(_idx_to_keep)+shape_of_dupl_data != df.shape[0]:
                    raise AssertionError("Mismatch of data number!")
                idx_to_keep = idx_to_keep.intersection(set(_idx_to_keep))
            else:
                logger.info(f"No soft-duplicate found in colname {colname}. Continuing")

            del _df
            gc.collect()

        logger.info(f"The final data kept is {len(idx_to_keep)} from {df.shape[0]}")
        df = df.loc[list(idx_to_keep),:]

    logger.info("Saving dataset cleansed form...")
    #input path splitted by ("/") for the last entry should return filename
    #whereas the filename splitted by (".") except the last value should return the filename w/o ".csv" extension

    _override_suffix_identifier = ""
    if overwrite_initial_title_data or overwrite_initial_text_data:
        _override_suffix_identifier = "_overwritten"
        if overwrite_initial_text_data:
            _override_suffix_identifier = "_text"+_override_suffix_identifier
        if overwrite_initial_title_data:
            _override_suffix_identifier = "_title"+_override_suffix_identifier

    _save_file_name = ".".join(raw_data_path.split("/")[-1].split(".")[:-1]) + "_dedup_cleansed" + _override_suffix_identifier + ".csv"
    _save_file_name = _save_file_name.replace("_raw", "")
    df.to_csv(f"{save_dir}/{_save_file_name}", index=False)